В. ЛЁВШИН и ЭМ. АЛЕКСАНДРОВА

Эта книга впервые пришла к детям четверть века назад. Её первые чигатели давно выросли. Многие из них благодаря ей стали настоящими математиками таким увлекательным оказался для них мир чисел, с которым она знакомит.

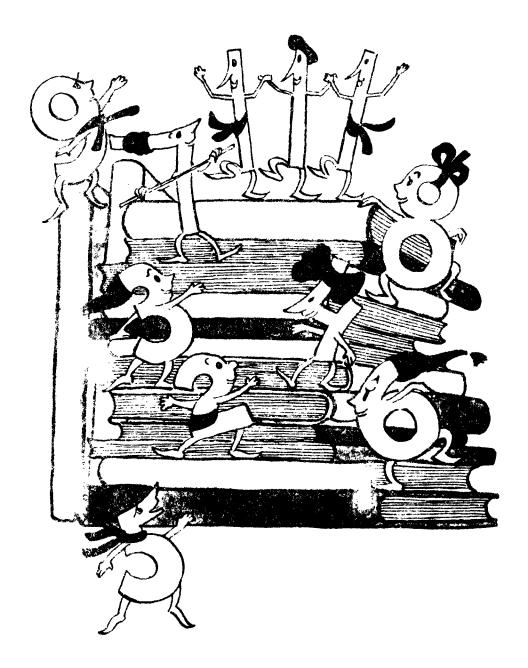
Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобрегательно и доступно. Кроме того, с иего начинается ряд других математических путешествий, о когорых повествуют кийги Владимира Лёвшина «Нулик морсход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Алек сандровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

НАУЧНО-ХУДОЖЕСТВЕННАЯ ЛИТЕРАТУРА

Лёвшин В. А., Александрова Э. Б.

Л38 Путешествие по Карликании и Аль-Джебре: Научно-художественное издание/Художн. Н. Анто-кольская. -- М.: Дет. лит., 1991. — 255 с.: ил.

ISBN 5-08-001458-x


«Съдъки да не сказки» - так авторы назвали свою квижку. Действие происходит в воображаемых математических странах Кардикании и Аль-Джебрс. Герои книги, школьники Таня, Сева и Одег, попадают в забавные приктючения, знакомятся с основами алтебры, учатея решать уравнения первой стенени.

 $\pi \frac{4802000000-024}{M101(03)-91}041-90$

ББК 22.1

в. лёвшин

в путы!

— Кто из вас был в Карликании? — спросил я.

Ребята удивлённо переглянулись.

- --- Что за Карликания?
- Где она находится?
- Кто там живёт?..

Я поднял руку — ребята смолкли.

— Значит, никто из вас не был в Карликании?.. Жаль. Карликания очень интересная страна. Я исходил эту страну вдоль и поперёк, подружился со всеми её жителями и постоянно переписываюсь с ними.

Ребята слушали с изумлением.

- Хотите отправиться со мной в Карликанию? спросил я.
- Конечно, хотим!
- Ведите нас в Карликанию!
- И поведу, ответил я.
- Прямо сейчас?
- Можно и сейчас. Только знайте, поход будет нелёгкий.
- Тем лучше,— заявил Сева.— Я мигом соберу рюкзак: зубную щётку раз, полотенце два, кружку три... В общем, всё, как в туристическом походе. Правильно?
- Нет, неправильно, ответил я. Никакого мыла, никакой зубной щётки. Карликания совсем особенная страна. Там и воды-то нет.

- Как же там моются? развела руками Таня. Неужели ходят грязными?
- Нет, почему же,— возразил я,— жители Карликании моются... резинками, обыкновенными школьными резинками.

Ребята засмеялись.

- Надо будет попробовать. сказал Сева.
- А как зовут этих чудаков?
- Раз они живут в Карликании, их и зовут карликанами,— ответил я.
- Ну хорошо,— не унималась Таня,— пусть карликане умываются резинками. Пусть. А что же они пьют, если у них нет воды?
 - Наверное, кофе или какао, -- заметил Сева.
- Скажешь тоже какао! возразила Таня. Какао без воды не сваришь.
 - Знаю! обрадовался Сева. Они пьют морковный сок.
- Не люблю морковного сока,— поморщилась Таня.— Виноградный вкуснее. Карликане пьют виноградный.
- Her, ребята,— вмешался я,— вам ни за что не угадать, что пьют карликане вместо воды.
- Чернила! выпалил Сева и сам испугался собственного остроумия.

Все опять засмеялись.

- A ведь ты угадал,— сказал я.— Қарликане в самом деле пьют чернила.
- Синие или красные? важно спросил Сева, довольный своим успехом.
- И синие, и красные,— ответил я,— и зелёные, и фиолетовые. А если нет чернил, карликане пьют краску.
- Как же так? недоумевала Таня. Ведь чернил тоже без воды не приготовишь.
- Чернила им в готовом виде доставляют,— ответил я.— Из другой страны.
 - Из Чернилии! победоносно добавил Сева.
- Оставь свои глупости! остановила его Таня. В Карликании этого не любят.

Так мы собрались в поход.

Вместе со мной отправились трое: Таня, Сева и Олег.

Олег, как вы уже заметили, за всё время не произнёс ни слова. Он очень молчалив. Зато уж если что-нибудь скажет, то всегда к месту и всегда правильно. Его так и прозвали — «Вещий Олег».

А вот Сева — тот никогда не закрывает рта, даже когда бывает один. На улице вслух читает вывески, разговаривает со встречными собаками, а то и сам с собой, за что ему часто достаётся от Тани. Ведь Таня лучшая ученица в классе, поэтому она немножко важничает.

АРАБЕЛЛА

Мы вошли в город незамеченными.

Это был необыкновенно красивый город. В центре его помещалась большая круглая площадь. От неё лучами расходились девять улиц.

«Улицы так и назывались: «Улица 1», «Улица 2» и так далее до «Улицы 9».

А сама площадь называлась Числовой.

Улицы пересекались множеством переулков и переулочков, так что можно было с одной улицы всегда попасть на другую, не выходя на Числовую площадь.

У переулков тоже были свои названия: «Дробные», «Десятичные», «Обыкновенные»... Были даже какие-то «Периодические» — длинные-предлинные, уходившие далеко за город, куда-то на край света. Некоторые переулки заканчивались тупиками. Кроме того, город пересекали широкие проспекты, аллеи... В центре Числовой площади находилось огромное стеклянное здание, на высокой башне которого переливалась всеми цветами радуги светящаяся надпись:

СТОЛИЦА КАРЛИКАНИИ

АРАБЕЛЛА

Мы бесшумно вышли на Улицу 8, где стояли совершенно одинаковые восьмиэтажные дома. В каждом доме по восьми дверей, в каждом этаже по восьми окон. И представьте себе, все дома на этой улице были обозначены одним и тем же номером — 8!

Таня первая нарушила молчание.

— Как же почтальоны доставляют письма, если все дома под одним номером?

Обрадовавшись возможности высказаться, Сева открыл было рот, но тут из окна какого-то дома послышалась песня. Вероятно, её пела мать, убаюкивая своего ребёнка.

Спи, мой Нулик, спи, сынок. Новый день уж недалёк,— Семь часов и семь минут Очень скоро пробегут.

> Спят четырнадцать котят, Сорок мышек тоже спят, Даже стопудовый слон Смотрит сто девятый сон.

Спи, мой Нулик, спи, сынок. Новый день уж недалёк,— Семь часов и шесть минут Очень скоро пробегут.

Чтоб расти из года в год, Никогда не лезь вперёд. Если будешь поскромней, Станешь в десять раз сильней.

Спи, мой Нулик, спи, сыпок. Новый день уж недалёк,— Семь часов и пять минут Очень скоро пробегут.

Пенне смолкло. Раздался лёгкий шлепок, и женщина сказала:

— Спи, негодный! До нового дня осталось уже только семь часов и четыре с половиной минуты. Если ты сейчас же не заснёшь, так и будешь нулём всю жизнь. Спи! Что я тебе сказала?!

На цыпочках мы двинулись дальше и свернули в тупичок, который заканчивался большим сараем. Сева тут же прочитал вывеску:

Склад КАРЛИКАНЕ, СКЛАДЫВАЙТЕ ВСЁ ЗДЕСЫ

Несмотря на то что в Арабелле была ночь, из склада доносился невероятный шум. Там кричали, спорили, передвигали какие-то громоздкие вещи.

Мы подошли поближе и вот что услышали.

— Девочка, зачем ты кладёшь сюда апельсины?! — негодовал густой бас.--- Разве ты не видишь, что здесь лежат электрические лампочки? Лампочки надо складывать с лампочками, а апельсины — с апель-

синами. Иначе в сумме получатся какие-то лампольсины! Чему вас только учат в школе? Сразу видно, что ты маленькая Двойка. Да, да. Двойка, и ничего больше! Завтра ты станешь складывать дясущек с цаплями, и от твоих лягущек ничего не останется— цапла; их попросту слопают!

- А зачем жс вы сами сложили белую булку с ветчиной? возразил тоненький голосок.
- Ах ты невежа! возмугился бас. Я их не складывал я сделал из них бутерброд. Это же совсем другое дело! Бутерброд с ветчиной это очень вкусно! Да как ты смесшь меня учить?! Сперва доживи до моего возраста, тогда и учи других. А я уж ках-нибудь сам разберусь, с чем мне есть ветчину.
 - Хи-хи-хи! -- засмеялась девочка.-- Вы просто обжора!
- A ты недоучка! рассвирепел бас. Убирайся, не то я завтра всё расскажу твоей учительнице.

Не дожидаясь встречи со спорщиками, мы поспешили выбраться из тупика.

- Слушайте, сказал Сева, теперь я, кажется, понял. что такое Карликания. Это же Арифметическое государство!
- Ай да Сева! съязвила Таня. И как ты только догадался? Не ты ли сам вчера складывал мандарины с выключателями?

Сева искоса виновато посмотрел на меня. Но я притворился, что ничего не слышал.

Мы вернулись на Числовую площадь. Светало. Постепенно раскрывались ставни, на улице появились первые прохожие.

В Арабелле начался день.

Никто из жителей города нас ещё не видел. Мы укрылись в небольшом садике. И я стал рассказывать моим спутникам о том, как возникло это государство.

САМОЕ ДРЕВНЕЕ ГОСУДАРСТВО

Мы знаем много древних государств: Индию, Египет, Вавилон, Ассирию, Грецию... Мы даже знаем, когда примерно каждое из них появилось. А вот когда появилось Арифметическое государство, этого никто не знает. А что оно очень-очень древнее, можно заключить из того, что и в Вавилоне, и в Египте, и в Греции, и на Руси, и во всех

других древних государствах упоминается и Арифметическое. Значит, оно древнее всех.

Может быть, его основал самый-самый древний человек на земле, такой древний, что древнее его уже никого не было? Может быть, он издал Указ об основании Арифметического государства? Или захватил силой какую-пибудь страну и назвал её по-своему?

Нет, этого не может быть. Указов самый-самый древний человек писать, конечно, не умел — он вообще писать не умел, а государств в то время никаких и не было.

Были у древнего человека жена и двое детей. Вот пошёл однажды самый-самый древний человек на охоту и убил самого-самого древнего дикого кабана. Пришёл домой и... что же он сделал с добычей? Ну конечно же, разделил её на четыре части: жене. сыну, дочке и себе.

Так появилось на свете арифметическое действие — деление. Вот

как древний человек заложил первый камень Арифметического государства!

А потом пошло! Дети, как все дети, хотели есть. Надо было запасать еду впрок. Древний человек стал чаще ходить на охоту, а добычу складывал в яму.

Вы понимаете, что он делал? Он складывал!

А осенью надо было собрать много орехов, ягод — ведь дети любят лакомства. Хозяйство древнего человека всё росло и умножалось.

А когда дети выросли, они переженились с детьми другого древнего человека. Для них надо было устраивать самостоятельные хозяйства. Тут родители без сожаления стали отнимать от своего добра самые лучшие шкуры зверей, самые крупные орехи, плоды и отдавать их детям. Было у родителей, скажем, по тридцати орехов, а после свадьбы оставалось только по восемнадцати. Значит, по двенадцати орехов они отдали.

Скажите, пожалуйста, разве это не самое обычное действие — вычитание?

Но древний человек ещё не знал, как называются арифметические действия. Он вообще не знал арифметики.

Конечно, это было очень давно. Можно только догадываться, как всё происходило. Людей на земле появлялось всё больше, хозяйства их росли. Всё труднее становилось делить, складывать, умножать, вычитать.

А некоторые нехорошие древние люди этим пользовались.

«Эй, друг! — говорил один такой нехороший древний человек. — Ты меня обманываешь. Ты обещал мне отдать десять кабаньих ножек. Вчера отдал четыре, сегодня — пять и говоришь, что мы в расчёте. Где же ещё одна ножка?»

«Нет, друг,— отвечал ему хороший древний человек,— я тебе вчера отдал не четыре, а пять кабаньих ножек. Ты позабыл».

«Нет, это ты позабыл! — возражал нехороший человек. — Ты больше мне не друг, и я тебя убью этой дубиной!»

Конечно, ничего бы этого не случилось, если бы хороший человек записал, сколько он отдал кабаньих ножек нехорошему человеку. А он этого не сделал. Не сделал потому, что не умел записывать числа.

И вот решили хорошие древние люди поступать так: каждую полученную или отданную кабанью ножку обозначать камешким прятать в надёжное место. Теперь уж никто не скажет, что ножек он получил четыре, а не пять.

Так и стали делать. А потом онять запутались. Хорошо, когда считать приходилось кабаньи ножки. Их было не так уж много. Попробуйте пересчитать таким способом орехи или ягоды! Сколько камешков придётся перетаскать?

«Придумали! — решили одни. — Обойдёмся без камешков. Будем каждый орех или каждую кабанью ножку отмечать зарубкой на стене. Будем ставить палочки и считать их».

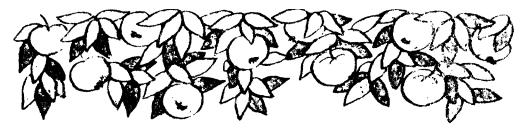
«Что вы! — возражали другие. — Вы перепортите все стены в пещерах. И всё равно со счёта собъётесь. Надо придумать что-нибудь поумнее да попроще».

Легко сказать: «попроще»! Не простая это задача! Много воды утекло, прежде чем люди додумались, как её решить, и появились на светновые необычные существа — ц и ф р ы.

Эти цифры были мало похожи на те, которые вы знаете. Но об этом я расскажу вам потом. А сейчас... Мы ведь с вами находимся в Арабелле, так давайте говорить о тех цифрах, которые живут в этом городе.

Изобрели эти цифры в древней Индии. И называться бы им индийскими. Но никто в те времена о выдумке индийцев не знал. Индию покорили арабы, они разорили города, забрали там много драгоценностей. А вместе с ними и цифры. Так что узнали мы об индийском изобретении через арабов и стали называть эти цифры арабскими.

Таких цифр насчитывалось в древности девять: 1, 2, 3, 4, 5, 6, 7, 8, 9. Они-то и основали это государство. И столицу его назвали Арабеллой.


Теперь вам понятно, куда мы попали?

Смотрите: кто-то открывает калитку. Придётся нам, кажется, извиниться за непрошеное вторжение.

яблоневый сад

Не успел я это сказать, как сад заполнился весёлыми малышами. Их привела цифра постарше — опрятная Четвёрка с бантиком в волосах. Заботливо одёрнув складки школьного платья, она подошла к нам и вежливо поздоровалась.

- Извините, сказал я, мы вошли в ваш сад без спроса.
- В нашем городе рады всем,— сказала она,— а школьникам особенно.

- Откуда вы знаете, что я школьник? спросил Сева. Четвёрка лукаво улыбнулась:
- Мы ведь с вами не раз встречались. Мне даже приходилось появляться на страницах вашего дневника. По правде говоря, не так часто, как бы мне хотелось.
- Есть дневники, где вам и вовсе не доводилось бывать, нашёлся Сева и выразительно посмотрел на Таню.
- Да, но это совсем другое дело. Там постоянно гостит моя подруга Пятёрка. Она гораздо лучше меня, и я на неё нисколько не сержусь.

Сева вспыхнул и хотел было что-то ответить, но в это время — и очень кстати — к Четвёрке подбежали малыши.

— Ой, какие красивые яблоки в этом саду! Можно их попробовать?

— Отчего же,— сказала Четвёрка,— но для этого яблоки надо сперва сорвать.

- Мы хотели, но у нас не получается. Очень высоко.
- А разве вы не знаете нашего правила? Яблоки сами упадут на землю стоит только решить какую-нибудь задачу.

К нашему удивлению, малыши ничуть не огорчились. Они деловито достали из карманов маленькие палочки и приготовились записывать на песке условие задачи.

— Итак,— продолжала Четвёрка,— на трёх тарелках лежат яблоки. На первой тарелке лежит половина всех яблок. Когда с этой тарелки взяли половину того, что лежало на второй тарелке, а затем половину того, что было на третьей, на первой тарелке осталось всего два яблока. Спрашивается, сколько яблок лежало вначале на каждой тарелке? Понятно?

Малыни сосредоточенно засопели, водя палочками по песку, некоторые от усердия даже высунули языки. Скоро, однако, настроение у них явно испортилось. Многие даже заплакали. Четвёрка нисколько этому не удивилась, достала ослепительно белый носовой платок и аккуратно вытерла маленькие мокрые носы.

- Нечего плакать, сказала она, эта задача для вас ещё трудновата. Пусть её решат наши гости. И тогда мы все вместе попробуем чудесных яблок.
- -- Таня, вся надежда на тебя! шепнул Сева. Ему давно уже не терпелось поближе познакомиться с яблоками.

Очень скоро сад был буквально засыпан спелыми плодами.

— Молодец, Таня! — в восторге закричал Сева.— Я знал, что ты решишь задачу!

Малыни дружно захлопали в ладоши и бросились подбирать яблоки. Но Таня стояла смущённая, щёки её пылали.

- -- Это не я решила задачу! -- с трудом выговорила она и, закрыв лицо руками, отвернулась.
 - Вот те раз! Кто же это? заволновались малыши.
 - Во всяком случае. не я! буркнул Сева.

Тогда все посмотрели на Олега. Он, как обычно, молчал. А рядом с ним на песке все увидели три числа. Это был ответ на задачу.

- Совершенно правильно! сказала Четвёрка, взглянув на числа, и сейчас же стёрла их ногой.
 - Зачем, зачем вы это сделали? запищали малыши.
 - Пусть тот, кто не решил этой задачи, обязательно решит её сам.

А мне пора на площадь Добрых Напутствий. Если хотите увидеть интересное зрелище,— любезно обратилась она к нам,— я с удовольствием вас провожу.

Мы охотно согласились и последовали за нашей новой знакомой.

ТАИНСТВЕННЫЕ ЗНАКИ

Город кишел народом. Со всеми своими улицами и многочисленными переулками он был похож на большой, но хорошо изученный лабиринт.

В этом легко было убедиться, видя, как безошибочно и быстро находили жители Арабеллы дорогу к широкому проспекту Действующих Знаков,

Отовсюду стекались сюда оживлённые карликане. Были среди них дети и старики, торопливые и медлительные, болтуны и молчальники, смешливые и задумчивые. Но, несмотря на большую толпу, никто никого не толкал, никто никому не наступал на ноги.

Многие дружелюбно кивали нам в знак приветствия, а иногда и пожимали руки — словом, вели себя как добрые знакомые.

По обе стороны проспекта тянулись длинные здания со множеством вертящихся дверей. Карликане то и дело ныряли в них и тотчас же возвращались с небольшими чемоданчиками, в которых что-то мелодично позвякивало.

На каждом шагу попадались вывески с крупной надписью:

СКЛАД ДЕЙСТВУЮЩИХ ЗНАКОВ

Под этой надписью была другая, поменьше:

ЭКОНОМЬТЕ РАСХОД КРЕСТИКОВ!

— Что это за крестики такие? — вслух недоумевал Сева. — И почему это их надо экономить?

Но вот из одной вертящейся двери выпорхнула школьница с тремя смешными косичками. Это была маленькая Тройка.

- Троечка, что это у вас в чемодане? спросил у неё Сева.
- Здравствуйте! ответила воспитанная Тройка.

- Ax да, я совершенно забыл,— спохватился Сева.— Конечно, здравствуйте! Не скажете ли вы, что это звенит у вас в чемодане?
- Действующие знаки.— Тройка указала на вывеску: Тут же всё написано. Разве вы не умеете читать?
 - Умею, но не понимаю, что это за знаки и как они действуют?
- Ах нет, нет. Они не могут сами действовать. Они только помогают другим производить различные действия.
 - Театральные действия? сострил Сева.
- Скажете тоже! Тройка энергично замотала косичками. Не театральные, а арифметические!
 - Понимаю: сложение, вычитание, умножение и деление.
 - И многие другие.
- Какие же другие? удивилась Таня. Кроме этих четырёх, других действий не бывает.
- Что вы! воскликнула Тройка. Кроме арифметических, могут быть и совсем другие действия например, алгебраические.
- Не знаю таких,— пожала плечами Таня.— Никогда даже не слышала.
 - Неужели?! Тройка изумлённо всплеснула руками.

Трах! Это упал на землю чемоданчик, и всё его содержимое высыпалось наружу. Мы поспешно бросились подбирать.

Чего там только не было! И точки, и запятые, чёрточки маленькие, чёрточки большие, крестики. скобки круглые, скобки квадратные, скобки фигурные и ещё много-много совсем непонятных знаков.

- Ой, какая я неловкая! огорчилась Тройка. Пожалуйста, осторожнее. Это очень важные знаки. Вот эта маленькая чёрточка, например. Если забыть поставить её между двумя числами, то никто и не догадается, что из одного числа нужно вычесть другое.
 - Это минус! выпалил Сева.
- Разумеется! обрадовалась Тройка. А вот если я две такие чёрточки помещу одну над другой, это уже будет не два минуса, а...
 - ...знак равенства, не удержался Сева.
- Так вы же всё знаете! Я думаю, дальше вам и объяснять не нужно. Вот, например, этот крестик...
- Это плюс,— сказал Сева.— Он нужен для сложения. А вот почему у вас висит объявление «Экономьте расход крестиков!»? Неужели для того, чтобы поменьше складывали?

- Ой, что вы! засмеялась Тройка. Складывайте на здоровье, сколько душе угодно! Дело в том, что крестик употребляется не только как знак сложения, но и как знак умножения. Стоит только поставить его на обе ножки вот так: \times . Поэтому крестиков у нас не хватает, и мы решили заменить их точками.
 - Но такую точку легко спутать со знаком препинания!
- Нет, нет! Тройка замахала руками.— Это же очень просто: наша точка ставится чуточку выше, чем знак препинания.
- А это что такое? спросил Сева, вытащив из чемоданчика забавную фигурку. — Сачок для ловли бабочек?
- Какой вы смешной! прыснула Тройка. Это тоже знак. Он применяется при извлечении корней из чисел. И зовут его радикал.
- Выходит, у чисел есть корни, такие же, как у деревьев? обрадовался Сева.
- Какой ужас! воскликнула Тройка. Вы всё понимаете буквально.
 - Но что же это всё-таки за корни?
- Позвольте мне на ваш вопрос ответить вопросом: сколько будет трижды три?
 - Разумеется, девять!
- Великолепно! Сами того не замечая, вы произвели важное и прекрасное действие: возвели тройку в степень!
 - Нет, возразил Сева, я просто умножил тройку саму на себя.
- Вот именно. Но это же и есть возведение в степень. И притом во вторую степень.
 - А разве можно ещё и в третью? спросила Таня.
 - Конечно. Для этого падо девять ещё раз умножить на три.
- Значит, три, помноженное на три и ещё раз на три,— это и есть третья степень трёх? сказала Таня.
 - Совершенно верно. Поэтому третья степень трёх равна...
 - ...двадцати семи, закончила Таня.
 - Но ведь так можно поступать без конца! сказал Сева.
- Как вы это правильно заметили! восхитилась Тройка. Именно без конца! И тогда будут получаться четвёртая, пятая, шестая степени...
 - Любопытно.

- Но вернёмся к началу нашего вопроса, — продолжала Тройка. — Вы спросили, что такое радикал? Начнём от печки. Трижды три — девять. А теперь я задам вам тот же вопрос с конца: какое число нужно возвести во вторую степень, чтобы получить девять?
 - Три, сразу ответил Сева.
- Видите, по девятке мы узнали, какое число было возведено во вторую степень. И число это оказалось тройкой.
- Вот это действие и называется извлечением корня? спросила Таня.
- Ну да! -- обрадовалась Тройка. —
 И обозначается оно радикалом.
- А ты думал, им ловят бабочек,— съехидничала Таня.

Сева торжественно поднял руку:

- Клянусь, теперь я всегда буду помнить, чему равен корень из девяти.
- И всё-таки, продолжала Тройка, не следует думать, что корень из девяти всегда равен трём! Всё зависит от того, какой корень вы извлекаете.
- Как, опешил Сева, разве корни бывают разные?
- Совершенно разные! Есть корни и третьей, и четвёртой степени. Об этом вы узна́ете в своё время. А теперь простите меня. Я боюсь опоздать на площадь Добрых Напутствий.

Тройка схватила чемоданчик и убежала.

И тут только мы заметили, что Четвёрка с бантиком куда-то исчезла. Посоветовавшись, мы решили продолжать путь одни. Это было нетрудно: все жители города двигались сейчас в одном направлении.

площадь добрых напутствий

Это было огромное поле, сплошь заполненное жителями Арабеллы. И, так же как и на проспекте Действующих Знаков, здесь царил совершеннейший порядок.

У входа на площадь возвышалось какое-то удивительное сооружение. Мои ребята с восторгом осматривали его, поднимались на ступеньки, заглядывали внутрь через круглые разноцветные окошечки.

- Это ракетная установка?
- Нет, это космический кораблы!
- А по-моему, атомная станция!
- Я молчал: пусть разбираются сами.

Неожиданно в разговор вмешалась толстая Восьмёрка, которая вела за руку маленького Нулика.

- Здравствуйте! обратилась она к нам.
- Здравствуйте! повторил за ней Нулик и вкусно зевнул.

Восьмёрка покачала головой:

- Ну что с ним делать? Заснул только под утро, а теперь зевает. Как я отпущу его в такое серьёзное путешествие?
- Не вы ему пели: «Спи, мой Нулик, спи, сынок»?— спросила Таня.
- Кто же, кроме меня, может петь песенку, которую я сама сочинила? А не вы ли гуляли ночью под моими окнами? в свою очередь поинтересовалась Восьмёрка.
- Да, да, это они гуляли! обрадовался Нулик. Вот эта девочка, он показал на Таню, спросила, как почтальоны доставляют нам письма, если все дома под одним номером.
- Не всё ли равно, кто получит письмо, возразила Восьмёрка. Письма, адресованные кому-нибудь из нас, одинаково касаются всех.

- И меня, и меня касаются! закричал Нулик.
- Какой умный ребёнок! умилилась Восьмёрка.
- Раз уж вы так любезны,— обратился к ней Сева,— не скажете ли, уважаемая Восьмёрка, откуда у вас сын Нулик? Я думал, ваши дети тоже Восьмёрки.
- Конечно, у меня, как и у всех других мам-восьмёрок, дети тоже восьмёрки. А у пятёрок пятёрки, у двоек двойки, и так далее. А вот нулики имеются у всех. Нулики это наши приёмные дети. Но мы их любим, как своих родных, даже, пожалуй, больше. Ведь они такие маленькие, такие беззащитные. Они без нас совсем ничего не значат.
 - Откуда же они у вас появились? спросил удивлённо Сева.
- О, это очень длинная история! Вы, наверное, знаете, что на нашей родине, в Индии, было только девять цифр. Эти девять старейших и образовали Арифметическое государство. Теперь они заседают в Совете Старейших и управляют нами. Вскоре люди решили, что очень неудобно обходиться без нулей. Ну подумайте сами: вам нужно записать число 205, а у вас только девять цифр, нуля нет. Что вы будете делать? На месте сотен поставите двойку, на месте единиц пятёрку. А что вы поставите на месте десятков? Ведь десятков в этом числе нет! Нельзя же писать число 205 так: 2HET5! Это было бы ужасно!

И люди решили вместо слова «нет» ставить нуль. Так появились в нашем государстве эти милые, прелестные крошки, которых мы с радостью усыновили. Вот откуда у меня такой круглый сынок... Ну, иди, иди, мой маленький, а то мы опоздаем на ракету. Скажи всем «до свидания».

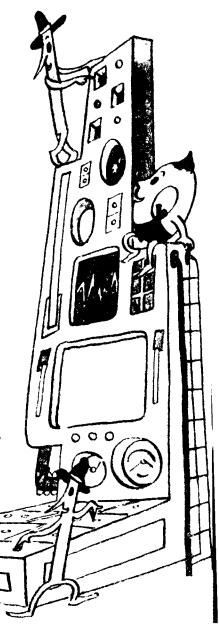
— До свида-а-а-ния! — пропел Нулик и покатился следом за своей солилной мамашей.

В это время мы услышали знакомый голос:

— Вот они! А я уже думала, что никогда вас не найду.— Перед нами стояла Четвёрка с бантиком.— Извините меня, пожалуйста, я должна

«Внимание! Карликане! Через минуту вы отправитесь в далёкое путешествие к людям. Слушайте доброе напутствие Совета Старейших. У микрофона Карликан Первый.

— Дорогие друзья, храбрые путешественники, неутомимые труженики! Совет Старейших желает вам доброго пути и благополучного возвращения. Мы уверены, что вы не посрамите нашего славного государства и будете честно трудиться на благо человечества. В руках добрых людей вы принесёте пользу, в руках злых можете принести разрушение. Служите добрым людям, остерстайтесь злых. Счастливого вам пути!»


Заиграла музыка, и в воздух одна за другой стали подниматься огромные сверкающие машины. Их было много, и каждая отвозила миллионы карликан. Восхитительное зрелище!

Мы долго не могли опомниться и всё глядели в небо, где давно уже ничего не было, кроме лёгких белых облаков.

- Странно,— заговорил наконец Сева,— улетело столько, что не сосчитать, а толпа на площади не убывает. Может быть, это мне только кажется?
- О, напротив, вы очень наблюдательны! заметила Четвёрка. Толпа в самом деле не убывает.
- Как же так? недоумевал Сева. Если даже из огромной коробки всё время брать по конфете, то конфеты когда-нибудь кончатся.
- Конфеты, конечно, кончатся, улыбнулась Четвёрка, а карликане — никогда.
 - Чепуха! отрезал Сева.
- Довольно слабое доказательство,— сухо заметила Четвёрка.— Я в таких случаях прекращаю спор. Но на этот раз сделаю исключение. Мне вас жаль, потому что вы не знаете, что такое бесконечность.
- Почему это я не знаю? обиделся Сева. Бесконечность это когда чего-нибудь очень много. Ужасно много!
- Нет, нет! возразила Четвёрка.— Это совершенно неверно. У нас так не рассуждают даже нулики. Бесконечность это то, у чего нет конца. Совсем нет конца.
 - Ну где-нибудь конец всё-таки есть? не сдавался Сева.
- В том-то и дело, что нигде! Вот вам кажется, что вы уже дошли до самого конца, заглянули дальше, а там... А там снова бесконечность. И так бескопечно. Вы её догоняете, а она убегает всё дальше. Идёшь

сквозь огромную толпу карликан, идёшьидёшь, уже и ноги не держат, а впереди всё столько же народу, сколько было раньше. И сколько бы вы ни шли, вы всегда самой находитесь В середине толпы. Идите хоть сто, хоть тысячу, хоть миллион лет! Вот что такое бесконечность!.. И не возражайте, пожалуйста! - строго остановила она Севу, уже открывшего было рот. -- Если вам непонятно, то к этому вопросу я ещё вернусь, потому что о бесконечности можно говорить бесконечно.

- Скажите, что это за махина такая? — спросил Олег, чтобы загладить Севину бестактность. Он указал на странное сооружение, которое ещё вначале привлекло наше внимание.
- Не махина, а машина, поправила Четвёрка, электронно-счётная машина. Это наш большой друг. В Карликании таких машин много, и каждая занята своим делом.
- А чем занята эта? спросил Сева. Он удивительно быстро оправился от смущения.
- Эта машина производит самые точные вычисления. Она может сосчитать, сколько карликан отправилось в путешествие, с какой скоростью им надо лететь,

чтобы прибыть вовремя. Машина сама выберет кратчайший маршрут; она управляет полётом и помогает обойти все препятствия, которые встречаются на пути ракеты. Это очень умная машина!

- Должно быть, её обслуживают много карликан.
- Всего только две цифры, две самые маленькие цифры: нулик и единичка. Но они прекрасно справляются со своей работой. Представьте себе, у них превосходная память. Стоит только им узнать что-нибудь, и можете быть уверены: они этого никогда не забудут.
 - Счастливые! вздохнул Сева.
- A почему в этой машине работают только нулик и единичка? спросила Таня.
- А больше никто и не нужен. Вы ведь знаете, что нуль это ничто. Вот он и обозначает слово «нет», тогда как единицей обозначается слово «да». Оказывается, этих двух слов совершенно достаточно, чтобы решить любую задачу.
 - Как это так? недоверчиво спросил Сева.
- Давайте сыграем в такую игру,— предложила Четвёрка.— Угадайте, что у меня в кармане? Задавайте мне какие хотите вопросы, но так, чтобы я должна была отвечать только «да» или «нег». Начали?

Ребята не заставили себя упрашивать. Вопросы посыпались один за другим:

- У вас в кармане что-нибудь съедобное?
- Нет.
- Школьный предмет?
- Да.
- Жидкий?
- Нет.
- Твёрдый?
- Нет.
- Мягкий?
- Да.
- Длинный?
- Нет.
- Круглый?
- Нет.
- Прямоугольный?
- Да.

- На нём пишут?
- Нет.
- Им промокают?
- Нет.
- Им стирают?
- Да.
- Резинка! сказал Олег.
- Правильно! ответила Четвёрка. Видите, вы решили задачу только по моим ответам, с помощью всего двух слов: «да», «нет». Так и машина работает. Только работает она очень-очень быстро. Её так и называют быстродействующая. У нас имеется прекрасный дворец, где быстродействуют эти умные машины. Это Дворец Кибернетики. Обязательно побывайте там. А теперь я приглашаю вас на стадион повеселиться. Там скоро начнётся представление балет на льду. Маленькие карликане на коньках! Советую посмотреть.

Надо ли говорить, с какой радостью мы отправились на стадион!

БАЛЕТ НА ЛЬДУ

Это был школьный утренник, очень похожий на те, к которым мы привыкли у себя дома. Добрую половину зрителей составляли взволнованные мамы, тёти и бабушки маленьких артистов. Они оживлённо переговаривались и с нетерпением поглядывали на большое ледяное поле, где только что установили декорации, изображающие дремучий лес.

Режиссёр — тоненькая, гибкая Семёрка — грациозно пересекла ледяную сцену и подкатила к нам. приветливо улыбаясь.

 Спасибо, что пришли. Это ведь я просила моего друга Четвёрку привести вас сюда.

Нас усадили в первом ряду, как почётных гостей.

И сразу над ледяным полем вспыхнул ослепительно яркий свет.

Дирижёр взмахнул палочкой, и под звуки весёлой музыки на сцену выбежали два малыша. Они развернули длинное полотнище, и все прочитали название балета:

ВОЛШЕБНЫЕ ПРЕВРАЩЕНИЯ И ВЕСЁЛЫЕ ПЕРЕСТАНОВКИ!

Малыши убежали, а вместо них появились другие, в разноцветных хитончиках, во главе с добрым Вычислителем-Строителем.

Он красноречиво (хотя и без слов) рассказал, какие великие дела предстоит им совершить на благо людей. Цифры не менее красноречиво (тоже без слов) выразили полную готовность следовать за добрым Вычислителем-Строителем.

Вдруг в оркестре загремели барабаны, и на сцене появился злой Вычислитель-Разрушитель.

Завидев его, цифры бросились кто куда. Они боялись, что он возьмёт их в плен и заставит работать на себя. А этот злодей занимался очень плохими делами. Он ненавидел людей и хотел их уничтожить.

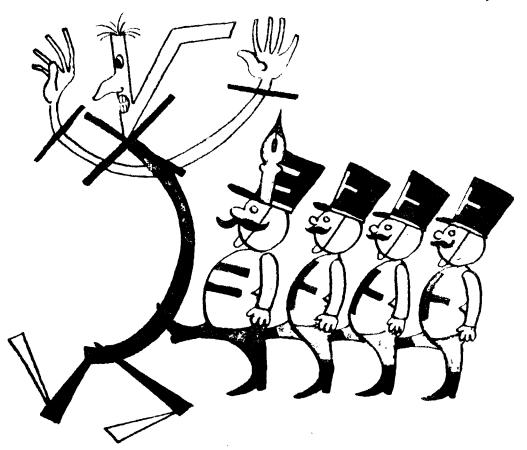
Добрый Вычислитель-Строитель стал на защиту испуганных мальшей.

Тогда Вычислитель-Разрушитель, увидев, что одному ему не справиться, кликнул на помощь своё войско. И вот появились воины в белых мундирах с чёрными крестами на груди. Они схватили доброго Вычислителя-Строителя, кренко-накрепко связали и стали с силой вклиниваться между насмерть перепуганными цифрами, а те всё время увёртывались от них. Так продолжалось довольно долго.

По правде говоря, мои ребята ничего не понимали.

- Скажите, пожалуйста,— шёпотом обратился Сева к Четвёрке,— почему эти цифры так боятся воинов с плюсами на груди?
- Да потому, что сейчас они ещё свободные цифры. А когда плюсы начнут их складывать, опи превратятся в числа. И тогда уж волейневолей им придётся работать на злого Вычислителя-Разрушителя.
- А я думал, возразил Сева, что цифры и числа это одно и то же!
- О нет! Разница между цифрами и числами такая же, как между буквами и словами. Слова составляются из букв, а числа из цифр. Цифр и букв немного, а слов и чисел множество. С числами можно производить различные действия, а с цифрами нельзя. Когда цифра становится числом, этому числу можно дать любое наименование. Числа можно назвать птицами, книгами, яблоками, а можно ружьями и пушками. Этого и добивается злой Вычислитель-Разрушитель. Вот почему цифры так его боятся.

Между тем с помощью своих воинов, Плюсов, и их командира Знака Равенства злой Вычислитель-Разрушитель заставил наконец цифры расположиться следующим образом:


$$1+3+4+2=10.$$

Бедные цифры, превратившись в числа, сразу замерли. Они были очень грустные. В зале плакали. А Вычислитель-Разрушитель торжествовал. Он хорошо знал, что числа никогда не посмеют нарушить равенство, не посмеют убежать от него. Ведь десять всегда должно быть равно десяти!

Теперь числа в его власти!

И вдруг (какая же сказка без волшебного «вдруг»!)... вдруг маленький Нулик из числа 10, точная копия нашего знакомого, быстро встал по другую сторону Единицы. И вместо десятки получилось какоето ни то ни сё — 01!

В зале ахнули. Это было неслыханное геройство. Знак Равенства тут

же упал в обморок — он не вынес подобного нарушения. А Вычислитель-Разрушитель так перепугался, что побежал звонить в пожарную команду, потому что пожарных в Карликании тоже вызывают по темефону 01. Совсем как у нас.

Зрители громко зааплодировали, а цифры быстро развязали своего доброго предводителя и на радостях затеяли весёлую игру, в которой приняли участие недавние их враги — Плюсы и Знак Равенства. Им тоже надоело служить злому волшебнику. С этих пор они будут делать только добро.

Сначала под звуки плавного вальса числа образовали знакомую уже нам группу:

$$1+3+4+2=10$$
.

Потом началось феерическое зрелище. Освещённые то жёлтыми, то красными, то синими прожекторами, юные фигуристы стали меняться местами, образуя всё новые и новые группы:

и так далее.

И только десятка, стоявшая после Знака Равенства, всё время оставалась на месте. А числа в танце низко кланялись Нулику, и он стоял довольный, но скромный, как и подобает герою.

Так продолжалось до тех пор, пока конькобежцы не вернулись к исходному положению.

- Сколько же раз они менялись местами? спросил Сева.— Я считал и запутался.
 - Ровно двадцать четыре раза, ответила Четвёрка.
 - Неужели так много?
 - Если вы сомневаетесь, проверьте сами, усмехнулась она.

Тут первое отделение подошло к концу. Артисты выстроились полу-кругом и, взявшись за руки, запели:

Всё хорошо, что хорошо кончается! Но в пьесе вывод полагается: От перемены мест слагаемых Сумма не ме-ня-е-тся!

ПЕРВОЕ ЗНАКОМСТВО

В антракте мы пошли за кулисы, чтобы поблагодарить Семёрку и всех артистов за интересный спектакль.

Это оказалось труднее, чем мы думали. За кулисами была ужасная толчея, такая же, как у нас после концерта школьной самодеятельности. Маленьких артистов душили в объятиях счастливые родственники и восторженно пророчили им великое будущее. Родственники всегда немного преувеличивают!

Нам всё-таки удалось добраться до Семёрки. Мы выразили ей свой восторг. Она была счастлива и попросила нас обязательно посмотреть второе отделение.

- Мы покажем вам воздушное умножение. Это самый лучший номер нашей программы!
- A Нулик тоже в нём участвует? спросила Таня, которой очень понравилась игра маленького артиста.
 - Да, конечно. Но в этот раз он играет вспомогательную роль.
 - Почему? огорчилась Таня.
- Нельзя же всегда играть главные,— ответила Семёрка.— Наши артисты должны исполнять всякие роли. Скажу по секрету: Нулик очень на нас за это обиделся. Мама внушила ему, что он талант.

В это время раздался громкий визг. Дверь костюмерной распахнулась. Кто-то вихрем промчался мимо нас и исчез в толпе.

Начался страшный переполох. Цифры бросились врассыпную. Совсем как в балете при появлении злого Вычислителя-Разрушителя.

Все беспорядочно кричали:

- Спасите! Отнимите у него! Он нас уничтожит!..
- Так я и знала! Противный мальчишка! Он стащил знак умножения.— И Семёрка храбро бросилась в самую гущу толпы.
 - Кто стащил знак умножения? спросили мы у Четвёрки.
- Как кто? Нулик! пискнула она, робко прячась за наши спины. Тот самый, которого вы так расхваливали.
 - А зачем ему знак умножения?
 - Он мстит за то, что ему не дали главной роли.
- Подумаешь, страшная месть,— рассмеялся Сева,— стащил знак умножения.
 - Не говорите так! с ужасом воскликнула Четвёрка. Разве вы

не знаете, какую беду может натворить Нулик со знаком умножения! Стоит ему встать рядом с любым числом — и оно немедленно обращается в ничто. Какой-нибудь час — и все жители Арабеллы обратятся в нуль! Представляете себе государство, состоящее из одних нулей?!

Мимо нас пробежал отряд пожарников. (Как известно, пожарники есть в каждом театре.) У них были очки с сильными увеличительными стёклами (для поисков самых маленьких чисел). В руках они держали длинные, тонкие прутья. Как выяснилось, специально для ловли нулей

Тем временем Нулик выскочил на ледяное поле. Тогда пожарники и кучка отчаянных смельчаков во главе с нашей славной Семёркой окружили поле плотным кольцом и стали осторожно приближаться к виновнику переполоха.

На Нулика нацелился лес длинных палок.

Но он как ни в чём не бывало выделывал ногами вензеля и показывал преследователям язык.

Казалось, ещё минута -- и его схватят. Но не тут-то было!

Озорник ловко подпрытнул и вскарабкался на самую макушку декоративного дерева.

- Сейчас же бросай знак умножения! потребовала Семёрка.
- А вот и не брошу! захихикал Нулик, весело болтая ножками.
- Тогда будешь сидеть здесь до скончания века!
- А я возьму и перепрыгну через ваши головы. Прямо в публику! И Нулик сделал вид, что собирается выполнить угрозу.

В толпе началась настоящая паника. Зрители в ужасе побежали к выходам. В дверях образовались пробки.

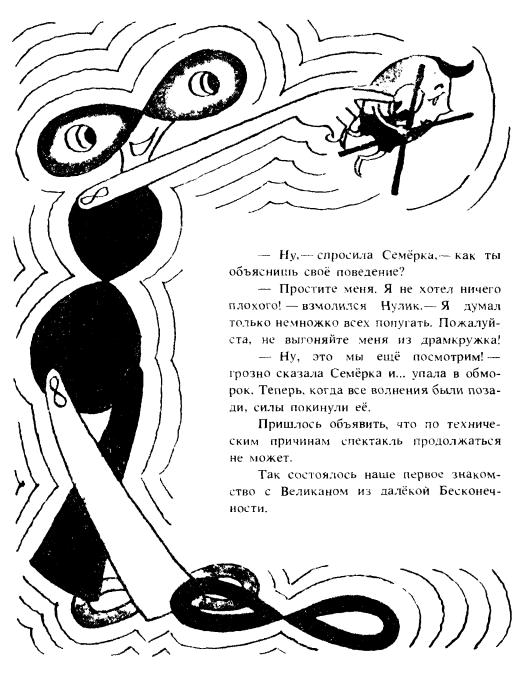
И тогда Семёрка бросилась к телефону.

- Скорую арифметическую помощь!..— закричала она в трубку.— Это Скорая?.. Ужасное несчастье!.. Да, да, опять Нулик! Пришлите немедленно великанов!
 - Что за великаны такие? спросил Сева у Четвёрки.
- Это жители Бесконечности бесконечно большие числа! ответила она.
 - А им не страшен Нулик со знаком умножения?
- Конечно, нет! Ведь им сделали противонуликовую прививку! Поэтому при умножении на нуль они сами в нуль не превращаются. Разве только иногда. Для разнообразия. Когда самим захочется. И тогда они превращаются в любое число по своему выбору.

Скорая помощь не заставила себя ждать. Не прошло и минуты, как над ледяным полем поднялся сильный ветер и откуда-то сверху долетело:

— Привет из Бесконечности!

К Нулику протянулась гигантская ладонь, и тот покорно положил на неё похищенный знак умножения. Он знал, что с Великаном шутки плохи.


Два огромных пальца приподняли Нулика и осторожно поставили на лёд.

Ура Великану!..— закричали все.— Да здравствуют добрые великаны!..

Великан приветливо помахал рукой и исчез так же внезапно, как появился.

Нулик сидел на льду и жалобно всхлипывал.

ЧУДЕСНЫЕ ПРИЗНАКИ

Мы с трудом уговорили Четвёрку с бантиком пойти домой. Ей надо было отдохнуть после стольких волнений. Назначив нам час и место встречи, она убежала, а мы отправились бродить по городу.

Вскоре мы вышли на широкую, светлую улицу, где стояли красивые дома из пластиката, стекла и алюминия. Разноцветные световые рекламы делали их особенно нарядными.

Улица называлась «Автоматическая». Мы подошли к большому зданию.

- «Выдача и приём призраков от трёх до четырёх часов»,— прочитал Сева.
- Ну как ты читаешь?! возмутилась Таня.— Не призраков, а признаков!
- Слава богу! А я уж испугался,— обрадовался Сева.— Признаки это совсем другое дело.
- Ax, другое? не унималась Таня. Не объяснишь ли ты, что это за «другое»?
- Пожалуйста,— небрежно ответил Сева.— Вот, например, ехидство — признак дурного характера!
 - А болтливость признак глупости! не осталась в долгу Таня.
- Чем попусту пререкаться, лучше зайдём и узнаем, о каких признаках речь,— сказал Олег.

Возразить против этого было нечего: он, как всегда, оказался прав. Мы очутились в светлом зале. Сначала нам показалось, что там никого нет. Вдруг Сева дёрнул Таню за руку и указал глазами на маленькую Пятёрку, стоявшую у стены.

Тихим, неуверенным голоском Пятёрка что-то говорила. Но кому? Ведь рядом совершенно никого не было!

И вдруг раздался голос невидимого собеседника. Это было как гром с ясного неба. Мы невольно посмотрели на стеклянный потолок.

Голос на миг умолк и сейчас же загремел снова, очевидно обращаясь к нам:

— Здравствуйте, люди! Мы вам рады! Меня зовут Автомат. Я обучаю эту достойную карликаншу делению целых чисел. Она собирается стать учительницей.

И тут мы увидели, что Пятёрка стоит у огромной машины, занимаю-

щей целую стену. Посредине светился серебристый экран, окружённый разноцветными лампочками, которые то вспыхивали, то гасли. Внутри что-то постукивало, потрескивало. Иногда раздавался тоненький мелодичный звонок.

- Вы разрешите мне продолжить занятия? любезно осведомился Автомат.
- Пожалуйста,— ответил Сева.— Мы тоже с удовольствием поучим-ся делению.
- Как, вы ещё не умеете делить? Хр-пр-тр! Извините, это моя самая маленькая шестерёнка повернулась не в ту сторону. Вы её расстроили.
 - -- Нет, вы меня не поняли, вообще-то мы делить умеем.
- Ax, умеете? Ну, тогда совсем другое дело. Не хотите ли решить примерчик? Я как раз собирался предложить его моей юной ученице.

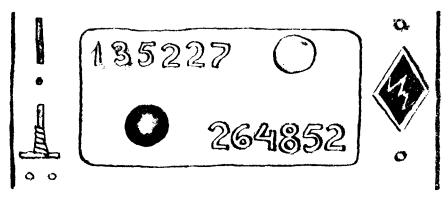
На экране засветились числа:

$135\ 227:9=?$

- Позвольте мне, сказала Пятёрка. Начнём по правилам: сначала делим трипадцать на девять...
- Хр-пр-тр! Чтобы ответить на мой вопрос, вовсе не нужно делить. Я собирался вас спросить: делится ли это число на девять? Да или нет?
- Как, вы хотите, чтобы мы сказали это сразу, не разделив числа? изумился Сева.
 - Вот именно!
 - Но это совершенно невозможно! воскликнула Таня.
- Отчего же? с достоинством ответил Автомат. Для этого стоит только взглянуть, какая лампочка загорелась над экраном. Посмотрите-ка.
 - Красная! крикнула Пятёрка.
- Ну вот, всё ясно. Раз загорелась красная, значит, это число на девять не делится. А теперь взгляните ещё раз на экран.

Там уже стояло совсем другое число:

264 852:9 = ?


- А теперь зажглась зелёная лампочка, сообщила Пятёрка.
- Так и должно быть, потому что это число делится на девять.
- Это же очень просто, сказала Пятёрка, красная лампочка число не делится на девять, зелёная делится на девять.

— Xa-хa-хa! — засмеялся Автомат. — Это просто потому, что лампочки зажигаю я. А попробуйте-ка зажечь сами нужную лампочку. Xa-хa-хa!

Маленькая Пятёрка покраснела до ушей.

- Ну, не огорчайтесь, я пошутил, утешил её Автомат. Дело в том, что у чисел есть признаки, по которым можно с первого взгляда определить, желают ли они делиться на некоторые числа или не желают. К сожалению, я располагаю очень небольшим набором гаких признаков. Поэтому, если кто-нибудь из вас найдёт новый, неизвестный нам признак делимости, немедленно сообщите мне. Это будет замечательно! Вы даже не можете себе представить, какую большую пользу принесёте людям. Мне известны признаки делимости чисел на 2, на 3, на 4, на 5, на 6... Даже на 10 и на 11. Ещё несколько признаков и это всё!
- Расскажите о каком-нибудь признаке,— попросила Пятёрка.— Это очень интересно.
- В таком случае вернёмся к тем двум числам, которые я только что показывал на экране. Напомню их.

На экране появились числа: 135 227 и 264 852.

— Как видите, каждое число состоит из шести цифр. Будем эти цифры принимать за числа. И поставим между ними знаки плюс.

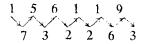
На экране под первым числом появилась сумма:

$$1+3+5+2+2+7=20$$
.

- А теперь скажите: делится ли число двадцать на девять? Нет, не

делится. Значит, и всё число тоже не делится на девять. Попробуем проделать то же со вторым числом.

На экране снова засветилась сумма:


$$2+6+4+8+5+2=27$$
.

- Видите, получилось двадцать семь. А это число как раз делится на девять. Значит, и всё число тоже делится на девять. Вот каков признач делимости на девять. Его очень легко изложить так: число делится на девять, если сумма его цифр делится на девять.
- В таком случае, сказал Олег, я знаю и признак делимости на три. Ведь девять это трижды три! Значит, если сумма цифр числа делится на три, то и само число тоже делится на три.
- Совершенно верно! Вы будете великим математиком! торжественно изрёк Автомат.
- Я тоже знаю один признак: если сумма цифр числа делится на пять, то и число делится на пять,— сказал Сева. Ему тоже хотелось стать великим математиком.
- Ни в коем случае, ни в коем случае! воскликнул Автомат, возмущённо замигав всеми своими лампочками. Тр-пр-хр! Разве можно мерить тесх одной меркой? Ведь число двадцать три не делится на пять, хотя сумма его цифр равна пяти. Признак делимости на пять очень прост: на пять делятся только те числа, которые оканчиваются пятёркой или нулём. Например, 75, 210, 625, 4 168 596 895 и так далее.
 - Как просто! засмеялась Таня.
- Есть признаки и посложнее. Например, признак делимости на одиннадцать.
- Ах, пожалуйста, расскажите об этом признаке! попросила Пятёрка.
 - Хорошо, Слушайте меня внимательно. Возьмём число

175 362 121 693.

- У-у-у! протянули ребята. Это число и прочитать трудно.
- Хр-пр-тр! Сто семьдесят пять миллиардов триста шестьдесят два миллиона сто двадцать одна тысяча шестьсот девяносто три! — единым

духом выпалил Автомат. — Ничего особенного. Посмотрим, делится ли оно на одиннадцать. Расположим цифры этого числа таким образом:

— Видите, я каждую вторую цифру опустил чуть пониже. А теперь поставим в каждом ряду между цифрами знаки плюс. Получаем:

$$1+5+6+1+1+9=23.$$
 $7+3+2+2+6+3=23.$

В обоих рядах сумма цифр одинакова. А это и значит, что число непременно разделится на одиннадцать.

- Неужели? усомнился Сева.
- Проверьте, предложил Автомат.
- Это было бы слишком долго, ответил Сева.

Тогда Олег показал нам страничку из блокнота, на которой он уже произвёл деление.

— Совершенно правильно! — сказал Автомат. — Вы действительно будете хорошим математиком.

А на экране вспыхнули числа:

- Вот вам и ответ: пятнадцать миллиардов девятьсот сорок два миллиона одиннадцать тысяч шестьдесят три.
- Значит, на одиннадцать делятся только такие числа, у которых сумма цифр, стоящих на нечётных местах, равна сумме цифр, стоящих на чётных? спросил Олег.
- Нет, не только эти числа делятся на одиннадцать. Есть более общий признак делимости. Вот, например...

В это время раздался продолжительный звонок, возвестивший конец рабочего дня. Автомат едва успел с нами попрощаться, как все его лампочки погасли. Жаль!

Мы вышли на улицу. Теперь надо было поспеть на площадь Радостей и Огорчений, где нам назначила свидание Четвёрка с бантиком.

На этой площади ежедневно приземлялись воздушные корабли, возвращающиеся от людей в Карликанию.

неожиданное огорчение

Мы пришли вовремя. Первая ракета только что приземлилась. Спустили тран, и тысячи нутешественников очутились в объятиях своих родных и друзей.

Рядом с нами какая-то счастливая мама-Пятёрка обнимала свою младшую дочку.

- Мне было так без тебя скучно! жаловалась она.
- А мне было так весело! щебетала дочка. Нас послали к одному архитектору ему поручили строить дома в новом городе. Он долго думал: по скольку этажей должно быть у этих домов? То возьмёт Четвёрку, то Девятку. А потом посмотрел на меня и сказал: «Дома будут пятио гажные!»
- Ах ты моя красавица! умилилась мать, но тут же ахнула: Где это ты так перепачкалась? Хороша красавица!
- -- Это один неловкий чертёжник пролил на меня пузырёк с тушью. Я уж оттирала-оттирала резинкой, не сходит.

Мимо важно прошли трое карликан, громко распевая:

— Ту-ту-ту... ту-ту-ту!

Это были цифры 1, 0, 4.

- Отчего они так важничают? спросил Сева.
- Разве вы не узнали этих трёх героев? откликнулась шагавшая за ними карликанша. Их портреты вывесили сегодня на реактивном самолётс. Среди них и мой сып. Этот самолёт называется «Ту-104». Теперь они только и знают, что поют: «Ту-ту-ту... ту-ту-ту!»
- А я была в цирке, рассказывала своей маме крохотная Двойка. — Я вядела, как дядя в рыжем парике делал двойное сальто. Можно, я тоже попробую сделать дома двойное сальто? Ведь я Двойка у меня должно выйти.
- Я вот нашлёпаю тебя,— ответила мама,— и думать перестанешь о своём сальто! Ты что, хочешь голову сломать?

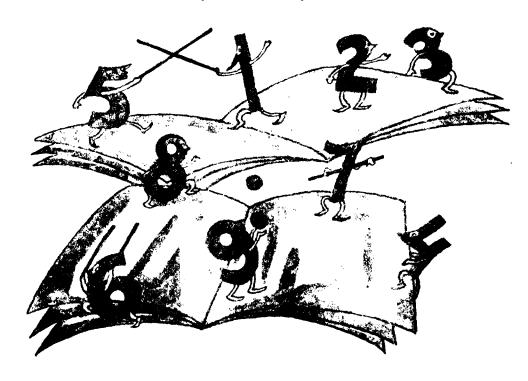
Снова загудели моторы, и на площадь опустился многоместный самолёт. Из него стали выходить пассажиры. Они прижимали к глазам маленькие белые платочки.

Сразу же все на площади перестали смеяться и сделались грустными. Площадь Радостей превратилась в площадь Огорчений.

— Какое несчастье! Какое горе! — причитала какая-то Девятка,

спускаясь по трапу. — Пропал, пропал бедный маленький Нулик. Утром на площади Добрых Напутствий с нами было сорок три нулика. Потом нас отправили в школу, в третий класс. Там было так хорошо, так весело! Школьники учились делить целые числа. Мы перебегали с парты на парту, из тетради в тетрадь. А потом, когда мы сели в самолёт, чтобы возвращаться домой, у нас оказалось только сорок два нулика! Один пропал. Какое горе!

- Это мой сыночек пропал! заголосила знакомая толстая Восьмёрка. Она уже успела пересмотреть всех прибывших нуликов. Почему я не поехала с ним? Что я буду без него делать?
- Может быть, он ещё вернётся? Может быть, он сел по ошибке в другой самолёт? утешали бедную маму.
- А может быть, сказала наша Четвёрка с бантиком, он и не уезжал отсюда? Он у вас такой баловник! Утром при посадке спрятался, а потом убежал в кино.


- Нет, скорее всего,— предположила какая-то Единица,— на футбольный матч.
- А может быть, он в цирке делает двойное сальто? сказала крошка Цвойка.
- Бедный мой сыночек! Где ты сейчас? не унималась мама-Восьмёрка.
- Успочойтесь,— сказала Четвёрка,— найдётся ваш Нулик. Утро вечера мудренее. Если он не появится сегодня, завтра перевернём всё Арифметическое государство и найдём его обязательно.

В это время объявили о прибытии самолёта с малышами. Четвёрка озабоченно пересчитала своих питомцев и облегчённо вздохнула. Они оказались целы и невредимы.

Все вместе мы возвращались обратно. По дороге малыши наперебой рассказывали о своих приключениях.

Мы дошли до Числовой площади, где пожелали друг другу спокойной ночи и расстались.

Так закончился наш первый день в Карликании.

ПРОСТОТА...

Проснувшись утром, мы обнаружили, что Сева исчез. Так как все знали его непоседливый характер, никто не стал особенно беспокоиться.

Мы были правы. Через некоторое время он прибежал огорчённый: Нулик так и не нашёлся!

Сева нарочно встал пораньше, чтобы разузнать в городе о пропавшем малыше.

- Давайте сразу же после завтрака отправимся на поиски, предложила Таня.
- Верно! обрадовался Сева. Я слышал, в Карликании есть какое-то местечко. Называется Рим.
- Почему местечко? Рим это город, он в Италии, сказала Таня.
 - В Италии один Рим, а в Карликании другой! отрезал Сева.
- Рим древнее государство, сказал Олег. Его уже давно не существует, а вот остатки Рима, наверное, сохранились здесь.

Я слушал, не вмешиваясь в разговор. Себа спросил меня:

- Не попал ли Нулик в Рим?
- Он не мог туда попасть, ответил я, ему там совершенно нечего делать.
 - Почему вы знаете?! кипятился Сева. Искать так всюду.

— Ну что ж, я не прочь, — согласился я. — Кстати, познакомимся с обитателями этого «местечка».

Мы пересекли Числовую площадь, прошли кусочек Автоматической улицы и свернули налево.

Перед нами была бесконечная аллея. У входа в неё сидел старый-престарый карликан и смотрел в телескоп.

- Не видно, опять не видно... бормотал он себе под нос.
- Чего не видно? заинтересовался Сева. Дайте мне взглянуть. Может быть, я увижу.
- Ну как же вы можете увидеть то, чего не видно? Не видно конца! Ещё только вчера я заметил в самом конце аллеи огромнейшее число и подумал: «Ну вот, теперь всё. Дальше ничего не может быть». А сегодня взглянул: за тем числом ещё число, да больше вчерашнего!
 - А что это за число? спросила Таня.
- Так вам сразу и объясняй! Какие прыткие! Лучше пройдитесь по этой аллее и глядите во все глаза. Может быть, тогда и поймёте. Может быть!..— И старый ворчун уткнулся в свой телескоп.

Мы пошли по левой стороне аллеи и вдруг услышали команду:

— По порядку номеров ра-а-а-ассчитайсы!

 Это что же, утренняя перекличка? — спросил Сева.

Стоящие по левую сторону числа стали выкрикивать:

 Два, три, пять, семь, одиннадцать, тринадцать...

Голоса становились всё глуше, уходя вдаль.

 Это уже не порядок, а беспорядок номеров,— заметила Таня.

Однако числа называли себя точно в той последовательности, в какой они стояли:

- 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 и так далее.
- Что за сумасшедшие числа? недоумевал Сева.
 - Сами вы сумасшедшие! воз-

мутился старый карликан.— Да ещё и невежды. Неужели вы не прочитали надписи при входе?

- Нет, растерялся Сева.
- Ведь это же аллея Простых Чисел! Поняли?
- А что такое простые числа?
- Посмотрите направо, сказал карликан, может быть, это прояснит вам мозги.

По правую сторону аллеи стояли совсем другие числа: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27 и так далее.

- Это как раз те числа,— сказала Таня,— которых недостаёт на левой стороне аллеи.
- A им туда нельзя! захихикал карликан. Это же составные числа, а не простые.
 - Зачем же их здесь держат?
- У меня, кажется, начинает болеть печень от ваших нелепых вопросов! Разве вы не видите, что над вами? Нельзя смотреть только под ноги, иногда не мешает и наверх поглядеть.

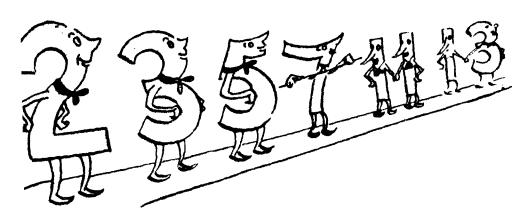
Мы подняли головы.

— Волейбольная сетка! — ахнул Сева.

В самом деле, над всей аллеей была натянута гигантская сетка.

- Опять вы сказали чепуху! рассердился карликан. При чём здесь волейбол? Это вам не игрушки! И там вовсе не сетка, молодой человек, а решето!
 - Решето?! Что же через него просеивают?
- Числа! Числа просеивают!! закричал карликан, потеряв всякое терпение. Посмотрите, как их основательно перетряхивают! Всякие отходы, вроде составных чисел, проваливаются сквозь решето, и их отводят на правую сторону аллеи. А в решете остаются в самом чистом виде наши драгоценные, наши ненаглядные простые числа. Их бережно, по порядку расставляют по левую сторону аллеи. Посмотрите, не правда ли, они очаровательны? растрогался он вдруг.

Ребята из вежливости покивали головами, хотя никто из них ника-кого очарования в простых числах не находил.


К счастью, в это время нас догнала верная Четвёрка с бантиком. Все шумно обрадовались.

— Какой злой старикан! — пожаловался Сева. — Только и делает, что ворчит...

Мы с удовольствием уселись на скамью. И Четвёрка с бантиком начала свой рассказ:

— Давным-давно люди заметили, что есть такие числа, которые никого, кроме самих себя, не признают. Ни на какое другое число, кроме себя, они не делятся. И делают исключение только для единицы. И то только потому, что это деление на них никак не отражается: после деления на единицу они остаются такими же, какими были прежде. Вот эти-то числа люди и назвали простыми, хотя не так просто

найти их среди других. Более двух тысяч лет назад в Греции знаменитый математик Эратосфен придумал очень остроумный способ выискивать простые числа. Он предложил для этого применять особое решете, сквозь которое все ненужные числа будут просеиваться, а все нужьые — простые — оставаться.

- Совсем как промывают золото,— сказал Олег.— Песок уходит, а золото остаётся.
- Прекрасное сравнение! воскликнула Четвёрка. Простые числа это действительно наше золото. Итак, продолжала спа, чудесное решето назвали решетом Эратосфена. Теперь посмотрим, как оно действует. Давайте запишем все числа, начиная с двойки, до... Впрочем, «до» я сказала не подумав. Ведь числам нет конца. Итак, расставим числа, начиная с двойки, по порядку:
- 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 и так далее.

Такой ряд чисел называется натуральным рядом. Выбросим из этого ряда те числа, которые наверняка не являются простыми, то есть делятся не только на себя, но и на другие числа. Сперва отсеем числа, которые делятся на два. Какие это числа?

- Я знаю, сказала Таня. Все чётные числа делятья на два.
- Верно. Отсеем все чётные числа, кроме двойки, и тогда останется вот что:
- 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 и так далее.

Теперь отсеем все числа, которые делятся на три.

Это 6, 9, 12, 15, 18, 21... Но все чётные — 6, 12, 18...— мы уже раньше отбросили. Что же теперь останется в ряду? Вот что:

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53...

Видите, всё меньше и меньше остаётся составных чисел в решете. А дальше выбросим все числа, которые делятся на пять, потом те, что делятся на семь... Так постепенно из ряда натуральных чисел будут выбывать составные числа и оставаться простые, то есть те, которые делятся только сами на себя и на единицу.

Теперь мы уже знаем очень много простых чисел.

Вот первые из них:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97...

Эти-то числа, как видите, и стоят на левой стороне аллеи.

- Очень просто! заявил Сева. Я дома тоже устрою такую аллею и выпишу все-все простые числа...
- Не торопитесь, перебила его Четвёрка. Это не так легко: выписать все простые числа. Ведь чем больше число, тем сложнее определить простое оно или составное. Если бы мы знали, в каком порядке они следуют друг за другом, это было бы замечательно! К сожалению, никто ещё до сих пор этот порядок установить не сумел. То простые числа стоят совсем рядом, их тогда называют близнецами, то между двумя ближайшими простыми числами образуется огромное расстояние, и оно сплошь заполнено составными числами. Люди очень далеко прошли по этой аллее, они знают множество простых чисел, и всё-таки не все!
- A может быть, дальше и нет ни одного простого числа? усомнился Сева.
- Нет! Не может быть! ответила Четвёрка.— Уже давным-давно один великий учёный, тоже грек, Эвклид, предшественник Эратосфена, доказал, что конца простым числам нет. Вот почему так озабочен наш добрый карликан! У него очень много дела. Только вчера в конце аллеи он увидел огромное простое число, а сегодня за этим числом стоит ещё большее: 170 141 183 460 469 231 731 687 303 715 884 105 727. А завтра, может, появится новое, если люди его вычислят. И так без конца. Есть отчего потерять голову. И говорить об этом тоже можно без конца... Давайте-ка лучше займёмся поисками бедного Нулика,— закончила свой рассказ Четвёрка.
 - А мы как раз идём для этого в Рим, сказал Сева.
- За Нуликом в Рим?! удивилась Четвёрка.— Его там не может быть!
 - А мы всё-таки пойдём! упорствовал Сева.
- Как вам будет угодно! согласилась наша проводница. Желание гостя для нас закон.

...И СОВЕРШЕНСТВО

Мы свернули на маленькую улочку.

- Какая прелестная улица! захлопала в ладоши Таня.
- Но это же улица Совершенства,— пояснила Четвёрка.— Здесь живут очень немногие числа. Но зато все они совершенные. Их так и зовут совершенные числа. В отличие от простых, они-то уж обязательно делятся на всякие другие числа.
 - Значит, они составные? спросила Таня.
- Безусловно, составные. Но особенные. Совершенные числа равны сумме тех чисел, на которые делятся. Разумеется, кроме самих себя. Возьмём совершенное число 6. На какие числа делится это число? На 1, на 2 и на 3. Теперь сложим эти три числа:

$$1+2+3=6$$
.

- Изумительно! воскликнула Таня.
- Или вот другое совершенное число 28,— продолжала Четвёрка. — Помните, какие у него младшие делители?
 - Помним, ответила Таня. 1, 2, 4, 7 и 14.
 - Сложите их:

$$1+2+4+7+14=28$$
.

- Здорово! закричал Сева.
- Ara! догадался Олег. Значит, совершенные числа равны сумме всех своих младших делителей.
 - Молодец! похвалила Четвёрка.
- А много ли на этой улице совершенных чисел? поинтересовался Сева.
- К сожалению, сокрушённо вздохнула Четвёрка, всего двадцать четыре: 6, 28, 496, 8 128, 130 816... Дальше они растут всё быстрее и быстрее, а вычислять их всё сложнее и сложнее. Эта улица только ещё заселяется. Если вам доведётся найти новое совершенное число, скажите ему, что здесь его ждут с нетерпением.
- Никогда не думал, что в Карликании так много интересных чисел,— задумчиво сказал Сева.
- Ах, это только малая крупица наших богатств! с гордостью ответила Четвёрка.— Многим не хватает жизни, чтобы познакомиться

со всеми. Вот, например, недалеко отсюда живут неразлучные друзья. Они так любят друг друга, что делятся всем, что имеют. Это числа 220 и 284. Они замечательны тем, что каждое из них равно сумме младших делителей другого. Какие делители у числа 284? 1, 2, 4, 71, 142. А у числа 220 делители: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110. Попробуем сложить делители каждого числа:

$$1+2+4+71+142=220$$
, $1+2+4+5+10+11+20+22+44+55+110=284$.

Вот почему эти числа называются дружественными.

Недаром знаменитый греческий математик Пифагор сказал: «Друг это второе я!» — и при этом сослался на числа 220 и 284.

А ведь таких чисел-друзей много!

Тут завязался разговор о дружбе, о верности. И мы не заметили, как очутились за городом.

РАЗВАЛИНЫ РИМА

Мы шли довольно долго, пока наконец на холме не показался Рим. Он был окружён древними полуразрушенными крепостными стенами. Под ними находился ров, некогда наполненный водой, а теперь высохший и густо заросший сорными травами. Шаткий деревянный мост был поднят. Покосившиеся ворота заперты. Их охраняла дряхлая волчица.

- Здешние римляне утверждают,— не без юмора сказала Четвёрка,— что это прапраправнучка той самой волчицы, которая вскормила двух близнецов: Ромула и Рема основателей древнего Рима.
 - Смотрите, смотрите, закричал Сева, у них на башне гусь!
- → Может быть, и это прапраправнук тех гусей, которые Рим спасли? — предположила Таня, с интересом рассматривая забавный флюгер.
 - Как это гуси могли Рим спасти? возмутился Сева.
- Очень просто,— ответил Олег.— Гуси загоготали как раз тогда, когда враги подобрались к спящему городу. Воины проснулись и прогнали неприятеля.

Мы с опаской подошли ко рву. По правде говоря, нас смущала волчица.

— Не бойтесъ, - улыбнулась Четвёрка, - она уже давно никого не трогает.

И действительно, волчица широко раскрыла пасть и... зевнула.

В городе нас, очевидно, заметили. Из широкой щели в воротах выглянула и тотчас же скрылась какая-то тощая фигурка, похожая на спичку. Следом за ней стали высовываться другие спички.

Через некоторое время на башне показалась спичка с какой-то длинной трубой. Она приложила её ко рту, и... из трубы вылетели две перепуганные мышки. Послышались хриплые звуки, напоминающие рёв осла.

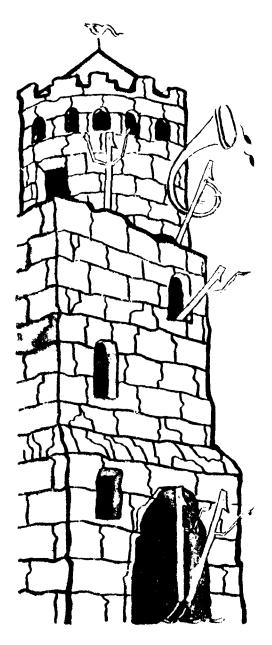
Вслед за этим с невероятным скрипом и скрежетом медленно опустился мост через ров — точь-в-точь древний старик, суставы которого срослись от долгой неподвижности.

Между тем за воротами происходила странная возня. Похоже было, что огромным ключом пытаются открыть ржавый замок, но это никак не удаётся.

Но вот ветхие петли не выдержали — ворота, так и не раскрывшись, плацімя упали на землю, и мы увидели большую площадь.

Сквозь каменные плиты пробивалась трава. На нас пахнуло запахом плесени и запустения.

— Ничего не поделаешь — древносты! — вздохнул Сева.


Но что это?

Из-за поворота показалась четвёрка полудохлых лошадей, тащившая весьма странное сооружение на двух огромных вихляющихся колёсах. По обе стороны этой развалюхи выстроились целые полчища спичек, охранявшие своего предводителя— старичка, повисшего на костылях. Его скрюченные подагрой ноги касались друг друга носками. Вся его нелепая фигура напоминала букву «М».

Старик обрагился к нам с длинной, высокопарной речью на латинском языке, из которой мы поняли только, что нас приглашают войти в город.

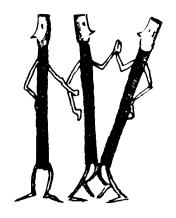
- Идите, сказала Четвёрка, а я подожду вас здесь.
 - Как, вы нас покидаете? огорчились ребята.
- Лучше мне туда не ходить,— пояснила Четвёрка.— Римляне не любят жителей Арабеллы. Они нам завидуют. Люди мало пользуются римскими цифрами, а мы всегда нарасхват.

Мы вошли в город. Он был запущенный и бедный.

— Я-то думала, что мы увидим Колизей,— сказала разочарованно Таня,— гладиаторов, львов а тут...

Сразу же выяснилось, что римляне не умеют говорить на нашем языке. Они засуетились и стали искать переводчика. Он у них был только один, и его никак не могли добудиться.

Наконец привели заспанную спичку, которая долго зевала. Это и был переводчик.


После многих церемоний, сопровождавших знакомство, Сева наконец задал самый главный вопрос:

- Нет ли у вас Нулика?
- Повторите, пожалуйста,
 ещё раз, попросил переводчик.
 Я не расслышал!
- Я спращиваю: нет ли у вас Нулика?

Переводчик пренебрежительно усмехнулся:

— Какого Нулика? Вы, наверное, говорите о том маленьком кружочке, который неизвестно для чего живёт в Арабелле и ровно ничего из себя не представляет? Нет, нет, у нас нет нуликов! Они совершенно бесполезны. Кроме того, никогда не разберёшь, где у них начало, а где конец. Мы, римляне, признаём только прямые линии. Это очень удобно. Сразу видно, где ноги, где голова.

- Как же вы составляете числа, например десять, сто, если у вас нет нуликов?
 - Всё это можно изобразить одними палочками.
 - Даже большое число?
 - Даже большое. Смотрите.

Переводчик хлопнул в ладоши, и стоявшие на площади спичечные воины мгновенно образовали несколько правильных рядов.

- Как физкультурники на стадионе, заметил Сева.
- Каждый из этих воинов,— пояснил переводчик,— единица. Ничего более. Но из этих единиц я могу составить всё, что угодно. Сейчас я заставлю их превратиться в двойки. Раз, два! — скомандовал он.

На площади произошла перегруппировка. Все спички расположились парами.

— Теперь вы видите перед собой число два. Прошу дальше. Раз, два, три!

Не успели мы глазом моргнуть, как в каждом ряду стояло по три спички.

- Вот вам и число три, сказал переводчик.
- А четыре? спросила Таня.
- Сначала познакомьтесь с нашей пятёркой,— таинственно ответил переводчик и снова подал команду.

Спички опять перегруппировались по две, вплотную придвинулись друг к другу и отклонились в стороны.

Мы увидели фигуру, которую у нас обычно называют галочкой, -- V.

- Теперь нетрудно получить и четвёрку и шестёрку,— продолжал переводчик.— Поставим палочку слева от пятёрки, получим четыре IV, поставим её справа, получим шесть VI.
- Значит, всё дело в том,— догадалась Таня,— чтобы из пятёрки либо вычесть единицу, либо прибавить. Если единица слева, значит, её надо вычесть, если справа надо прибавить.
- Понимаю! воскликнул Олег. Если приставить к пятёрке справа две палочки, будет семь, а три палочки восемь.
- Мы так и поступаем. Видите, как просто,— с гордостью сказал переводчик.
 - Тогда я знаю, как получить девятку, заявил Сева.

Переводчик посмотрел на него насмешливо:

— Уж не собираетесь ли вы для этого прибавить к пятёрке четыре палочки? Эту ошибку делают многие. Между тем девятку у нас изображают по-другому. Ведь она стоит ближе к десятке, чем к пятёрке.

Значит, проще поставить единицу слева от десятки — вот вам и девятка!

— Но как у вас изображают десятку? — поинтересовался обескураженный Сева.

Переводчик подал знак, и птички-спички превратились в ловких акробатов. Одни пятёрки перевернулись и стали кверху ногами, другие легко вскочили на них — X.

- Здорово! воскликнул Сева.
- Красиво и просто! подтвердил переводчик. А дальше наше обычное правило: единица слева девять, IX; единица справа одиннадцать, XI. Потом XII, XIII, XIV, XV, XVI... Затем две десятки двадцать, XX; три десятки тридцать, XXX...
- Четыре десятки сорок,— в тон ему продолжал Сева.
- Стоп! сказал переводчик. Я забыл вам сообщить, что, кроме палочек, у нас имеются четыре латинские буквы: М, D, C и L. М это тысяча и, как самое большое число, наш предводитель. Его помощники: D пятьсот, С сто и L пятьдесят. Итак: сорок это пятьдесят минус десять. Значит, изобра-

жается это так: XL. Допустим, вы хотите получить число 1663...— Переводчик низко поклонился, вызывая нужные буквы.

Ждать пришлесь довольно долго: престарелые пенсионеры передвигались медленно. С трудом образовали они задуманное число: MDCLXIII.

- Как видите, мы прекрасно обходимся без Нулика! ехидно заметил переводчик.
- По-моему, это очень долго и неудобно,— сказала Таня.— Теперь я понимаю, почему люди больше вами не пользуются.
- Ошибаетесь,— ответил переводчик, покраснев от негодования.— Не далее как вчера нас вызвали на девяностолетний юбилей вашего уважаемого учёного. Мы целый вечер красовались над столом президиума XC и слушали длинные похвальные речи в адрес юбиляра. При этом сам юбиляр часто поглядывал на свои фамильные часы, где на циферблате были только римские цифры. Потом учёному преподнесли роскошное издание его трудов. И что же вы думаете? Все главы были обозначены только римскими, слышите римскими цифрами!

— Ну, для юбилея вы ещё можете пригодиться,— заметила Таня,— но производить сложные вычисления с вами очень неудобно. Ведь вас даже нельзя столбиком ни сложить, ни перемножить, я уж не говорю о делении. Как вы это делаете?

Переводчик притворился, что не расслышал Таниных слов. На него снова напала нервная зевота.

Больше осматривать в этом городе было нечего, и мы покинули его, довольно холодно распрощавшись.

Очевидно, все на нас обиделись, потому что даже волчица отвернулась, когда мы спускались по мостику, а у гуся был надутый и рассерженный вид.

У ворот нас поджидала Четвёрка с бантиком.

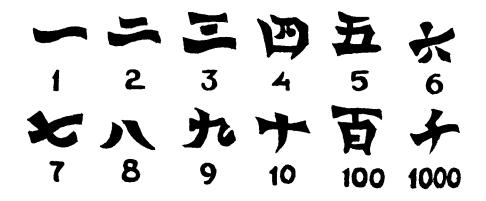
- Какая вы красивая! обняла её Таня. И какие противные эти обгорелые спички!
- Значит, вам там не понравилось? просияла Четвёрка.— Я, признаться, этому очень рада. И всё же не стоит с ними ссориться. Они ещё будут попадаться на вашем пути.
- С меня довольно и арабских цифр! сказал Сева. Не понимаю, зачем это люди повыдумывали какие-то другие?
- Свои цифры были у многих народов,— ответила Четвёрка,— большинства из них вы теперь уже нигде не встретите.
 - Что это за цифры? Какие они были? заинтересовалась Таня.
- Хотите посмотреть?.. Тут неподалёку ведутся археологические раскопки. Может быть, и нам попадётся что-нибудь интересное?
- A может быть, именно там и прячется Нулик? предположили ребята.
- Увы! вздохнула Четвёрка. Там его тоже не может быть. И всё же пойдёмте хоть ненадолго. Это очень любопытно.

Мы с восторгом согласились — ведь это была наша первая археологическая экспедиция.

интересные находки

Идти было нелегко. То и дело попадались огромные ямы, возле которых громоздились насыпи щебня и земли. Всюду мы видели трудолюбивых, как муравьи, карликан. Они копались в земле с таким удовольствием, точно это был не тяжёлый труд, а весёлая игра. Ещё бы! Разве

не интересно восстанавливать прошлое своего государства по ржавым и замиелым останкам старины, пролежавшим в земле тысячелетия!

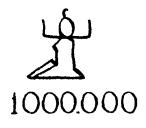

Мы остановились у одной из таких ям и с любопытством наблюдали за работой. Как раз в это время степенный карликан вытащил из кучи земли какие-то маленькие вещицы.

— Ой, какие хорошенькие брошечки! — закричала Таня. Она ведь недаром была девочка.

Карликан улыбнулся:

- Как вы сказали? Брошечки? Такими брошками в Древнем Египте изображали слова. Называются они иероглифами. Когда-то иероглифы были очень сложными, потом упрощались, но становилось их всё больше. Иероглифами стали обозначать и числа.
- Да! Сева задумчиво почесал затылок.— Если бы иероглифами ставили отметки в дневнике! Мама никогда бы не догадалась, что я плохо отвечал!
 - Для этого вам надо поехать в Египет, улыбнулся карликан.
- Или в Китай,— добавил другой карликан, стоявший рядом.— Там тоже сохранились иероглифы.

И он показал нам китайские иероглифы, изображающие первые десять чисел:

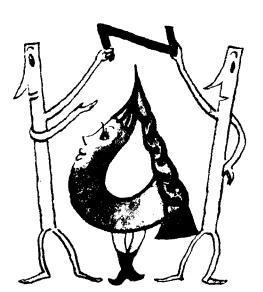

[—] Но самые забавные иероглифы были всё же в Древнем Египте, сказал первый карликан, протягивая нам какой-то обломок.

⁻⁻ Птичка! -- в восторге закричала Таня.

— Эта птичка у египтян обозначала число сто тысяч. А вот этот человечек,— он показал другой обломок,— означает миллион.

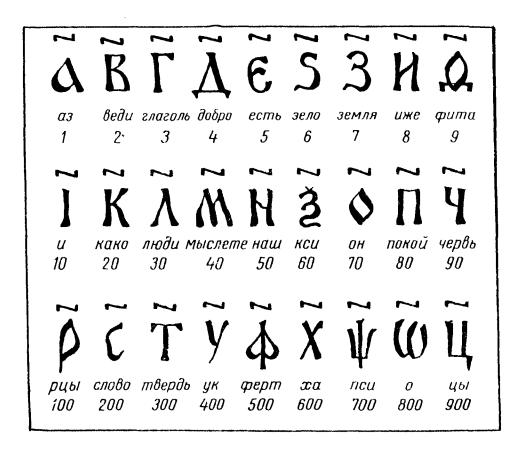
— Какой ужас! — вздохнул Сева.— Не за-

видую египетским школьникам! Тут с арабскими-то цифрами не всегда справляещься, а уж им, наверное, совсем гуго приходилось.


Мы поблагодарили карликан и отправились к следующей группе археологов.

Мы уже были совсем близко от них, когда Сева споткнулся о какую-то железку. Он вытащил её из земли и стал рассматривать, как заправский исследователь.

— Посмотрите, какая интересная закорючка!



— Это вовсе не закорючка, вежливо сказала Четвёрка, взглянув

- на его находку. Это титло.
- Вы хотите сказать, т итул,— поправил Сева.— До революции титулы давали всяким богатым людям граф, барон...
- Почти так! засмеялась Четвёрка. Древние славяне отмечали титлом буквы. Когда над буквой ставили титло, буква превращалась в число.
- Выходит, Сева прав,— сказал Олег.— Буквам давались титулы. Только титулованные буквы становились не графами и не баронами, а числами.
- Посмотрите на эту табличку, — сказал слышавший наш

разговор карликан.— Здесь изображены славянские буквы с титлами. Под каждой написано название буквы и числа, которое она обозначает.

[—] **А** как же записать числа, которых здесь нет? — спросила Таня.— **На**пример, двенадцать?

[—] Я знаю, — сказал Сева, — десять и рядом два. Вот так:

— Как раз наборот,— возразила Четвёрка,— сперва два, а уж потом десять. И читалось это так: два на десять. Интересно, что этот порядок чтения чисел сохранился до наших дней: двенадцать, пятнадцать — несмотря на то, что пишем мы сначала десятки, а потом единицы.

- Таким способом писать маленькие числа, может быть, и легко. сказал Сева, -- а как написать большое число?
- А вот как, вмешался в разговор карликан и показал несколько одинаковых позеленевших медных значков:

Этим значком обозначалась тысяча. Значок ставили впереди числа

тысяч. Например, \mathbf{K} обозначает двадцать, а вот так \mathbf{K} — это уже

лвалиать тысяч. Два таких значка обозначают тысячу тысяч, то есть

миллион. Вот это 🗱 🛣 уже двадцать миллионов.

- Но должна заметить, сказала Четвёрка, что древние славяне не знали чисел больше тысячи. А когда они познакомились с числом десять тысяч, оно показалось им таким огромным, что его стали называть тьмой.
- Оттуда, наверное, и пошло, сказал Олег, выражение тым атьмущая. Это когда чего-нибудь очень много!
 - Так много, что в глазах темно, добавила Таня.
- Потом, однако, продолжала Четвёрка, славяне научились считать и больше чем до десяти тысяч. Сперва дошли до миллиона и стали уже его называть тьмой:

А потом дошли до миллиона миллионов. Это у них был легион.

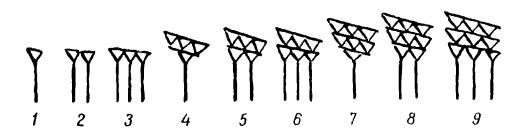
- A дальше?
- А дальше пошёл легион легионов леодр.

- * А леодр леодров они знали? Знали и называли его вороном.
- Прямо как птицу, засмеялся Сева.
- Это понятно, вставил Олег, ворон чёрный, темнее тьмы.
- А как назывался у них ворон воронов?
- А такого у них и не было, ответила Четвёрка, Больше ворона, говорили они, несть уму разумети.
 - Значит, дальше стоп! сказал Сева.
- Не совсем, ответила наша провожатая. В одной рукописи было найдено число побольше ворона — десять воронов. И называлось это число колола.

И в той рукописи сказано: «Того числа несть больше».

- Значит, об эту колоду они споткнулись и дальше не пошли, заключил Сева.
 - А мы пойдём дальше, улыбнулась Четвёрка.

По дороге нас ожидала ещё одна приятная неожиданность.


У Олега развязался шнурок на ботинке. Он нагнулся, чтобы его завязать, и заметил, что стоит на глиняной плите. Он счистил с неё слой земли. И все увидели, что плита покрыта множеством довольно глубоких чёрточек-клинышков.

- Это, наверное, какая-то древняя письменность, решил Олег.
- Вы не ошиблись, ответила Четвёрка. Это клинопись. Так писали в Древнем Вавилоне. Маленькими заострёнными палочками вавилоняне выдавливали свои письмена на мокрой глине, а потом обжигали глиняные плитки на ярком солнце. Палочками трудно было писать замысловатые фигуры. Поэтому вавилонские письмена состояли из маленьких клинышков.

- Скажите,— спросил Сева,— в Вавилоне тоже писали числа буквами?
- Нет,— ответила Четвёрка,— у вавилонян, в отличие от славян, существовали цифры, с помощью которых они записывали числа. Цифры изображались в виде тоненькой палочки с маленьким треугольничком наверху:

- Совсем как гвоздик! Со паляпкой!
- Действительно, похоже на гвоздик,— согласидась Четвёрка.— Только у гвоздика одна шляпка, а у цифр могло быть много. Вот как писались девять вавилонских цифр:

- Смотрите, у девятки целый шляпный магазин! обрадовалась **Таня**.
 - Их очень легко сосчитать, эти шляпки, сказал Олег.
- Это потому, что их не больше девяти. А вот сорок треугольников, пожалуй, и не сосчитаешь,— ответил Сева.
- А зачем же надо считать сорок треугольников? удивилась Четвёрка. Ведь для цифры десять у них был другой, простой знак. Вот такой:

Если нужно было написать двадцать, выдавливались два таких знака. А двадцать четыре писали, как и мы сейчас,— сперва число десятков, а затем число единиц. Вот так:

- Да это и в самом деле проще иероглифов, обрадовался Сева.
- Это не только проще, но это уже похоже и на наш способ написания чисел. Справа единицы, а за ними десятки, потом сотни... Словом, все цифры становятся на свои позиции, как в строю. Потому этот способ и называется позиционным.
- Значит, мы записываем числа позиционным способом? спросила Таня.
- Конечно, ответила Четвёрка. И начало этому положено в Вавилоне.
 - Понимаю, добавил Сева, у нас счёт вавилонский...
- Вот и неверно, остановила его Четвёрка. Счёт у нас не вавилонский, а свой, особенный. Ведь мы считаем по десятичной системе, а у вавилонян была шестидесятиричная!
 - Это как же так? спросил Сева.
- А вот как: возьмём какое-нибудь число, ну, например, 3662. В нашей системе двойка здесь обозначает число единиц, за ней стоит

шестёрка — это число десятков, а следующая шестёрка — число сотен, наконец, тройка — число тысяч.

Значит, это число можно бы написать и так:

$$3000+600+60+2=3662$$
.

А у вавилонян всё совсем по-другому. Если бы они знали арабские цифры, они бы это число записали так:

1 1 2.

По их системе двойка, как и у нас, остаётся числом единиц — первый разряд. А вот стоящая слева от неё единица — это не число десятков, а число шестидесятков — второй разряд. А следующая единица — уже число $60\times60=3600$ — третий разряд. Заметьте, что между разрядами нужно обязательно оставлять свободное место, иначе можно легко запутаться, что, кстати, частенько случалось.

Таким образом, наше число по вавилонской системе выглядело бы так:

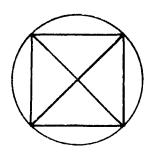
$$3600+60+2=3662$$
.

Вот как они считали, - закончила Четвёрка.

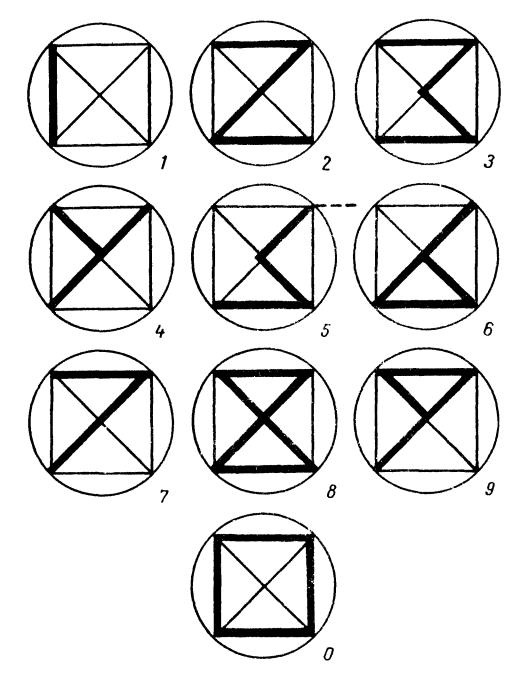
- Ой, как трудно! Хорошо, что у нас так никто не считает! воскликнула Таня.
- Ошибаетесь, поправила её Четвёрка. Вы тоже считаете так... иногда.
 - Я? Никогда!
- A я вам сейчас напомню. Скажите, пожалуйста, сколько в часе минут?
 - Минут? Шестьдесят.
 - Так. А сколько в часе секунд?
- Сейчас скажу. Шестьдесят на шестьдесят... Три тысячи шестьсот,— сосчитала Таня.
- Вот видите. Вы же делите часы и минуты не на десять частей, а на шестьдесят! Значит, и вы считаете по шестидесяткам!

Таня только руками развела:

— Вот не знала, что у нас осталось что-то от Древнего Вавилона!


МУЗЕЙ ПУШКИНА

- Где мы только не побывали сегодня! задумчиво сказал Олег, когда мы возвращались в Арабеллу. И в Риме, и в Китае, и в Египте, и у древних славян, и в Вавилоне, а Нулика так нигде и не нашли.
- Выходит, мы с вами были правы, лукаво улыбнулась мне Четвёрка. Но не беспокойтесь, друзья! Нулика мы обязательно найдём! На всякий случай заглянем в музей Пушкина.
- Как, у вас есть музей Пушкина? изумились ребята. Поэт в Арифметическом государстве? Какое он имеет к вам отношение?
- Пушкин был очень разносторонним человеком,— возразила Четвёрка.— Он прилежно изучал историю, любил музыку и интересовался нами, жителями Арабеллы.


В это время мы подошли к небольшому дому, украшенному портретом великого поэта.

Четвёрка с бантиком ввела нас в комнату, где не было ничего, кроме странного рисунка, висевшего на стене.

— Этот рисунок взят нами из рукописей Александра Сергеевича, — продолжала Четвёрка. — Дело в том, что с давних пор люди ломали головы над тем, откуда взялось начертание арабских цифр. Существует много всевозможных догадок. Пушкин тоже предложил свой остроумный домысел, который нам очень понравился. Он решил, что все десять арабских цифр, включая нуль, помещаются в этом магическом квадрате. Чтобы легче разобраться в его рисупке, взгляните сюда.

Четвёрка достала большую папку, которой мы вначале не заметили. Там было десять листов. На каждом — всё тот же рисунок, но всякий раз жирная линия обрисовывала новую фитуру, в которой мы без

особого труда узнавали какую-нибудь из наших цифр. Только пятёрка немного подгуляла — у неё не хватало хвостика.

Четвёрка с бантиком объяснила, что в древние времена у пятёрки хвостика не было. Он вырос несколько позже.

- Интересно! -- сказал Олег.— Но можно ли считать, что предположение Пушкина верно?
- Многие его оспаривают. Но нам, арабелльцам, оно по душе. Приятно сознавать, что ты вышел из магического квадрата!
 - Здесь даже и нуль квадратный, подхватил Сева.
 - А нашего Нулика так и не видно, сокрушённо вздохнула Таня.

В это время мы услышали звон старинных часов. Било двенадцать.

- Ай-ай-ай! заторопилась Четвёрка.— Через час начнётся диспут, и я в нём участвую. Надо спешить.
 - Что за диспут? -- полюбопытствовал Сева.
- Очень важный диспут в Клубе любителей поспорить. По всему городу развешаны объявления. Разве вы не видели?
 - Мы тоже хотим пойти! решительно заявили ребята.
- Буду очень рада! любезно поклонилась Четвёрка. Вы ведь тоже можете принять участие в споре.
 - А о чём спор?
- О том, что больше: $\frac{4}{7}$ или $\frac{2}{3}$? У нас, оказывается, ещё не все это знают.

И мы отправились в клуб.

любители поспорить

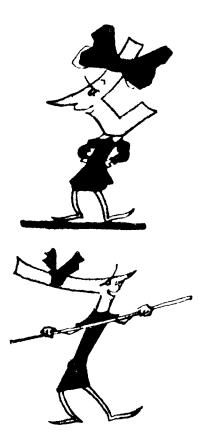
Зал был набит до отказа.

На помосте стоял большой судейский стол и два маленьких — по бокам. Справа и слева находились площадки, похожие на вышки в бассейне.

Прозвенел звонок, и на сцену поднялись трое судей в красных мантиях.

Главный Судья поднёс к губам рупор и начал:

— Любители поспорить! Открываем наш очередной, два миллиона четыреста сорок первый спор. Его затеяли вчера наши младшие школьники. Спор, начатый в классе, продолжался на улице. У противников появились сипяки и шишки. Учительница не сумела справиться с дра-


³ Путешествие по Карликании

чунами. И вот мы, любители поспорить, получили приятную возможность перенести этот спор в наш клуб. Да здравствуют спорщики! Что бы мы без них делали? Итак, перехожу к существу: одни утверждают, что дробь $\frac{4}{7}$ больше дроби $-\frac{2}{3}$. Другие, сами понимаете, доказывают обратное. Попрошу капитанов обеих команд занять свои места.

На сцену поднялись две карликанские школьницы — Единица и Пятёрка. Они сели за маленькие столики.

В зале зашумели, засвистели, захлопали.

- Не подкачай, Пятёрка! кричали одни.
- Держись, Единица! кричали другие.
- Держись, Единица: кричали другие. — Тишина! — рявкнул Главный Судья. Зал нехотя затих.— Для

полной наглядности прошу обе дроби, послужившие причиной спора, подняться сюда.

Четверо карликан, среди которых была и наша Четвёрка с бантиком, заняли места на бо-ковых площадках, образуя дроби:

 $\frac{4}{7}$ и $\frac{2}{3}$.

«Слово предоставляется Единице»,— загремел рупор.

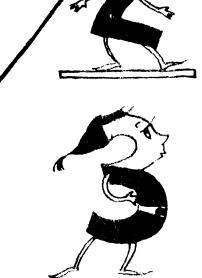
Единица встала, поклонилась судьям и заговорила:

— Утверждаю со всей ответственностью, что $\frac{4}{7}$ больше, чем $\frac{2}{3}$. (Свист, аплодисменты.) Нечего свистеть! У меня имеется веское доказательство. Вот оно.

Единица подняла над головой палку и угрожающе помахала ею в воздухе. (Шум, оживление в зале.) Потом она подошла к первой дроби и поставила палку рядом с ней.

-- Вы видите, сказала

Единица,— эта налка доходит Четвёрке до самого бантика. А тенерь измерим вторую дробь... Ага, что я говорила? Палка намного выше верхней цифры 2!


— Это потому, что я сегодня в тапочках! — обиженно пискнуда Двойка.

И опять смех, свист, анлодисменты.

С трудом успокоив публику, Главный Судья предоставил слово Пятёрке.

- Не знаю, против чего я должна возражать,— спокойно начала она.— Если мой противник не смеётся над нами, то он, очевидно, глун.
- Прошу записать в протокол, что меня оскорбили! заявила Единица.
 - Призываю вас к порядку, Пятёрка, -- сказал Главный Судья.
- Великий Судья, обратилась к нему Пятёрка, разве дроби измеряют палками? Ведь одни школьники пишут большие цифры, другие маленькие. Если цифры измерять по росту, то Девятка может оказаться меньше Нулика.
- --- Ах, вам не нравится моя палка! -- вскочила с места Единица. -- Так бы и сказали. Я могу дать другое доказательство. Положим обе дроби на весы. И вы увидите, что первая весит больше, чем вторая.

— Вы намекаете на то,— закричала упитанная Семёрка,— что я съела сегодня за завтраком слишком много

пирожков с мясом?! (Шум, смех, аплодисменты.) Я протестую! Прошу занести в протокол, что меня оскорбили.

- Тише, сказал Судья, я вам, кажется, не давал слова!.. Продолжайте, Пятёрка.
- Мне не о чем говорить, возразила Пятёрка. Я знаю, что числа имеют вес, но это надо понимать не в прямом, а в переносном смысле.
- Я возражаю против такого способа спорить, заявила Единица. Пятёрка отметает все мои доказательства и не предлагает сама никаких. Потому что у неё их нет! (Свист, аплодисменты.)
- Я могу повторить только то, что сказала вначале,— спокойно ответила Пятёрка.— Величина дроби определяется не весом и не ростом, а значением!
- Способ, способ! кипятилась Единица.— Вы только болтаете. Вы задавака!
- Прошу отметить в протоколе, что меня оскорбили! возвысила голос Пятёрка.
- Делаю обоим спорщикам строгое предупреждение! снова рявкнул Главный Судья. Спор должен быть взаимно всжливым. Продолжайте.
- Я утверждаю, что $\frac{2}{3}$ больше, чем $\frac{4}{7}$, сказала Пятёрка.— И сейчас вам это докажу. Без палок и весов! Попрошу на сцену моих помощников. Двух близнецов. Уважаемый ОЗ, поднимитесь, пожалуйста, сюда вместе со своим братом.

На сцене появились два одинаковых числа — 21.

- Почему она их называет ОЗами? спросил шёпотом Сева.
- Это, наверное, сокращённые имена,— сказал Олег.— Ну конечно, это же общие знаменатели— ОЗы!
- Эти братья,— продолжала Пятёрка,— не что иное, как произведение знаменателей наших дробей Тройки и Семёрки. Ведь семь, умноженное на три, равно двадцати одному. Попрошу вас, дорогие близнецы, встать на место знаменателей обеих дробей: вместо Семёрки и Тройки.
- -- Уважаемая Пятёрка, возразили в один голос Общие Знаменатели, мы никак не можем исполнить вашу просьбу. Если мы сейчас займём места знаменателей, вы проиграете спор первая дробь окажется меньше второй!

- Ага, что я говорила?! обрадовалась Единица.
- Не радуйтесь преждевременно,— остановила её Пятёрка,— Я просто немного поспешила. Спасибо вам, дорогие ОЗы, за ваше замечание. Конечно, надо одновременно изменить и числители обеих дробей. Я не успела об этом сказать. Ведь при замене знаменателей сами дроби не должны меняться. Итак, заменим одновременно и числители и знаменатели.

И тут произощло нечто необыкновенное: Семёрка поднялась к Двойке, Тройка— к Четвёрке, и между каждой парой мгновенно блеспул знак умножения.

На секунду погас свет, и мы увидели по бокам сцены новые дроби:

$$\frac{14}{21}$$
 и $\frac{12}{21}$.

— Хоть эти дроби и новые.— пояснила Пятёрка,— но величины их ведь не изменились. Как вы думаете? $\frac{2}{3} = \frac{14}{21}$, а $\frac{4}{7} = \frac{12}{21}$. Так?

Единица сделала презрительную гримасу и ничего не ответила.

- Итак, моё доказательство готово! Как видите, знаменатели у дробей одинаковые, а числители разные. Так какая же из этих дробей больше?
 - Та, у которой больще числитель! не выдержал Сева.
 - Прошу не подсказывать с места! загремел Главный Судья.
- Вы совершенно правы, милый школьник,— заметила Пятёрка.— Дробь $\frac{14}{21}$, конечно, больше, чем дробь $\frac{12}{21}$. Следовательно, истина на моей стороне.

Зрители неистово аплодировали. Судьи, посовещавшись, встали.

- Объявляю решение суда! протрубил Главный Судья. Победила Пятёрка! («Молодец!» пронеслось по залу.) Отныне запрещаю при сравнении дробей пользоваться каким-либо иным способом! Диспут окончен!
- Внимание! крикнули из зала. У меня есть объявление! Для участников диспута сегодня состоится цирковое представление. Небывалый трюк «Дроби на трапециях»! Вход в цирк только по клубным билетам. Нервных просят не приходить.

Толпа хлынула на улицу.

СМЕРТЕЛЬНЫЙ АТТРАКЦИОН

Оркестр сыграл весёлое вступление.

На манеже, у главного входа, выстроились униформисты, и представление началось.

Жонглёров сменяли акробаты, акробатов — гимнасты... Вот на арену выбежала тоненькая, гибкая Тройка; она исполнила пластический этюд: сперва под музыку медленно превратилась в Шестёрку, затем в Девятку и, наконец, в Восьмёрку!

Потом молодая наездница — изящная Пятёрка танцевала на спине у лошади, прыгала на полном ходу сквозь обруч и так быстро вертела своей маленькой головкой направо и налево, что никто не мог различить: Пятёрка это или Тройка.

Затем на манеж вышел фокусник. Он засучил рукава и предложил каждому зрителю задумать какое-нибудь число.

- Все задумали? спросил он.
- Bce! ответили зрители хором.

Мои спутники тоже задумали — число 11.

- Попрошу,— сказал фокусник,— умножить задуманое число на 6. Зрители стали в уме множить на шесть и при этом шевелили губами.
 - Одиннадцать на щесть, шептала Таня, будет шестьдесят шесть.
- Прибавьте к полученному число 21,— скомандовал фокусник.— Прибавили?

У моих ребят получилось 87.

- Так! неслось с манежа. Разделите сумму на 3. («Двадцать девять!» толкнул меня Сева.) Затем вычтите 5. («Останется двадцать четыре», зашептали ребята.) Теперь разделите на 2! приказал фокусник. Разделили?
 - Сейчас, крикнул кто-то с галёрки. Одна минутка. Есть!
 - Получается двенадцать, переглянулись ребята.
- Теперь остаётся только одно,— заключил фокусник,— отнять единицу. И я вам скажу, какой у кого получился ответ. У каждого получилось то число, которое он задумал. Верно?
 - Верно! крикнул Сева. Одиннадцать!
- Верно! неслось со всех сторон. Восемь! Верно шесть! Верно пять, семнадцать, четыре!

Под бурные аплодисменты фокусник долго раскланивался, а _{потом} перешёл к следующему фокусу.

— В этом ящике находятся обыкновенные нули. Они вам хоронкзнакомы. Беру вот этот топор и разрубаю каждый нуль на любое число
частей. (Цирк в ужасе ахнул.) Вот этот нуль на лять частей, этот — на
семь, а этот — на тридцать две. Готово! Теперь осмотрите ящик, он совершенно пуст. Бросаю обломки нулей сюда. Накрываю ящик платком.
Внимание! — Фокусник ударил по ящику волшебной налочкой и произнёс: — Ой, люли, ой, люли! Выходите все нули!

Он быстро сорвал платок — из ящика один за другим выпрыгнули нули: они были целёхоньки!

Зрители неистовствовали.

— Видите, — сказал фокусник, — на сколько бы частей я ни делил нуль, он всегда останется нулём. Нуль, делённый на любое число, есть нуль! А теперь, — продолжал он таинственно, — я вам покажу самый страшный фокус. Попрошу кого-нибудь выйти на манеж. Пусть это будет самый маленький карликан, всё равно. Я на ваших глазах разделю его на нуль! Кто хочет выйти?

Никто не появлялся.

— Ну что ж,— пожал плечами фокусник,— придётся позвать моих ассистентов.

Он хлопнул в ладоши, и на манеж выбежали хрупкая Единица в розовой тюлевой юбочке и Нулик.

— Итак, делю эту Единицу на Нуль! Пугливых прошу отвернуться. Впрочем, я лучше закрою их вот этим покрывалом. Вот так. А теперь передаю им знак деления... Приготовились!

И фокусник произнёс волшебное заклинание:

На Нуль скорее разделись, Перед нами появисы

Блеснула молния, раздался страшный гром барабанов.

Покрывало быстро взвилось кверху, и из-под него вылез... Великан!

Он рос с неимоверной быстротой. Вот его голова уже касается купола цирка. Вот она прорвала парусиновую крышу, а Великан всё рос, рос...

Зрители в страхе жались друг к другу.

Довольно! — кричали с мест.

Фокусник взмахнул вольшебной палочкой— и Великан мигом исчез. На манеже снова стояли хрупкая Едипица и маленький Нулик.

— Теперь вы убедились,— сказал фокусник,— как опасно делить на Нуль даже Единицу.

Он изящно раскланялся и под бурные овации покинул мансж.

- **Ка**к это он делает? спросил Сева.— И откуда у него появляется Великан?
- На то и фокусы, чтобы сразу не понять,— ответил я.— Впрочем, этот фокус я объясню потом. А сейчас посмотрим на клоунов.

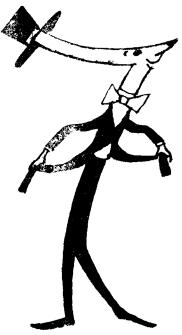
На арену с разных сторон вышли два клоуна: белый, как мука, Тук и рыжий, как апельсин, Ток.

- Где ты пропадал, Ток? спросил Тук.
- Я ходил покупать тебе подарок. Абрикосы!
- Я очень люблю абрикосы. Где же они?
- Я их по дороге съел.
- -- Bce?
- Все. А потом я вернулся в магазин и попросил снова продать мне абрикосов. Но только половину того, что купил в первый раз.
 - Где же они?
 - Съел!

Тук угрожающе замахнулся палкой.

- Подожди, подожди! закричал Ток. Я ещё раз вернулся в магазин и попросил продать мне только четверть тех абрикосов, что купил в первый раз.
 - И ты их опять съел?

- Съел!.. Потом я вернулся и купил одну восьмую. И снова съел,— Ток рассмеялся.— Так я возвращался пять раз. Каждый раз я покупал вдвое меньше, чем в предыдущий. Видишь, я не забывал о тебе.
 - Ты мне всё-таки принёс абрикосов или нет?
 - Конечно, принёс. Вот, смотри.
 - Но здесь всего один абрикос!
 - У меня больше не осталось денег.
 - Сколько же ты всего съел абрикосов?
 - Я не считал. Считай сам!
 - Ты ел, а я должен считать?
 - Если ты не знаешь арифметики, пусть тебе помогут зрители.
- Друзья, обратился Тук к зрителям, вы не знаете. сколько абрикосов съел Ток?

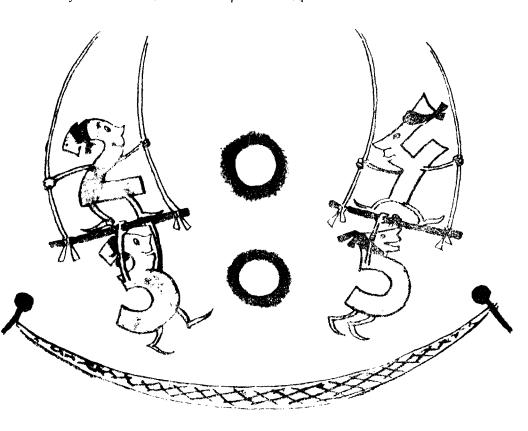

В цирке зашумели, стали считать, спорить. Первым решил задачу Олег:

- Ток съел шестьдесят два абрикоса!
- Неправильно! закричал Ток.— Шестьдесят три.— Он вырвал у Тука абрикос и тут же съел его. Это и есть шестьдесят третий!
- -- Ты всегда был таким обжорой? -- спросил Тук.
- Всегда. Вчера я съел двенадцать плиток шоколада, нятнадцать пирожных и двадцать порций мороженого. Вот сколько!
 - И что же в сумме получилось?
 - Расстройство желудка!

Под конец клоуны стали решать задачу: через сколько времени наполнится бассейн водой, если его наполнять сразу через две трубы. Вместо труб у Тука и Тока были в руках пожарные шланги. Клоуны спотыкались, падали, обливались водой и, так и не решив задачи, мокрые, убежали с манежа.

Из главного выхода появился карликан во фраке и торжественно объявил:

— Смертельный аттракцион! Дроби на трапециях!



Из-под купола уже спустили две трапеции. Они покачивались одна против другой.

На манеж выбежали четверо юных карликан: Двойка, Тройка, Четвёрка и Пятёрка. Они ловко забрались по канату на трапеции: Двойка и Тройка — на левую, а Четвёрка и Пятёрка — на правую. Двойка и Четвёрка встали на перекладины и крепко ухватились руками за канаты.

А двое других гимнастов повисли на перекладинах под ними. Они плавно раскачивались и делали красивые движения: выгибались ласточкой, выворачивались на руках, висели вниз головой... Потом они сели на перекладины, чтобы передохнуть, а карликан во фраке объявил:

— Внимание! Заключительный трюк — деление дробей! И тут же зловеще забила барабанная дробь.

Гимнастки снова заняли первоначальные места, и мы поняли, что ки — знак деления.

они изображают две дроби. Между ними возникли две светящиеся точ-Гимнастки взглянули вниз — сетка была на месте. Без сетки этот номер делать не разрешалось. Секунда внимания, и... «Ап!» — раздалась команла. И вот уже Пятёрка, сделав в воздухе сальто-мортале, поднялась на вторую трапецию и стала рядом с Двойкой. Одновременно с ней Четвёрка рыбкой полетела вниз и уцепилась за перекладину рядом с Тройкой. Опять, как во время диспута, между цифрами молниями блеснули два знака умножения. На секунду погас свет, а когда он зажёгся, на первой трапеции уже раскачивалась дробь $\frac{10}{12}$.

Цирк ревел от восторга.

— Бис! Бис!.. — неслось со всех сторон.

Трюк повторили. Однако теперь делимое и делитель поменялись местами.

Когда вновь зажёгся свет, на трапеции раскачивалась новая дробь:

$$-\frac{12}{10}$$
-.

- --- Э-э! закричал Сева. Да это та же дробь, только вверх ногами!
 - На то и цирк, резонно заметил Олег.

Артисты легко спустились на манеж. Представление закончилось.

нашёлся!

Когда мы вышли из цирка на улицу, город был празднично иллюминирован. Несмотря на позднее время, отовсюду слышалась весёлая музыка.

Жители Арабеллы ликовали. То тут, то там раздавались возгласы:

- Нашёлся!
- Какая радость!
- Он не мог пропасты!
- Бедная мама, как она волновалась!

Нетрудно догадаться, о ком говорили карликане. Опи радовались возвращению Нулика.

Сегодня утром, когда с площади Добрых Напутствий отправлялась к людям очередная партия карликан, провожавщие дали им наказ: непременно разыскать Нулика. И вот он здесь! Он цел и невредим!

А нашли его так.

Десятка три карликан помогали школьникам второго класса решать задачу на деление целых чисел. Вот уже все ученики отдали тетради учительнице. Прозвенел звонок. Карликане вышли из класса, потому что там должен был начаться урок русского языка, и направились в следующий класс, где изучали обыкновенные дроби.

Весёлой толпой поднимались они по лестнице. Вдруг на площадке послышался жалобный писк. Осмотрелись — никого! Писк повторился.

Тогда одна догадливая Семёрка заглянула за урну, стоявшую в углу. Там она и увидела пропавшего Нулика.

— Я хочу к маме! — хныкал он. — А потом я хочу есть и спать. И вообще я устал.

Ну, его сейчас же обласкали, утёрли носик и глазки. Вот только накормить было пока нечем. Но Нулик и так сразу повеселел, даже немного попрыгал от радости. И все отправились в третий класс помогать детям складывать обыкновенные дроби.

Задача была очень трудная. И Нулику некогда было рассказывать, что с ним произошло. А после надо было спешить на самолёт. И только в самолёте Нулик поведал печальную повесть о своём исчезновении.

Этот рассказ ему пришлось повторять много раз: сперва попутчикам в самолёте, затем встречавшим, потом опоздавшим на встречу и, наконец, тем, кто хотел ещё раз послушать всё, с самого начала. Но так как этого хотели почти все, то в общей сложности Нулик рассказал свою историю 248 раз.

А тут ещё подощли мы и тоже попросили его рассказать. Но Нулик уже охрип, и вместо слов у него получались одни шипящие звуки.

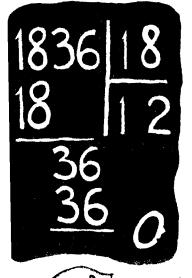
И тогда счастливая мама, толстая Восьмёрка, всё рассказала за него. Она уже успела выучить этот рассказ наизусть.

— Вчера в первый раз я отпустила моего дорогого крошку в такое дальнее путешествие. Но я не смела его удерживать, Ведь он отправлялся к вам, людям, для очень важного дела. И вот привезли его в одну неполную среднюю школу. Я не знаю, почему её называют неполной, но то, что она очень средняя, совершенно ясно: ведь там-то и произошло несчастье с моим дорогим малюткой. И надо же, чтобы мой сыночек попал к самому нлохому ученику во всей школе. Он-то и потерял моего Нулика. Да, да, потерял! Словно это иголка! Мыслимое ли дело, потерять такого красавца! — Она поцеловала Нулика в носик. — Учительница задала очень простую задачу: разделить 1836 на 18. Разве это трудно? Конечно, нет! И ответ-то очень простой: 102. Не больше и не меньше. А у этого лентяя получилось 12! Всего лишь 12! Подумайте только — он потерял Нулика! А почему это произошло? Да потому, что разделив 18 на 18 и получив правильно 1, ученик стал вдруг делить на 18 число 36. Надо было сперва разделить 3 на 18, а уж потом 36. Вы скажете, что 3 на 18 не делится? Ну и пусть не делится! Если число не делится, то тут-то и надо было вспомнить о моём Нулике и поставить его после единицы. Тогда бы и получился правильный ответ — 102. А мальчишка поленился и стал сразу делить 36 на 18. Вот и выходит: поспешишь — людей насмешишь! А нам не до смеха, нам слёзы.

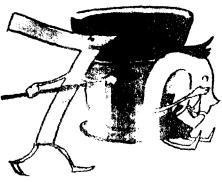
Ну хороно. Допустим, ученик ошибся. Ощибки могут быть у всякого. Но ведь он мог себя легко проверить. Вы спрашиваете — как? Стоило только умножить частное 12 на делитель 18. И он бы получил вместо делимого, 1836, всего-навсего 216. Нет, вы только подумайте: вместо 1836 получить 216! Ужас! Спасибо добрым друзьям-карликанам. Если бы не они, так бы и пропал мой сынок.

— Уважаемая Восьмёрка,— заговорил Сева,— всё равно ваш Нулик нашёлся бы. Его обязательно нашла бы

учительница. Она ещё просто не успела проверить тетради.


— Да,— ответила толстая Восьмёрка,— учительница, конечно, нашла бы. Но когда? Мой Нулик к тому времени мог умереть с голоду.

И она снова стала обнимать сына, целовать его в носик, в глазки, в ушки...


Мы решили не отвлекать её от этого приятного занятия и тактично удалились. Но через несколько шагов опять услышали знакомый голос:

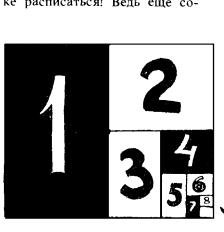
— Вчера в первый раз я отпустила моего дорогого крошку в такое дальнее...

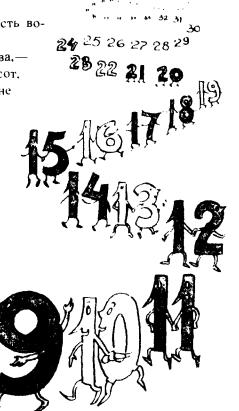
Счастливая мама по требованию вновь прибывших начала всё сначала.

СПИЧЕЧНЫЙ КОРОБОК

- Помните,— сказал мне Сева,— вы вчера обещали нам объяснить, как фокусник превратил Единицу в Великана.
 - Ну что ж, ответил я, обещал, так объясню.

Ребята уселись поближе и приготовились слушать.


- Возьмём какое-нибудь число,— начал я.— ну, скажем, сто. И разделим его сперва тоже на сто. Получим единицу, не так ли? Ну, а если мы разделим сто на пятьдесят, что тогда получим?
 - Два!
- Правильно, два. Два это уже больше, чем единица. А потом разделим сто на двадцать нять, получим ещё больше четыре. Затем на двадцать. Частное будет пять. А если мы разделим сто на два, то частное будет ещё больше пятьдесят. Так? Выходит, чем меньше делитель, тем больше частное. Разделим теперь сто на единицу.
 - Так и останется сто, сказал Сева.
- Нетрудно было догадаться, продолжал я. Ну, а если мы станем делить сто на числа, меньшие, чем единица. Что тогда? Частное будет уменьшаться или ещё больше увеличиваться?
 - Увеличиваться, -- сказала Таня.
- Конечно. Чем меньше делитель, тем всё больше и больше частное. Разделим 100 на $\frac{1}{2}$, получим уже 200, а если разделить 100 на $\frac{1}{5}$, то частное будет 500.


- Ну конечно,— сказал Олег,— разделить на $\frac{1}{5}$ это всё равно что умножить на 5.
- -- Молодец, похвалил я Олега. Так вот, если мы будем делить число на одну миллионную, то...
- ...это всё равно что умножить эго число на миллион,— победоносно закончил Сева.
- Вот и подумайте, снова сказал я, нуль маленькое число или большое?
 - Нуль меньше любого малого числа, ответил Олег.
- Что же получится, если разделить сто на самое маленькое число? -- снова задал я вопрос.
- То же, что получится, если умножить сто на самое большое число,— ответил Сева.
- Правильно,— подтвердил я.— Фокусник разделил единицу на нуль появился Великан! И никаких фокусов!

Ребята удовлетворённо вздохнули.

- Вот я вам покажу фокус так фокус! продолжал я после некоторой паузы. Как вы думаете, сколько чисел может уместиться в этом спичечном коробке?
- Это смотря как писать,— озабоченно сказал Сева,— крупно или мелко.
 - Ну, пусть будет мелко, решил я великодушно.
 - Тогда много, ответила Таня.
 - Что значит много?
 - Тысяча! закричал Сева.
 - -- Больше.
 - Миллион! предположила неуверенно Таня.
 - Еще больше! подзадоривал я.
 - Ну, это уж сказки! -- проворчал недоверчиво Сева.
- Что ж, послущайте мою сказку. Сказку да не сказку.— Я вынул все спички из коробка.— Допустим, что этот коробок разделён на две равные части, ну, хотя бы спичкой. Поместим в одной части число 1.
- Ппинте единицу,— деловито предложил Сева и протянул карандаш.
- Нет,— возразил я.— Единица будет воображаемая. Нам, математикам, без воображения нельзя! Итак, в этой половине единица, а другая пустая.

- Очень неэкономно,— заявил Сева.— Целую половину коробка занимать единицей.
- Ничего, ответил я, места хватит. Теперь разделим свободную половину снова пополам. Тоже в воображении, конечно. Можем?
 - Можем! сказали ребята.
- Итак, у нас снова два пустых отделения. В одном из них опятьтаки мысленно поместим число 2. А свободное отделение ещё раз разделим пополам. И в одну из этих половинок поместим число 3. Потом снова то же самое. Так и будем каждый раз в одно из свободных отделений помещать по числу: 4, затем 5, 6, 7... 100... 1000 и так далее. И каждый раз будем свободное отделение снова делить пополам.
- Нет, остановил меня Сева, тут что-то не то. Как же вы будете делить коробок? Если спичками, они туда не влезут.
- A я буду вместо спичек класть волоски,— ответил я.
- Всё равно,— не сдавался Сева,— можно разделить коробок на пятьсот. на тысячу частей, а потом и волосок не полезет!
- Какая же у тебя бедная фантазия! покачал я головой. Сумел же кузнец Левша подковать блоху да ещё на каждом гвоздике расписаться! Ведь ещё со-

всем недавно не было меньшего деления времени, чем секунда. А теперь учёные научились измерять даже миллиардные доли секунды! Раньше, желая похвалить пряху, говорили, что прядёт она нить с паутинку. Тоньше паутинки ничего и представить не могли. А уж измерить паутинку и вовсе не умели. А теперь измеряют размеры молекул, атомов, электронов... Перед ними паутинка что дуб перед мошкой! Так вот. Допустим, найдётся такой искусный мастер, который сумеет разделить наш коробок на самые-самые малые отделеньица. Далеко ходить не надо: разве воображение не лучший мастер на свете? Итак, мастер работает, отделения становятся всё меньше и меньше, вот уж ни в один микроскоп их нельзя разглядеть! А мастер всё делит и делит. Отделения становятся всё меньше, а числа, помещаемые в них, -- всё больше. И чем меньше отделение, тем большее число мы в него помещаем. Будет ли этому конец? Нет, нс будет! Ведь делить-то можно без конца, да и больших чисел тоже бесконечно много. Вот и выходит, что в этом коробке собрадись все бесконечно малые и все бесконечно большие величины. Карлики и великаны!

- -- Так вот почему эта страна называется Карликанией! обрадовался Олег.
 - Вещий Олег! сказала Таня.

НУЛИКИ СНОВА ШАЛЯТ

Сказка произвела большое впечатление. Ребята никак не могли успокоиться, без конца обсуждая необычный «фокус».

К счастью, их разглагольствования были прерваны запыхавшейся Четвёркой с бантиком. Она прибежала сказать, что не может нас сейчас сопровождать: нулики так расшалились, что с ними не сладишь. А сегодня её дежурство на Числовой площади. Она тотчас же умчалась. Мы поснешили за ней и вот что увидели. По Числовой площади, обнявшись, прогуливались всевозможные числа. О чём-то шептались Двойка и Тройка, образовав число 23. Рядом шли перенгой и пели песню шесть первых цифр. Из них получилось большое число — 123 456, сто двадцать три тысячи четыреста пятьдесят шесть...

Между этими солидными, степенными числами шныряли озорники нулики, сбежавшие от своих мам из Десятичного переулка.

Вот один из них, особенно бойкий, подбежал к числу 125 и стал слева от единицы, вот так: 0125. Никто не обратил на него особого внимания, потому что число 125 от этого ни капельки не изменилось. Тогда Нулик перебежал на другой конец числа и стал рядом с Пятёркой. Число мгновенно выросло, как на дрожжах, и стало в десять раз больше: не 125, а 1250!

Так как в этом числе все цифры были молодые девушки, им вовсе не хотелось превращаться в старух. Они прогнали Нулика прочь.

Тогда Нулик придумал новую шалость: снова забежал слева от Единицы и отделил себя от числа 125 запятой! И вот оно превратилось в десятичную дробь: 0,125 — стало в тысячу раз меньше, чем было до сих пор.

Цифры возмутились:

— Как ты смел сделать из нас такое маленькое число! Не хотим мы ни с того ни с сего уменьшаться!

А Нулику это так понравилось, что он позвал ещё двух своих приятелей и втиснул их между Единицей и запятой.

Ой-ой! Теперь число 125 уменьшилось в сто тысяч раз и стало вот таким маленьким: 0,00125!

Между тем Нулик вошёл во вкус этой забавной игры. Он упивался своей силой.

— Подумайте только,— вскричал он радостно,— оказывается, чем больше нуликов встанет сразу после запятой, тем меньше сделается число! Ведь каждый из нас уменьшает его в десять раз!

Только он это сказал, как сразу ещё пять нуликов оттеснили Единицу и встали между ней и своими собратьями.

— Теперь вы уже не сто двадцать пять,— закричали нулики,— а сто двадцать пять десятимиллиардных! Вот: 0,0000000125!

О ужас! Число стало таким маленьким, что без микроскопа и не разглядеть.

Какой интерес разговаривать с невидимкой!

Нулики разочарованно покинули свои места, и — ха-ха! — число 125 снова как ни в чём не бывало степенно разгуливало по площади.

— Ну, погодите, — воинственно сказала Четвёрка с бантиком, — сейчас я вас проучу! Напрасно вы так кичитесь своим могуществом, — обратилась она к нуликам. — Видите, гуляет число 9,1? Встаньте-ка между запятой и Единицей. Посмотрим, намного ли уменьшится от этого число?

— Ого-го-го! — ответил вызывающе Нулик.— Конечно, намного! Три нулика мигом стали так, как было предложено, и что же? Число 9,1 превратилось всего-навсего в 9,0001.

Нулики даже захныкали:

- Это обман! Число должно было уменьшиться в тысячу раз!
- Вы не учли, что перед запятой стоит цифра девять, а не нуль! В этих случаях ваша сила невелика. Ставьте после запятой хоть сто нулей, число всё равно будет больше девяти! Так что хвастаться нечего!

Но нуликов трудно было утихомирить. Долго ещё допекали они числа своими проказами и наконец так им надоели, что терпение у всех лопнуло.

Пришлось позвать заведующего главным складом. Он пришёл, дожёвывая свой девятьсот восемьдесят первый бутерброд с ветчиной, быстро и деловито собрал всех нуликов и поставил между ними по знаку плюс. Все нулики тотчас превратились в один общий нуль. Сколько нули ни складывай, они всё равно больше нуля не станут!

Общий нуль покатился по площади, закатился в свой Десятичный переулок, а там ударился о столб и снова распался на множество маленьких нуликов. Тут их поймали мамаши и развели по домам.

ЗЕРКАЛЬНАЯ УЛИЦА

На площади всё утихло. К нам подошла Четвёрка с бантиком.

- А у меня для вас сюрприз, сказала она, таинственно улыбаясь.
- Какой? Какой? приставали к ней ребята.
- Что ж это за сюрприз, если о нём проболтаться раньше времени! отбивалась Четвёрка. Сперва я вас чуточку повожу за нос.
 - А долго вы нас будете водить? спросил нетерпеливый Сева.
- Я же сказала чуточку. Вот пройдём эту улицу, свернём в переулок, потом опять выйдем на улицу, ещё раз свернём в переулок...
 - У-у-у! разочарованно протянула Таня. Так далеко?
- Ну, ну, я пошутила. Идти никуда не придётся. Поглядите-ка сюда.

Мы обернулись и... остолбенели. Перед нами стоял новенький, с иголочки, автобус! Он так и блестел на солнце своими красными глянцевыми боками.

- Неужели это для нас?! воскликнул Сева.
- Конечно! сияя от радости, ответила Четвёрка. Это туристский автобус дальнего следования. На нём мы совершим поездку по одной замечательной улице.

Таня надула губы и сказала недовольным тоном:

- Стоило подавать автобус дальнего следования, чтобы проехать одну улицу!
- Что вы! возразила Четвёрка.— Мы не сможем проехать эту улицу до конца.
 - Это почему же?
 - -- Да потому, что у этой улицы конца нет!
 - -- Понимаю, -- сказал Олег. -- Эта дорога ведёт к великанам.
 - Не только к великанам, но и к карликам, добавила Четвёрка.
- Но ведь как раз сегодня нам об этом рассказывали! всплеснула руками Таня.
- Тем лучше,— обрадовалась Четвёрка и жестом опытного гида пригласила нас занять места в автобусе.

Ребята с удовольствием разместились на мягких удобных сиденьях. Четвёрка повернула какой-то рычажок, и автобус двинулся.

- А где же водитель? удивились ребята. Машина сама едет?
- Водитель далеко, на Автоматической улице. Он управляет автобусом на расстоянии.
- Это, вероятно, делает кибернетическая машина? предположил Олег.
- Конечно! с гордостью сказала Четвёрка.— В Арабелле всё по последнему слову техники! А теперь внимание! Подъезжаем к цели нашего путешествия.

Автобус выехал на широкую улицу. Теперь он двигался очень медленно.

— Посмотрите налево, — сказала Четвёрка.

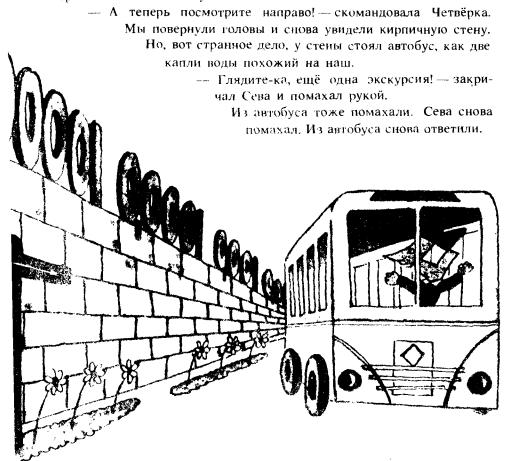
Мы повернули головы и увидели длинную, бесконечно длинную кирничную стену, на которой выстроились десятичные дроби:

0,1 0,01 0,001 0,0001 0,00001 0,000001 и так далее.

Чем дальше, тем больше нулей стояло после запятой и, следовательно, тем меньше становилась дробь.

Мы ехали всё вперёд и вперёд, а числа становились всё меньше и меньше. Автобус постепенно прибавлял ходу. Нули проносились мимо нас

всё быстрее и быстрее. Их становилось больше и больше. Появились уже такие малые числа, что прочитать их не было никакой возможности. А улице всё не было конца!


— Вот уж действительно дорога карликов! — воскликнул Олег.

Никогда я ещё не видел его таким оживлённым.

- Карлики есть, подтвердил Сева. Но где обещанные великаны?
- Будут и великаны,— успокоила Четвёрка.— Держитесь крепче! Попрошу всех закрыть глаза. Даю космическую скорость!

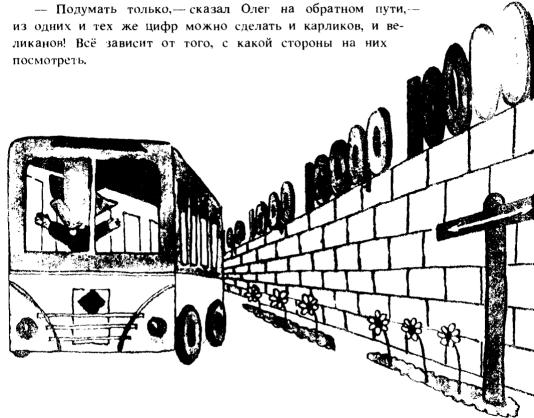
Закрывать глаза никто, конечно, не собирался, но автобус вдруг дал задний ход и понёсся обратно так стремительно, что все поневоле зажмурились.

Не успели мы, как говорится, глазом моргнуть, как очутились на прежнем месте. Автобус остановился.

— Слушайте! — в страшном волнении закричал Олег. — Это же не стена — это зеркало!

Действительно, это было бесконечно длинное зеркало, и в нём отражалась кирпичная стена.

По-прежнему уходили в бесконечную даль числа. Но только теперь это были не десятичные дроби, а их отражения, превратившиеся в целые числа: 1,0 10,0 100,0 1000,0 10000,0 100000,0 и так далее.


Автобус тронулся, и вновь замелькали перед глазами нули, нули нули... Числа росли с неимоверной быстротой.

— Вот вам и дорога великанов! — сказала Четвёрка.

И тут началась забавная игра. Ребята поворачивались налево — перед ними были карлики, поворачивались направо — вырастали великаны.

— Совсем как в волшебной сказке! — восхищалась Таня.

Под конец у всех разболелись шеи. Это было сигналом к возвращению.

подземная дробилка

Мы расстались с нашим симпатичным гидом и, отдохнув после сильных впечатлений, снова пошли бродить по городу.

Вскоре послышался отдалённый грохот.

- Неужели гроза? струхнула Таня. Она боялась грозы.
- Нет, -- сказал Олег, -- это что-то другое.
- Пойдём посмотрим, предложил Сева.

И мы пошли на шум.

Он становился всё сильнее и наконец привёл нас в какой-то пустынный переулок.

Вдруг грохот оборвался. И стало так тихо, что все даже испугались,

И тогда мы услышали чей-то скрипучий, ворчливый голос.

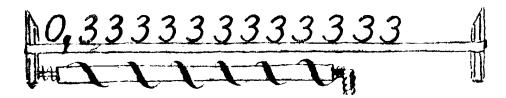
Из-под земли появилась седая голова старого карликана. Он тяжело дышал и, выкарабкавшись наверх, тотчас присел отдохнуть.

- Откуда вы? спросила Таня.
- Оттуда, показал он вниз.
- Что вы там делаете?
- Работаю. Адская у меня работа.
- Там что карликанский ад? спросил Сева.
- При чём тут ад?! удивился старик.— У нас даже дети знают, что никакого ада нет. Я там кручу машину. Больше у меня уже сил нет. Кручу, кручу, и всё никакого толку. Пусть старейшие карликане сами попробуют. А мне пора на покой!
 - А какую машину вы крутите, дедушка? спросила Таня.
- И не спрашивайте. Машина самая бесполезная. И называется она дробилка. Да что толку в этой дробилке, если я ничего не могу раздробить до конца?
 - Что же вы дробите? спросил Сева.
 - Что же ещё, кроме чисел?
- Числа не камни, разве так трудно их дробить? снова спросила Таня.
- Попробуйте сами разок, тогда не будете задавать такие вопросы. Ведь дроблю-то я числа, которые друг на друга не делятся. Те, что сами делятся их и дробить незачем. А вы попробуйте разделить такое число, которое не желает делиться на другое.

- В таком случае надо эти два числа оставить в виде обыкновенной дроби,— посоветовала Таня.
- Ишь какая прыткая! рассердился старик. «В виде обыкновенной дроби»! Здесь квартал десятичных дробей. Обыкновенным здесь жить не разрешается.
- Значит, вы их превращаете в десятичные? не унималась Таня.
- Вот именно в десятичные! махнул рукой старик. А они сопротивляются. Понятно?
 - Что же это за дроби такие?
- Странный вопрос! Периодические, конечно! ответил карликан.
- Но какой в них толк, если до конца ни одну раздробить не удаётся? спросил Сева.
- Толк-то в них, конечно, есть,— почесал старик за ухом.— Периодическая дробь в общем-то очень близко подходит к обыкновенной. Чем больше дроблю, тем точнее получается ответ. Только успевай крутить! А я уж стар, тяжело мне.
 - -- Можно нам посмотреть вашу дробилку? -- спросил Сева.
- Отчего же нельзя? У нас всё можно. Можете и подробить на ней, если охота. А я отдохну малость.
- Ещё бы, с удовольствием! заявили все хором.

Тут оказалось, что карликан вовсе не из-под земли вырос, а поднялся из круглого люка, которого мы сперва не заметили. По узкой винтовой лестнице мы спустились в подземелье, где рядом с дробилкой стоял грубо сколоченный стол. На столе лежала бумажка с печатью. Это был приказ Совета Старейших:

«Предлагаем в 24 часа разделить единицу на три с помощью десятичных дробей. Представить в виде периодической дроби с точностью до миллиона знаков. Старейшие».



— Дайте-ка мне! — заявил Сева и начал крутить рукоятку огромной дробилки.

Из дробилки стали выскакивать цифры и становиться в ряд на полочку. Сперва выскочил нуль, за ним запятая. А потом пошли тройки, тройки... одна за другой. Сева уже устал, а тройки всё шли и шли.

На полке уже образовалась длиннющая очередь:

А тройки всё продолжали выскакивать.

- Пожалуй, довольно? спросил Сева, отирая пот с лица. Ещё нет миллиона знаков?
- До миллиона далеко, усмехнулся старик. -- Да здесь это ни к чему. Тут Старейшие малость ошиблись. Они уже проверяли это дробление. Им наперёд известно, что, кроме тройки, из дробилки больше ничего выскакивать не будет. Я уж им не один раз ответ посылал.
 - И что же, так по миллиону цифр и отправляли? удивилась Таня.
- Зачем? замахал руками старик. Миллион посылать ни к чему. Я придумал посылать им сокращённый ответ. Вот, прочитайте.

Сева взял бумажку и прочитал:

- «В ответ на ваш приказ сообщаю: при делении единицы на три получилось вот что: 0,(3). Старший Дробитель».
 - А что это за скобки? спросил Сева.
- А это мы так условились записывать, что, мол, кроме троск, ничего больше и не ждите. А тройку мы назвали периодом. Поэтому и дробь называется периодической. Вот тут ещё один приказ есть,— продолжал Старший Дробитель,— разделить единицу на семь. Это придётся сделать.
 - Теперь дробить буду я, заявил Олег.

Снова заработала дробилка. Опять выскочил сперва нуль, а за ним запятая. Потом появилась единица.

- Ну, теперь пойдут одни единицы, сказал Сева.
- Не забстай вперёд, постановил его старик.

И он оказался прав. За единицей выскочила четвёрка, за ней двойка, потом восьмёрка, пятёрка, семёрка:

0,142857.

- Это уже не пернодическая дробы! обрадовался Сева.
- A ты его не слушай, обратился Дробитель к Олегу. Работай себе знай.

Олег продолжал вертеть ручку, и... выскочила снова единица. А за ией опять четвёрка, двойка, восьмёрка, пятёрка и, наконец, семёрка!

Они выстроились в ряд:

0,142857142857.

— Значит, дальше всё опять начиётся сначала,— решил Олег.— Очевидно, эти шесть цифр и будут теперь называться периодом? Ишь какой большой период!

- А я знаю, как надо записать этот результат! обрадовался Сева.— Вот так: 0,(142857). Правильно я поставил период в скобки?
 - Лучше нельзя, подтвердил старик.
- A вдруг дальше что-нибудь другое получится? не верила Таня. Ну-ка, ещё я покручу.

Но сколько ребята ни крутили, всё время выскакивали только эти цифры и всегда в одном и том же порядке.

Когда мы поднимались обратно на улицу, на полочке снова выстроилась длинная очередь:

0,142857142857142857142857142857142857142857142857...

Мы вылезли из люка и заглянули вниз. Старший Дробитель уже делил новую дробь. Мы увидели только его запись:

$$\frac{4}{11} = 0$$
, (36).

— Надо обязательно всё это проверить дома, — сказал Олег.

Тут Севу словно осенило.

- Дедушка! крикнул он в люк. Дедушка! А почему бы вам на пенсию не выйти? Пусть лучше вашу работу делает какая-нибудь счётная машина. А вы отдыхайте на здоровье!
- Это меня-то на пенсию? рассвирепел старый карликан. Целый век дроблю, а теперь не нужен стал?

Ребята смущённо переглянулись.

- Но вы ведь сами говорили... робко напомнила Таня.
- Мало ли что я говорил! Меня уж, почитай, двадцать лет уговаривают на покой уйти, да не на такого напали! Мне без этой работы и дня не прожить. «На пенсию»! Да вот я вас!.. Убирайтесь отсюда, а то превращу всех в периодические дроби! Будете меня помнить!

Так неожиданно закончилось наше посещение подземной дробилки.

H. P. B. B.

Этот день — наш последний день в Карликании — был поистине богат сюрпризами.

Добрая фея — Четвёрка с бантиком снова разыскала нас, для того чтобы вручить приглашение Совета Старейших на торжественный приём.

Ребята немного растерялись — им ведь никогда не приходилось бывать на приёмах, да ещё торжественных.

- Как вы думаете,— озабоченно спросила Таня,— моё платье подойдёт для такого случая?
- Подойдёт,— уверенно ответил я.— В Карликании не особенно поощряется щегольство, зато в высшей степени ценится опрятность.

Таня с удовольствием отметила, что складки её школьной юбочки хорошо отглажены, а нарядный фартук сияет белизной.

Костюм Олега тоже был в порядке. С Севой дело обстояло несколько сложнее: не хватало двух пуговиц на куртке, карманы оттопыривались от всякой всячины. «Как у Тома Сойера»,— говорила про него Таня. Однако после некоторой обработки Сева приобрёл почти сносный вид. И все мы, волнуясь и робея, направились на Числовую площадь. Огромное круглое десятиэтажное здание, казалось, сплошь состояло из стекла и просматривалось насквозь, как гигантский фонарь.

Каждый из девяти правителей Карликании занимал по этажу. Верхний, десятый, был общим. Там, в круглом зале, который назывался Залом Познания, собирался Совет Старейших. Оттуда можно увидеть не только улицы, площади, переулки и тупики Арабеллы, но бесконечные поля, леса, равнины и горы Арифметического государства — все его отдалённые уголки.

Четыре истёртые ступени вели к широкой массивной двери. На каждой из них было написано по одной букве.

Если читать снизу, получалось: Н. Р. В. В.

Сева уже поднял ногу, чтобы взойти на первую ступеньку, но Четвёрка с бантиком успела остановить его.

- Нет, нет! воскликнула она. Вам ещё нельзя подниматься по этим ступеням. Для гостей вашего возраста имеется отдельный вход.
- А что означают эти буквы? спросил Сева, когда мы поднимались по боковой лесенке.
- Это начальные буквы четырёх слов— нашего главного девиза. Это самые важные, самые необходимые, самые любимые, самые великие слова во всём Арифметическом государстве.
 - Но что же это за слова? настаивал Сева.

Четвёрка не успела ответить. Широкая дверь отворилась, и мы увидели величественную картину. Описывать её бесполезно. Пусть лучше каждый представит её себе по-своему.

ли о пустяках, не сплетничали и не злословили. Каждая секунда ценилась на вес мудрости, а ведь это дороже золота.

— Дорогие гости,— начал первый Старейший,— мы пригласили вас в Зал Познания, чтобы немного расширить ваш кругозор. Сквозь стеклянные стены вы можете видеть необъятные дали. У этих далей нет границ. В этом и заключается сущность познания. Всякое познание, даже маленькое, даётся нелегко. Четыре ступени — Н. Р. В. В.— ведут в этот Зал: Наблюдение, Размышление, Вычисление, Выводы!

За сотни веков многие поднимались по этим ступеням, входили в Зал Познания, чтобы затем рассказать другим людям об увиденном и приобщить их к науке. Многие спотыкались об эти ступени и не поднимались выше первой или второй.

Были и такие, что пытались проникнуть в Зал Познания обходными путями. Но это ни к чему не приводило. Для таких людей стены нашего Зала делаются непрозрачными. Обманщики сами становятся обманутыми.

Они говорят, что ничего интересного в познании нет, и возвращаются обратно, сбивая с толку своими рассказами тех, кто хочет проникнуть в наш Зал честным путём. К счастью, таких невежд гораздо меньше, чем хороших, пытливых людей. Недаром так истёрты четыре ступени, ведущие к вершинам науки.

Сегодня мы приветствуем вас как своих дорогих гостей. Но мы верим: будет время — вы подниметесь по этим четырём ступеням и войдёте сюда не как гости, а как хозяева.

Первый Старейший кончил. Наступила небольшая пауза.

Тогда поднялся второй Старейший.

Вот его рассказ.

космос в комнате

— Я расскажу вам об одном человеке, который жил около ста лет назад. Он медленно, но упорно поднимался по четырём крутым ступеням и вошёл в Зал Познания победителем.

Я хочу рассказать о нём потому, что этот человек возвеличил не только себя, не только человечество, но и Карликанию. Цифры в его труде сыграли очень важную роль.

Этого человека звали Урбен Жан Жозеф Леверье. Он был француз. Леверье очень любил звёзды, планеты и, конечно, нашу Землю. А особенно любил он нас, карликан. Поэтому он и стал великим математиком.

Делить и перемножать громадные числа было для него так же просто, как для вас играть в волейбол. Он расправлялся с цифрами легче, чем жонглёр с мячами.

Дни и ночи сидел он за письменным столом и вычислял, вычислял, а потом шёл к телескопу и смотрел на звёзды. Он мог наблюдать за ними без конца.

Как видите, всё пачалось с наблюдения! Это и есть первое слово нашего девиза. Ведь если не наблюдать, то ничего и не заметишь, а тогда и не о чем будет размышлять!

Леверье наблюдал за планетами, за их движением. Особенно интересовал его любопытный характер одной из них, под названием «Уран».

Вы, конечно, знаете, что все планеты движутся вокруг Солнца, каждая по своей орбите, так же как мотоциклисты во время гонки на стадионе.

Они ведут себя очень дисциплинированно — ни одна не сходит со своей дорожки. Ни Меркурий, самая близкая к Солнцу планета, ни Венера, бегущая по второй дорожке, ни следующая по третьей дорожке — наша Земля. Все мчатся по своим орбитам — и Марс, и Юпитер, и Сатурн, и, наконец, Уран.

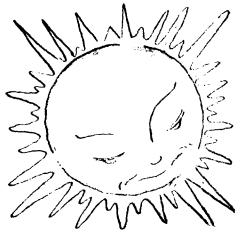
Других планет во времена Леверье никто не знал. Не знал и сам Леверье. Но вот что его удивляло. Все планеты движутся по вычисленным для них орбитам, все подчиняются небесным законам, а Уран не хочет им подчиняться. Пробежит часть своей дорожки и свернёт на соседнюю, ещё более удалённую от Солнца. Благо, эта дорожка пустая—ведь Уран самая последняя планета, и столкнуться ему там не с кем.

Леверье внимательно изучил записи, которые производили различные учёные до него. Все отмечали странное поведение Урана.

И вот Леверье стал размышлять: отчего не нравится Урану бежать по своей дорожке? Почему он норовит свернуть с неё?

Так обычно поступают мальчики, когда спешат в школу. Бегут, бегут по улице и вдруг свернут с дороги в какой-нибудь переулок. А там, оказывается, продают мороженое. Мальчик купит мороженого и снова выбежит на главную улицу. Притягивает мальчиков вкусное мороженое — вот они и сбиваются со своего пути.

«Может быть, Урана тоже что-то притягивает,— решил Леверье,— и он бежит за своим мороженым?»


Вы знаете, что все планеты и Солнце испытывают взаимное притяжение. Если бы не сила солнечного притяжения, наша Земля давно бы улетела от Солнца, как говорится, за тридевять земель.

А чем больше планета, тем сильнее её притяжение. Солнце значительно больше всех своих планет, вместе взятых, вот оно и не даёт им от себя убежать.

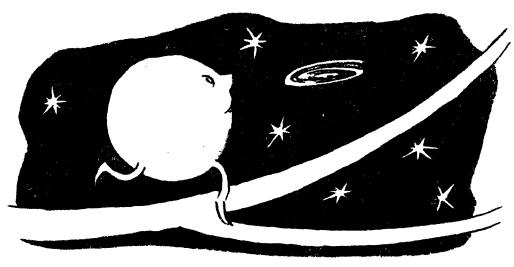
Но, конечно, чем дальше планета, тем труднее Солнцу притягивать её к себе. А Уран, вы уже знаете, как раз самая отдалённая от Солнца планета.

Думал, думал Леверье и решил так: «Не притягивается ли Уран какой-нибудь другой, неизвестной планетой, ещё более удалённой от Солнца? Пусть об этой планете никто ничего не знает, и всё-таки она должна быть».

«Эта таинственная планета,— размышлял учёный,— притягивает Уран тогда, когда он проходит мимо неё, несясь по своей дорожке. Вот они

поравнялись, как два гонщика. Притяжение неизвестной планеты на это время становится сильнее солнечного. Тогда Уран и сворачивает со своего пути. Но только на время. Потому что каждая планета движется со своей скоростью. Стоит Урану вырваться вперёд, сила притяжения неизвестной планеты ослабнет, и беглец Уран снова возвратится на свою дорожку».

Когда Леверье закончил свои размышления, он стал вычислять.


Мало выдумать новую планету,

надо ещё доказать, что она существует. Тут уж без нас, карликан, не обойтись!

Долго работал учёный.

Все мы очень волновались: сумеет ли он правильно вычислить, где и как разыскать новую планету? Ведь в те времена ещё не было вычислительных машин. Учёный исписал горы бумаги. Он очень устал, но желание добиться цели и вера в свою правоту победили.

Леверье закончил свои вычисления. Теперь он знал, где и когда надо

искать планету-незнакомку; он даже подсчитал, сколько она весит и как далеко отстоит от Солнца, какова длина её орбиты и сколько времени она тратит, чтобы один раз обежать вокруг Солнца. Оказалось, что для этого одного года мало. Ей нужно почти сто шестьдесят пять лет, чтобы один раз обернуться вокруг Солнца.

Всё это учёный узнал так точно, как будто видел собственными глазами. На самом деле он не выходил из своего кабинета.

Когда Леверье кончил вычислять, он послал свои выводы в обсерваторию, откуда астрономы наблюдают за звёздами.

Там наставили телескоп на то место в небе, куда велел Леверье, и в точно назначенное время увидели новую светящуюся точку. Это и была планета, вычисленная Леверье.

Так мы узнали. что вокруг Солнца мчатся по своим орбитам не семь, а восемь планет.

Учёные назвали восьмую планету Нептуном.

А через несколько десятков лет всё повторилось сначала.

Английский учёный Персиваль Ловелл тоже вычислил новую планету, девятую по счёту, находящуюся ещё дальше Нептуна. Только через много лет астрономы разыскали её на небе.

Эту планету назвали Плутоном, и ей нужно почти двести пятьдесят лет, чтобы разок обежать вокруг Солнца.

Может быть, за Плутоном есть ещё одна, десятая, планета? Кто знает! Вполне вероятно, что честь её открытия выпадет кому-нибудь из вас...

Второй Старейший поклонился и сел.

Тогда встал третий.

— Посмотрите сюда,— сказал он, указывая на стеклянную стену.— Перед вами дорога Светлого Разума. Здесь находятся портреты тех, кто сумел по четырём ступеням подняться в Зал Познания.

Третий Старейший нажал кнопку.

Стены Зала Познания стали раздвигаться и одновременно уходить назад. Зал отдалялся всё больше и больше. Вот уже Старейшие где-то очень далеко, вот они превратились в едва видимые точки, и наконец Карликания исчезла совсем.

ДОРОГА СВЕТЛОГО РАЗУМА

Перед нами была ярко освещённая беспредельная дорога Светлого Разума.

Справа и слева уходили вдаль длинные вереницы портретов великих математиков. Кого здесь только не было! Мы увидели умные, проницательные глаза тех, кто по кирпичику строил величественное Арифметическое государство.

Мы шли среди них, и нам казалось, что портреты улыбаются, вотвот заговорят.

Но что это? Они в самом деле улыбаются. Они действительно разговаривают, протягивают нам руки. Портреты живые!

Вот уже кто-то выходит из тесной рамы и идёт к нам навстречу. У него седая борода, вьющиеся волосы перехвачены ленточкой.

- Это же Архиме́д! узнаёт его Олег.
- Странно, -- говорит Таня, -- он ведь умер?
- Да, это было больше двух тысяч лет назад,— подтверждает Олег.
- Ошибаетесь, улыбаясь в бороду, отвечает Архимед, я не умер. Вы, наверное, имеете в виду тот печальный случай, когда презренный римский воин пронзил меня копьём. Он тоже думал, что я умер, но жестоко ошибся. К сожалению, он только помешал мне решить одну задачу, которую я вычертил тогда на песке. Я предупредил его: «Не трогай моих фигур!» Но он был глух к науке. Знаете вы имя этого мерзкого воина?
 - Понятия не имею! ответил Сева.
 - Ну вот видите, я тоже не знаю его имени.
 - Зато люди очень хорошо знают законы Архимеда, -- сказал я.
- Рад слышать, поклонился Архимед. Впрочем, то, что я открыл, не мои законы. Это великие законы природы. Они существовали задолго до меня. Всегда! Я только сумел их подсмотреть.

В это время Таня часто заморгала и, вынув носовой платок, стала старательно тереть глаз.

- Отчего вы плачете, милая девочка? спросил участливо Архимед. Я вас чем-нибудь расстроил?
 - Нет, что вы! ответила Таня. Мне попала в глаз песчинка.
 - Подумаешь, песчинка! Пустяки! пренебрежительно сказал Сева.

- Пустяки? обиделся Архимед. Молодой человек, никогда не говорите, не подумав. Я несколько лет своей жизни посвятил именно песчинкам.
 - Обыкновенным песчинкам? удивился Сева.
- Самым обыкновенным. Я задумал подсчитать, сколько песчинок может поместиться во Вселенной, если её сплошь заполнить песком обычным неском, какой бывает на пляже.
- Разве это можно сосчитать? развёл руками Сева. -- Наверное, во Вселенной поместится бесконечно большое число песчинок!
- Нст, нет, вы неправильно выражаетесь! остановил его древний учёный.— Вы хотите сказать: не бесконечно большое число, а очень большое число. Это совсем разные вещи.
 - Но ведь Вселенная бесконечна! вступила в спор Таня.
- Вы забываете,— спокойно ответил Архимед,— что мы, древние, представляли себе Вселенную иначе. В моё время считали, что в центре Вселенной находится неподвижная Земля, а вокруг неё обращаются Солнце, планеты и все звёзды, прикреплённые к небосводу, как к крышке огромной чаши. Так вот, я всё же сосчитал это огромное число песчинок и даже написал по этому поводу сочинение. Я его так и назвал: «Об исчислении песка в сфере неподвижных звёзд». Я бы с удовольствием подарил вам это сочинение со своим автографом, но увы! у меня нет под рукой экземпляра. Если вы его где-нибудь достанете, я с удовольствием надпишу.
- -- Это было бы замечательно! загорелась Тапя. Я так люблю собирать автографы! У меня уже есть автограф Юрия Гагарина, потом ещё двух киноактёров. Но автограф Архимеда!.. Таня от удовольствия даже зажмурилась.
- Я вижу, что песчинка сама выскочила из вашего глаза,— сказал Архимед, очень рад... А сейчас прошу меня извинить у меня дело. Может быть, сегодня мне удастся отыскать наконец точку, которую я гак долго ищу.
 - Какую точку? спросил Сева.
- --- Разумеется, точку опоры. Ведь, если я найду точку опоры, я смогу перевернуть Землю.
 - Каким образом?
- -- С помощью рычага. Когда-то, когда я жил в своём родном гороле — Сиракузах, я придумал эту очень простую машину...

Помахав нам на прощанье, Архимед быстро удалился.

А мы пошли дальше.

По дороге мы увидели уже знакомых нам Эратосфена с его знаменитым решетом, и Леверье, занятого очередным вычислением, и Эвклида, и Пифагора...

А вот идут два человека в старинных камзолах. Они о чём-то оживлённо разговаривают. Вот они поравнялись с нами.

- Позвольте представиться,— обратился к нам один из них, с длинными светлыми волосами.— Исаа́к Ньютон. Из Ке́мбриджа. А это,— он указал на своего собеседника,— Го́тфрид Ви́льгельм Ле́йбниц. Из Ле́йпцига. Мы жили и работали в разных странах, но всегда уважали друг друга.
- О да! подтвердил Лейбниц.— Пусть злые языки говорят, что мы соперничали, это неверно. Правда, мы с досточтимым сэром Ньютоном работали над одним общим вопросом, даже ещё не будучи знакомы...
- И одновременно решили эту важнейшую проблему!..— подхватил Ньютон.
- Не скромничайте, уважаемый сэр,— перебил его Лейбниц.— Вы решили эту проблему на семь лет раньше...
- Да, но вы, дорогой господин Лейбниц, открыли то же вполне самостоятельно,— перебил его в свою очередь Ньютон.
- Не будем вдаваться в подробности. Пусть это открытие принадлежит нам обоим,— заключил Лейбниц.
- Досточтимый сэр Ньютон и глубокоуважаемый господин Лейбниц,— обратился к ним Сева,— не будете ли вы столь благосклонны и не сообщите ли нам, что за открытие вы сделали?
- Позвольте мне,— сказал Ньютон,— ответить на ваш вопрос тоже вопросом. Были ли вы на Зеркальной улице в городе Арабелле?
- Были! выпалил Сева. Мы даже на автобусе катались. И видели там и карликов, и великанов.
- Так вот,— продолжал английский учёный,— этих-то карликов и великанов изобрели мы с господином Лейбницем.
- Сэр Исаак большой шутник! усмехнулся Лейбниц. Никаких карликов и великанов мы не изобретали, а просто-напросто ввели понятие о бесконечно малых и бесконечно больших величинах...
 - И научили людей пользоваться ими, закончил Ньютон.

Разговор был неожиданно прерван подошедшим к нам полным розовощёким человеком в шёлковом камзоле, отделанном тончайшими кружевами.

- Провалиться мне на месте, если это не Портос из «Трёх мушкетёров»! — закричал Сева.
- Ты с ума сошёл! возмутилась Таня. Откуда в Карликании мушкетёры?
- Нет, нет, я не мушкетёр,— засмеялся незнакомец,— хотя был лично знаком с д'Артаньяном! Я ведь тоже француз. Меня зовут Пьер Ферма.
- Могу вас заверить, сказал Ньютон, что наш дорогой **Ф**ерма один из самых любимых и почитаемых учёных в Карликании.
- Вполне понятно, добавил Лейбниц, ведь мсье Ферма один из создателей теории чисел. Если принять во внимание, что Арифметическое государство страна чисел, вас не удивит огромная популярность мсье Ферма.

Ферма шутливо закрыл руками уши:

- Нельзя на одного человека взваливать всю тяжесть славы. Кроме меня, к теории чисел приложили руку очень многие. Достаточно вспомнить великого грека Пифагора или всех тех, кто жил после меня: петербургского академика Леона́рда Эйлера, московского профессора Пафнутия Львовича Чебышёва или более поздних учёных советских математиков Льва Генриховича Шнирельма́на, Ивана Матвеевича Виноградова... Да я бы мог вам перечислить их сотню. А вы всё приписываете мне!
- И всё-таки, дорогой мсье Ферма, то, что сделано вами, отнять у вас нельзя.

Ферма загадочно улыбнулся и сказал:

- При всём при том я доставил людям массу неприятностей.
- Приятно, должно быть, доставить хоть одну такую «неприятность» человечеству! заметил Ньютон.
 - Никто бы из нас от этого не отказался, добавил Лейбниц.
 - Что же это за неприятность? полюбопытствовал Сева.
- Мсье Ферма, ответил Ньютон, говорит о теореме, которую открыл и которую никто вот уже триста лет не может доказать.
- Её так и называют: великая теорема Ферма! добавил Лейбниц.
 - Зачем же так громко? Я никогда не называл её великой, возразил

Ферма.— Она пришла мне в голову, когда я читал превосходную древнегреческую «Арифметику» Диофа́нта. Очень простая теорема.

- Теорема-то простая,— сказал Лейбниц,— и всё-таки доказательства никто до сих пор не нашёл!
- Вы забываете,— заметил Ферма,— что для некоторых частных случаев кое-кому удалось найти доказательство.
- Я говорю о том,— ответил Лейбниц,— что нет ещё полного доказательства вашей теоремы.
 - А сами вы её доказали? спросил Сева у Ферма.
- Лучше не спрашивайте, милый друг,— грустно ответил учёный.— Я доказал её, но... Всё дело в этом маленьком «но». Я записал своё доказательство на полях книги Диофанта, и, подумайте только, этот листок оказался вырванным!
 - Вот как нехорошо портить книжки! с досадой заметил Ньютон.
- Но вы, наверное, помните своё доказательство? Скажите его мне на ушко, а я его потом опубликую,— предложил Сева.

Трое учёных покатились со смеху. Они долго не могли успокоиться.

— Мой дорогой Гаврош... Не знаю, как вас зовут по-настоящему,— обратился наконец Ферма к Севе́.— Ведь прежде чем слушать доказательство, надо познакомиться с самой теоремой! Боюсь только, что это несколько преждевременно. Впрочем, если вам хочется, возьмите в библиотеке книжку и познакомьтесь с моей теоремой. Может быть, когда-нибудь я и раскрою вам эту тайну.

Учёные церемонно распрощались.

И мы опять пошли вперёд.

К нам приближался человек с гордой осанкой, в завитом пудреном парике. Он вёл под руку старика в маленькой круглой шапочке.

- Михайло Ломоносов, помор Архантельской губернии,— представился он, подойдя к нам.— Счастлив видеть соотечественников, побывавших в превеликом царстве чисел. Числа не только пользу, но и радость несут человеку. Много ли преуспели в арифметике? спросил Михайло Васильевич у Севы.
- Не очень-то много, вздохнул тот. Арифметика наука ой-ойой! Не больно даётся. Трудная наука!
- Небось самому приходится ума-разума набираться, книжки штудировать?
 - Да нет, ответил Сева, мы в школе учимся, у нас есть учитель.

- Ах, в школе? удивился Ломоносов.— И всё-таки трудно? Ага, понимаю. Учиться охота, только времени нехватка. Я ведь тоже отцу помощником был: невод в море забрасывал, улов вытягивал. Тоже трудно учиться было. Да и денег на учение не было.
- Да нет же, Михайло Васильевич,— возразил Сева.— Какой там невод! Я дома вообще ничего не делаю, даже за хлебом не хожу. Да и обучение у нас бесплатное.

Лемоносов задумался.

- Чудно́! сказал он. И работать не работаете, и учитесь бесплатно. И всё ещё трудно! А я всё сам. Сам по книжке и грамоте, и арифметике учился, да и то, когда время оставалось. «Арифметика» Магницкого прекрасная книжка! Девятнадцати лет в Москву отправился. Пешим, в лаптях, с мешком за спиной... Так в наше время крестьянину учението доставалось.
- И всё-таки в ваше время, вмешалась Таня, учиться легче было. Ведь вы только одной арифметикой и занимались!
- Это кто же вам сказал?! возмутился Ломоносов. В моё время молодые учёные чем только не интересовались! И физикой, и астрономией, и химией... Мой друг, петербургский академик Леонард Эйлер, подтвердит это.

Ломоносов подвёл к нам старика, стоявшего в стороне. Тот улыбнулся, глядя куда-то мимо неподвижными глазами. И мы поняли, что он слепой.

- -- Да, -- сказал Эйлер. Мы многим интересовались. Я, например, ещё у себя на родине, в Швейцарии, изучал медицину, потом физику... И только когда переехал в Россию, твёрдо посвятил себя математике. Впрочем, увлекался и астрономией, даже расчётами колонн. В жизни много неизвеланного. Всё хочется узнать, всё раскрыть. А Михайло Васильевич вот ещё и стихи писал.
- --- «Открылась бездиа, звёзд полна, звездам числа нет, бездне дна!» -- продекламировал Олег.
- Приятно, что вы это помните,— сказал Ломоносов.— Кто сказал, что наука и поэзия разные веши? По-моему, чтобы быть хорошим математиком, надо быть в душе поэтом. Как вы думаете, Софья Васильевна? обратился он к проходившей мимо молодой женщине.
- Вы, как всегда, правы, Михайло Васильевич,— ответила она.— Всю жизнь меня тянуло и к математике, и к литературе. Я писала научные трактаты, но это не мешало мне сочинять романы, драмы...

- Познакомьтесь,— обратился к нам Ломоносов.— Софья Васильевна Ковалевская, первая русская женщина-профессор. Расскажите, Софья Васильевна, с чего началось ваше увлечение математикой?
- Это очень смешно, смутилась Ковалевская, мне неловко рассказывать. Когда я была совсем маленькой, то не помню почему в моей детской стены вместо обоев были оклеены листами из какой-то книжки. Оказалось, это учебник высшей математики. Перед моими глазами всегда мелькали цифры, незнакомые знаки, формулы... И я, видя их ежедневно, так ими увлеклась, что решила посвятить себя математике. Так что я, можно сказать, обойный математик!
- Да,— сказал Ломоносов,— сейчас Софья Васильевна шутыт. **А** сколько мучений пришлось ей когда-то вынести! Никто не признавал за женщиной права учиться, тем паче учить других!
- Однако, добавила Софья Васильевна, мужчинам тоже приходилось не сладко. Не правда ли, Николай Иванович? обратилась она к худощавому человеку в форменном сюртуке.

Это был казанский математик Лобачевский.

- И не говорите! махнул рукой Лобачевский. Мне даже вспоминать не хочется нелепости. которые распространяли невежды по поводу моих сочинений. Меня считали сумаспедшим!
- Но теперь вы можете торжествовать,— сказал я,— Ваши труды всемирно известны!

Лобачевский только скромно улыбнулся.

К нам подошёл старик с большой седой бородой. Все стоявшие рядом почтительно поклонились ему,

- Пафнутий Львович Чебышёв, уроженец Калужской губернии, представился он.
- Пафнутий Львович,— шепнул я ребятам,— в шестнадцать не- ов уже был студентом университета, а в двадцать нять защитил диссертацию.

Чебышёв слегка поморшился. Он всё слышал и тотчас переменил разговор.

- Как прекрасно сшито ваше платье! обратился он к Тане. Я бы так, наверное, не сумел.
 - Вы?! удивилась Таня. Разве вы портной?
- Конечно! засмеялся Чебышёв. Кройка одежды моя основная профессия.

- Это не следует понимать буквально,— сказал человек, подошедший к нам вслед за Чебышёвым.— Разрешите представиться! Меня зовут Александр Михайлович Ляпунов. Пафнутия Львовича я знаю очень хорошо— он мой учитель. И учил он меня не портняжному делу, а математике.
- А кто сказал, что математик не может быть и портным? — запальчиво воскликнул Чебышёв.
- Открою вам секрет,— улыбнулся Ляпунов.— Профессор Чебышёв нашёл способ кроить одежду с помощью математических расчётов...
- Так портной я или не портной? перебил Чебышёв.
- Уж конечно, портной, если не считать, что, кроме того, написали не один десяток математических работ, лукаво соглаєился Ляпунов. Кстати, успели вы в Карликании побывать на аллее Простых Чисел? обратился он к нам. Успели? Превосходно! Так вот, имейте в виду, что мой дорогой учитель самый почётный гость на этой аллее. Пафнутий Львович много способствовал тому, чтобы облегчить поиски простых чисел. И весьма в этом преуспел!
 - Ну как вам не стыдно! —

взмолился Чебышёв.— Вы же мой ученик! Выходит, я учил вас петь дифирамбы. Что подумают обо мне мои юные соотечественники! Если им это интересно, они сами прочтут мои сочинения.

- Дорогой Пафнутий Львович,— воскликнул Ляпунов,— узнаю вашу профессорскую рассеянность! Эти милые школьники не смогут прочитать ни одной вашей строчки. Ведь они ещё не знают высшей математики...
- Ну и что ж? ответил Пафнутий Львович. Пусть узнают. Пусть поскорей заканчивают школу, поступают в университет, и тогда... тогда уж...

На это возразить было нечего. Мы распрощались и снова двинулись дальше. И чем дольше мы шли, тем больше нам встречалось учёных. Здесь были и врачи, и физики, и агрономы, и литераторы, и биологи, и химики — ведь теперь без математики не обходится ни одна наука!

Всё чаще и чаще раздавался гул самолётов, стрекот кибернетических машин, разряды атомных реакторов...

И вдруг мы услышали музыкальную фразу — всего только несколько нот. Но их нельзя было не узнать. Наши позывные!

Мгновение — и в небо взвилась длинная сверкающая стрела, оставляя за собой огненный хвост.

И тут же заговорило радио:

«В Советском Союзе запущен ещё один космический корабль...» Мощное «ура» заглушило голос диктора.

И мы не узнали, под каким номером значится очередная космическая ракета.

. На возвышении стояла группа людей. Конечно, это были конструкторы ракеты.

Мы протиснулись вперёд, чтобы увидеть их лица. Но это нам так и не удалось, потому что...

Мы по-прежнему сидели в школьном саду, за дощатым столом.

- Какую интересную сказку вы рассказали, задумчиво произнёс Олег.
- Неужели ничего этого не было? вздохнул Сева. Ни Четвёрки с бантиком...
 - Ни балета на льду...— подхватила Таня.
 - Ни Зеркальной улицы... продолжал Олег.

— Может, не было,— сказал я.— А может, и было... Посмотрите, вот листок! Мне передал его для вас один из тех, кого вы только что видели.

Я положил на стол страничку, вырванную из обыкновенной тетради в клетку. И ребята прочитали слова великого русского математика Николая Ивановича Лобачевского:

«Кажется, нельзя сомневаться...
в истине того, что всё в мире может быть
представлено числами».

Голицыно Лето 1962 г.

СНОВА В КАРЛИКАНИИ!

Трое путешественников шагают по прямым улицам Арабеллы. Их нетрудно узнать, хоть они повзрослели и вытянулись. Это наши давние знакомые — Таня, Сева и Олег. На этот раз их сопровождает маленький пушистый клубок. Клубок то убегает далеко вперёд, то возвращается, то снова надолго исчезает в каком-нибудь закоулке. И тогда слышатся беспокойные возгласы его хозяев:

- Пончик, Пончик, назад!

Пончик — самый весёлый, самый ласковый пёс на свете. Больше всего он любит лаять — не от злости, как иные собаки, а просто потому, что всё вокруг ему нравится.

Пончик очень любопытен: никогда не пройдёт мимо открытой двери, обязательно остановится и осторожно заглянет, но стоит кому-нибудь появиться — сейчас же отойдёт с самым безразличным видом.

От природы Пончик совершенно бел. Правда, для того, чтобы это выяснить, надо его хорошенько вымыть. Пончик терпеть не может мыла, зато обожает грязные лужи. Но сейчас он белёшенек. Перед тем как снова отправиться в Карликанию, Сева устроил ему основательную баню. Нельзя же заниматься чистой наукой в таком неопрятном виде!

Пончик всей душой хочет вернуться к своему привычному состоянию, но попробуйте найти в Арабелле хоть одну грязную лужу...

Не подумайте, впрочем, что в Карликании вообще нет воды. Тот, кто сказал это, конечно, пошутил.

Город сверкает чистотой. Солнце отражается в его зеркальных, тщательно протёртых стёклах. Газоны только что политы, и на траве дрожат и вспыхивают крупные капли.

Приятно возвратиться в город, в котором уже однажды побывал.

Ребята с удовольствием убедились, что не только сами хорошо помнят столицу Карликании, но и здесь их тоже не забыли. Со всех сторон тянутся к ним дружелюбные руки. Карликане сердечно приветствуют своих добрых знакомых и наперебой зазывают в гости.

Четвёрка с бантиком приглашает их в Клуб любителей поспорить на очередной двенадцать миллионов тысяча семьсот тридцать первый диспут; Семёрка с палочкой вручает билеты на новое представление. Даже Старший Дробитель, который был так нелюбезен напоследок, вылез из своей подземной дробилки. Он предлагает ребятам покрутить ручку, чтобы получить дробь с каким-то длиннющим периодом...

Путешественники тронуты. Они благодарят за приглашения. Но им не до развлечений. Мысли их заняты непонятной телеграммой Нулика. Да, да, того самого Нулика, который потерялся и которого нашли потом на школьной лестнице.

Что с ним стряслось? И зачем ему понадобилось вызывать ребят в Карликанию?

— Покажи-ка ещё разок! — озабоченно говорит Сева. — Может быть, мы как-либудь не так прочитали!

Олег молча подаёт ему аккуратно сложенный листок.

- «Совершенно секретно...» начинает Сева.
- Не надо, перебивает Таня, я могу наизусть: «Совершенно секретно пропало лицо тайна стручке приезжайте на поиски Нулик». А на деле никакой тайны и нет. Просто очередная шалость.
 - А если и вправду тайна? возражает Олег.
- Вот бы славно, мечтательно улыбается Сева. Даром, что ли, я взял с собой ищейку!
- Хороша ищейка,— поддразнивает Таня,— её саму искать надо. Вот, например, сейчас: куда она пропала?
- Не беспокойся, найдётся. Лучше объясни, куда запропастился Нулик. Отчего он нас не встретил? Как его найти? Эта задача потруднее.
- Ничего трудного,— снисходительно замечает Таня.— Нулик живёт на Восьмой улице.

— На Восьмой улице живёт не только Нулик, но и его мама. О ней ты подумала? Вот и доверяй после этого тайны девчонкам!

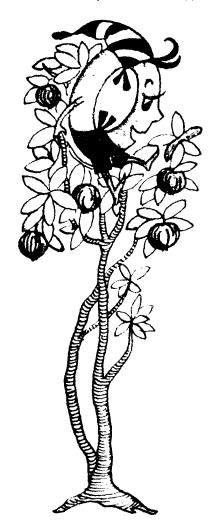
Таня вспыхивает, но не успевает ответить: где-то неподалёку слышится заливистый лай.

— Пончик, ко мне! — зовёт Сева.

Щенок не показывается и упорно продолжает лаять.

— Держу пари, он что-то учуял!

Сделав непроницаемое, «детективное» лицо, Сева идёт на лай.


Таня и Олег следуют за ним.

Очень скоро все они оказываются в том самом саду, где в прошлое посещение Карликании решали задачу с яблоками.

Здесь они видят Пончика. Не переставая лаять, он прыгает под яблоней. А на самой верхушке её сидит Нулик.

Он никогда ещё не видел ни одной собаки, и маленький белый пёсик показался ему разъярённым чудищем. А Пончику просто-напросто захотелось поиграть с симпатичным малышом, у которого к тому же такой забавный хохолок.

Нулика снимают с дерева и, наскоро познакомив с Пончиком, забрасывают вопросами: кто потерял лицо? О какой тайне речь? И вообще, что произошло?

А произошло вот что.

После того как Нулик потерялся, мама-Восьмёрка решила пока что не отпускать его к людям. Пусть подрастёт!

Бедная мама, если бы она знала, что из этого выйдет!..

От безделья Нулик, который и прежде был порядочным шалуном, совсем от рук отбился. И, в отличие от других Нуликов, его стали называть Нуликом-Озорником.

Вот и вчера, собрав на Числовой площади своих дружков-приятелей, он такое вытворял, что впору было вызывать на помощь Великанов из Бесконечности. Вы ведь помните, что Нулики только их и боятся понастоящему. К счастью, до этого не дошло. Просто рассерженные мамы развели своих питомцев по домам, строго-настрого запретив выходить на улицу.

Один только Нулик-Озорник убежал от наказания. Убежал так далеко, что очутился в совершенно незнакомом месте.

Здесь он наконец остановился и, тяжело дыша, посмотрел назад. Никто за ним не гнался.

Он был один, совершенно один.

На минуту Нулику стало страшно, но любопытство пересилило страх.

В нескольких шагах от себя он заметил большой минстый камень. Малыш подошёл к нему и осторожно потрогал. Ему, как и прочим маленьким Нуликам, необходимо было всё трогать руками.

— Ничего особенного! — сказал он независимо. — Может, с другой стороны есть что-нибудь интересное?

Нулик обошёл камень и остолбенел: прямо на него уставилась больная чёрная дыра! Он заглянул в тёмную каменную пасть. Брр! В лицо нахнуло холодом. Постепенно глаза его привыкли к темноте. Он увидел перовные каменные ступеньки, уходившие куда-то вниз. Нулик стал на етвереньки, чтобы заглянуть поглубже, но в это время кто-то легонько лопнул его по спине. Нулик зажмурился и втянул голову в плечи. Он грасть как перепугался. Зачем, зачем он убежал от мамы-Восьмёрки? елика беда — просидеть три дня дома без сладкого!

Он уже собирался заплакать, но тут его снова шлёпнули, на этот раз осильнее.

- Кто это? спросил Нулик, дрожа и всё ещё не оборачнваясь.
- Я, ответил глухой незнакомый голос.

- Кто вы?
- К сожалению, этого я и сам не знаю.
- Вы что, смеётесь? возмутился Нулик. Я умираю от страха, а надо мной издеваются! Каждый обязан знать, кто он.
 - А вы знаете, кто вы?
 - Что за вопрос! Я Нулик. Это всем известно.
- Счастливый! позавидовал голос. А вот кто я, никому не известно.
- Сказки! осмелел Нулик. Он наконец рискнул обернуться и открыть глаза, но сейчас же зажмурился снова.

Перед ним стояло странное существо, закутанное в чёрный бархатный плащ, из-под которого виднелись две тоненькие ножки. На лице у существа была чёрная повязка.

- Ой, сказал Нулик, я боюсь! Где ваше лицо?
- Под маской.
- Так снимите её, предложил немного успокоенный Нулик и снова взглянул на незнакомца.
- Невозможно,— вздохнул тот.— Я заколдован и обречён носить чёрную маску до тех пор, пока кто-нибудь не раскроет моей тайны.

Тайна?! Нулик даже руками всплеснул от неожиданности.

- Как жаль, что мы не встретились раньше! пылко воскликнул он. Ужасно люблю раскрывать тайны.
- В таком случае мне повезло! Но предупреждаю: мою тайну раскрыть не так-то просто. Готовы ли вы преодолеть все препятствия, которые встретятся вам на пути?
 - Что за вопрос! Я-то готов на всё. Но...
 - Как? Вы ещё ничего не начали, а у вас уже имеется «но»?
- Что вы, что вы! всполошился Нулик.— Никакого «но» у меня нет... Но... у меня есть мама...
- Ни слова больше! Никогда не позволю себе стать причиной огорчения вашей мамы. Прощайте.

Незнакомец отвесил печальный поклон и повернулся, чтобы войти в подземелье. Сейчас он исчезнет там навсегда.

- Не уходите! взмолился Нулик. Не уходите, пожалуйста! У меня ведь есть ещё и друзья! Это ребята, школьники. Я подружился с ними, когда они были в Карликании.
- Ax, вы возвращаете мне надежду! обрадовался неизвестный. Но тут же озабоченно спросил: A на них можно положиться?
 - Как на меня самого, заверил Нулик.
- Ну, так слушайте. Сейчас я передам вам волшебный талисман. С его помощью вы должны одолеть чары и вернуть мне моё лицо. Закройте глаза и протяните руку.

Нулику ужасно хотелось подсмотреть, что будет дальше, но он честно сжал веки. На ладони его очутилось что-то узкое, продолговатое, и глухой голос произнёс:

— Вы вскроете этот талисман только тогда, когда придут ваши друзья. А теперь прощайте. И помните: отныне моя судьба в ваших руках.

Когда Нулик открыл глаза, Чёрной Маски уже не было. А на ладони у него лежал... стручок! Стручок зелёного горошка.

Нулик очень любил зелёный горошек. В другое время он бы съел его не задумываясь. Но от этого стручка зависела чья-то судьба... Малыш посмотрел на него, облизнулся и опрометью кинулся на телеграф.

ТАЙНА ЗЕЛЁНОГО СТРУЧКА

Всё вышло не совсем так, как хотелось Нулику.

Он требовал, чтобы стручок был вскрыт в самой таинственной обстановке: ровно в полночь участники экспедиции сходятся где-нибудь в глухом месте. Все они в чёрных масках и бархатных плащах. У каждого маленький фонарик со свечой внутри...

Что и говорить, это был прекрасный план, но он начал разваливаться с самого начала, как карточный домик.

Во-первых, вы уже знаете, что у Нулика не было никакого «но», зато у него была мама. И время встречи как-то само собой передвинулось с двенадцати ночи на восемь вечера. Не лучше получилось и с плащами. Вместо того чтобы явиться в бархатных, ребята пришли в непромокаемых. А уж о фонариках и говорить нечего: взамен трёх оказался одинединственный, да и то электрический.

Нулик перенёс это разочарование довольно стойко и был вознаграждён по заслугам, когда наступил черёд выбирать название отряда.

Предложений было много: «Тайна Чёрной Маски», «Рыцари зелёного стручка», «Охотники за потерянным лицом»...

Но Нулику все они не нравились. Он предложил свою: «Раскрыватели великих тайн». К большой его радости, на том и остановились. Для удобства решили называть я сокращённо — отряд РВТ.

Теперь можно было приступить к самому главному.

Нулик достал из кармана талисман и тяжело вздохнул. Ему очень не хотелось с ним расставаться. Но уговор дороже денег! И вот уже стручок у Олега. Тот нажимает больвим пальцем на бледно-зелёный шов, стручок лопается...

- Смотрите, ребята, здесь какая-то бумажка!
- А где же горошины?
- Да-да, где горошины? суетится Нулик.
- Постой, сейчас не до горошин. Сперва посмотрим, что в бумажке.— Сева торопливо разворачивает свёрнутый в трубочку листок.

Вот что там написано:

«Трэялрп вюоп ф нира дфявзоо, жфой Очемл тфпъзб тэим пзрф уфлцэ йц, идшйн ршднишорм ож уп едж, ож уп шкьехж дхесыэфь, рхасеэфф пчбфбрб а рфбщяем, б Очемл гкъчшм нпж рхасеэфф усжп,

шфп по ршднишорм; ртштн едж дхесыэфь а рфуфяом, б рцнгльйжя фрит гйшйс? Тшязжфл».

- Ничего не понимаю. Чепуха какая-то.
- Может быть, незнакомый язык? предположила Таня.
- Но буквы-то русские!
- Ну и что ж! В Болгарии тоже пишут русскими буквами.
- Не только в Болгарии, но и в Югославии, и в Азербайджане, и на Украине...

Сева досадливо отмахнулся:

- Я всё равно, кроме русского, никакого не знаю.

Олег взял у него записку и внимательно перечитал.

- Постойте-ка, сказал он, в любом языке слова состоят из гласных, и согласных букв. А здесь попадаются из одних согласных. Например, «пчбфбрб». Такого и не выговоришь. А в этом слове хоть и есть гласная, но её всё равно что нет: «тшязжфл».
 - Ой, засмеялся Нулик, у меня язык слился!
 - По-моему, говорить на таком языке невозможно! сказала Таня.
- A на нём никто и не говорит.— Олег загадочно улыбнулся.— Такого языка вообще нет.
 - Что же это? Таня указала на записку.
 - А это шифрованное письмо.
 - Ух ты! выдохнул Сева. Ну и голова у тебя!
- Погоди радоваться,— остановила его Таня.— Ведь письмо надо ещё расшифровать.
 - Легко сказать. А ключ к шифру? Где его возьмёшь?

Ребята задумались.

Всё началось так удачно - и на тебе!

Особенно огорчился Сева. В мечтах он уже видел себя прославленным сыщиком, раскрывшим тайну Чёрной Маски. И вот всё рухнуло. Даже знаменитая ищейка — Пончик не мог ему ничем помочь.

Кстати, где он?

- Пончик, Пончик, сюда!

Пончик подбежал, добродушно виляя хвостом. В зубах у него белела какая-то бумажка. Уж не новое ли сообщение от Чёрной Маски? Но нет, это всего-навсего телеграмма Нулика, которую Сева обронил по цороге. Теперь он в сердцах скомкал её и отшвырнул в сторону.

Олег поднял и бережно расправил смятый листок.

- Слушайте, сказал он немного погодя, какое слово стоит обычно в конце телеграммы?
 - Нулик! обрадовался малыш.
 - Это в твоей телеграмме, а в любой другой?
 - Конечно, подпись, сказала Таня.
 - Так, может, и эта записка кончается подписью?
 - Хоть бы и так. Мы-то всё равно не знаем, чья она.
 - Зато мы знаем, что в имени семь букв: «Тшязжфл».
 - Кто же мог подписать записку?
 - Я знаю! догадался Нулик. Маска!
 - Не годится. В слове «маска» всего пять букв.
 - Не маска, так стручок! предположила Таня.
 - Подходяще. В этом слове как раз семь букв.

Олег вынул карандаш и написал на обороте телеграфного бланка шифрованную подпись, а под ней слово «стручок»:

Т Ш Я З Ж Ф Л С Т Р У Ч О К

— Вот здорово! Значит, теперь мы знаем целых семь букв из этого шифра: Т — это С. Ш — это Т. Я — Р...

Ребята принялись подставлять буквы в слова, обозначая неразгаданные точками. Вот что у них получилось:

«С.. рк.. оор.у.., чо.. ...к со..у. с... .у.о .ок.. .., .т.. т...т.. .ч ...ч, .ч .. т...чо.,о. ...о. ...о. ...о. ...к ...т. ..чоо ...ч., то. .. .т..т..; .стс. ..чо. . .о.ор.,к..чр о..с ..т..? Стручок».

- Да, протянул Сева, маловато.
- Нелепость какая-то,— заметила Таня.— Что это за слово, которое кончается двумя «о»?
 - Мороженоо! закричал Нулик.
- Во-первых, в этом слове девять букв, а в зашифрованном восемь; а потом, такого слова нет.
 - Как это нет, если я его ел? возмутился Нулик.
 - Может, и ел, только не мороженоо, а мороженое.

- А вот и ещё! Знаете вы слово, которое кончается на «чр»? спросил Сева.
 - Нет такого слова.
 - Значит, подпись не та. Не стручок.

Олег задумался.

- Подпись-то, может, и та, да шифр другой.
- Что в лоб, что по лбу! вздохнул Сева. Тайны стручка нам всё равно не разгадать.

погоня

Смеркалось.

В Арабелле начали зажигаться огни.

Ребята сидели на обочине шоссе, ведущего к римским развалинам, и уныло глядели на пустой стручок.

Неожиданно поднявшийся ветер подхватил его и погнал вдоль дороги.

— Держи! Держи! — закричали все и бросились вдогонку.

Куда там!

Стручок нёсся с такой быстротой, что поймать его было невозможно.

Он словно дразнил своих преследователей: остановится, подпустит по-ближе, а потом возьмёт да и ускользнёт из-под самого носа.

Тем временем совсем стемнело, а отважные раскрыватели великих тайн всё ещё бежали за неуловимым талисманом. Впопыхах никто из них не удивился, что теперь стручок светится изчутри зеленоватым светом.

Но вот он сделал крутой поворот и остановился у большого камня. Это была та самая пещера, где Нулик встретил Чёрную Маску. К ней-то и подбежали измученные путещественники.

На этот раз стручок и не думал удирать. Он плавно покачивался з воздухе над входом в подземелье, легко уклоняясь от ловивших его рук.

И тут Нулик не выдержал.

— Послушайте, — сердито закричал он стручку, — это не по-товарицески! Чего вы от нас хотите?

И как бы в ответ на его слова, стручок сделал круг над головами

изумлённых зрителей и... скрылся в подземелье. Следом за ним с яростным лаем кинулся Пончик.

— Пончик, назад! — изо всех сил закричал Сева.

Но не тут-то было! Лай знаменитой ищейки, отражённый сводами подземелья, звучал всё глуше и глуше и наконец затих совсем.

- Что ты наделал? набросился Сева на Нулика.— Нашёл на кого кричать! Это же волшебный стручок!
- А ведь Нулик прав,— заступился Олег.— Он спросил у стручка, чего тот от нас хочет.
 - А стручок обиделся и ушёл.
 - И вовсе он не обиделся, а указал, что нам делать.

Таня посмотрела на Олега круглыми, испуганными глазами.

- Как? Неужели мы должны спуститься в подземелье?
- Конечно, если хотим раскрыть тайну Чёрной Маски.

Сева хлопнул себя по лбу. Он всегда так делает, когда что-нибудь вспомнит или придумает.

- **К**акой же я болван! Ищейка идёт по следу, а хозяин стоит и раздумывает!
 - Ну как, пошли? спросил Олег и посмотрел на Таню.

Она немного помедлила, а потом решительно тряхнула головой:

— Пошли!

И тут раздался громкий отчаянный плач. Это плакал Нулик. Испуганные ребята бросились к нему: в чём дело? Он ушибся? Обиделся? Боится идти в подземелье?

-- Нет. нет! — твердил малыш, захлёбываясь и размазывая слёзы.

Таня достала носовой плагок и вытерла ему нос и глаза. Она вовремя вспомнила о маме-Восьмёрке и сразу всё поняла.

- Ничего не поделаешь, надо тебе отправляться домой.
- Не хочу, не хочу! ещё пуще заревел Нулик.
- Не плачь! увещевала Таня. Мы вернёмся и всё тебе расскажем.
- Да-а-а,— рыдал безутешный Нулик.— $\mathbf X$ до тех пор от любопытства умру!
- Не умрёшь, сказал Олег, мы тебе с дороги будем посылать письма.
 - Подро-о-обные?
 - Очень подробные.

- A как же тайна? Вы разве забыли, что письма у нас касаются всех?
- Не волнуйся, письма ты будешь получать прямо в руки,— пообещал Сева.
 - Это как же? Нулик заинтересованно приоткрыл один глаз.
 - Тебе их будет приносить Пончик.

Слёзы у Нулика сразу высохли.

— Пончик, Пончик, почтальончик! — в восторге запел он, но тут же спохватился: — Идите, идите скорее, а то вы его не догоните.

Ребята простились со своим маленьким товарищем и скрылись в пещере.

Теперь, когда Нулик остался один, ему снова стало грустно. Он постоял ещё немного, вздохнул и побежал домой.

ПЕРЕХОД

(Олег — Нулику)

Дорогой Нулик! Как видищь, слово своё мы держим. Только писать решили по очереди. Начали было сообща, но чуть не перессорились. Ведь нам ещё никогда не случалось писать письма вместе. Поэтому уговорились писать врозь. Но тут мы снова заспорили, кому писать первым. Бросили жребий. Вышло: начинать мне.

Что ж, начинать, так сначала.

Подземелье было узкое, длинное. Сперва мы освещали путь фонариком, но он вскоре погас: Сева забыл переменить батарейку. Ничего не поделаешь, с каждым может случиться...

По правде говоря, все мы порядком струхнули. Пришлось пробираться на ощупь, в полной темноте.

Сколько это продолжалось — не знаю. По-моему, целую вечность. Представляешь себе, как мы обрадовались, когда далеко впереди блеснул яркий дневной свет!

А через минуту поднялся ужасный ураган. Теперь мы уже не шли, а бежали. Нас прямо-таки гнало вперёд. Казалось, мы мчимся внутри огромной трубы. А у входа в неё стоит великан — такой, как в сказке «Мальчик с пальчик», помнишь? — и изо всех сил дует нам в спины.

Я слышал, что так испытывают самолёты. Самолёт укрепляют в гигантской трубе. А сквозь трубу пропускают сильную струю воздуха. Если машина не разваливается, то и в полёте с ней ничего не случится.

Мы, во всяком случае, испытание выдержали: нас благополучно

выдуло наружу. Сам понимаешь, как все обрадовались, когда очутились наверху. Сперва глаза наши ничего не различали и только щурились от утреннего солнца. Но потом...

Не хочется тебя разочаровывать, но потом они тоже ничего особенного не увидели. Мы даже подумали, что в темноте незаметно перепутали направление и вернулись обратно в Карликанию. Перед нами была дорога, очень похожая на ту, что ведёт из Арабеллы к подземелью.

Но тут Сева (ты ведь знаешь, как он любит читать вывески!) задрал голову и прочитал:

Тогда и мы с Таней увидали эту странную надпись. Громадные разноцветные буквы выгнулись радугой прямо в воздухе, приглашая в какую-то непонятную Аль-Джебру. Что за Аль-Джебра? Город она? Или целая страна? И как мы пойдём туда без волшебного талисмана?

И досталось же ему, бедняге! Не очень-то вежливо мы о нём говорили. И зря: всё это время стручок преспокойно лежал у меня в кармане. До чего ж я обрадовался, когда нашупал его там вместе с шифрованной запиской!

Теперь можно бы подумать о Чёрной Маске и начать поиски. Но где Пончик? Мы долго звали его, обшарили все кусты — напрасно. Как сквозь землю провалился! Сева и впрямь уверял, что Пончик остался в подземелье, и чуть не уговорил нас идти обратно.

Но только мы повернули, стручок в моём кармане беспокойно заёрзал, а когда я попытался его успокоить, уколол мне ладонь острым хвостиком. Похоже, что предложение Севы ему не понравилось и он не прочь снова удрать. Как тут быть?

Посовещавщись, двинулись дальше. И правильно сделали. Потому что стручок сейчас же услокоился. Он будто знал, что не пройдёт и пяти минут, как Пончик вынырнет из какого-то овражка и бросится нас облизывать.

Как видишь. Нулик, тебе беспокоиться нечего. Сейчас твой почтальон помчится выполнять своё первое поручение. А пока — до свидания. Все тебе кланяются.

Олег.

ОБЖОРЫ

(Сева — Нулику)

Привет, Нулик! Ты, конечно, ждёшь, что я тебе сразу расскажу про Чёрную Маску. Но мы пока о ней ничего не узнали. Как говорится, никаких следов не обнаружено.

Вообще, тайнами здесь и не пахнет. Оказывается, Карликания и Аль-Джебра — дружественные государства.

Удивляюсь, как ты этого не знал? Тут я срисовал для тебя один документ. Такие в Аль-Джебре висят чуть ли не на каждом столбе.

Вот, полюбуйся:

ВЕЛИКИЙ ДОГОВОР О ВЕЧНОЙ ДРУЖБЕ И СОТРУДНИЧЕСТВЕ

МЕЖДУ ДВУМЯ МОГУЩЕСТВЕННЫМИ ГОСУДАРСТВАМИ КАРЛИКАНИЕЙ И АЛЬ-ДЖЕБРОЙ.

А что там дальше, я списывать не стал. На это надо весь день потратить. Я бы и недели не пожалел, если бы всё это имело хоть какое-нибудь отношение к Чёрной Маске. Но, скажи на милость, при чём тут Чёрная Маска?

На каждом шагу натыкаешься на карликан: разгуливают себе почём зря целыми пачками. Многие здесь и живут.

Только что мы побывали в одном карликанском посёлке со смешным названием — Обжоры. Таня вспомнила, что у нас есть город Ижоры. Я не поверил. Тогда она прочитала стихотворение Пушкина «Подъезжая под Ижоры». То есть не всё стихотворение, а только первые четыре строчки. Но и это, по-моему, лишнее: мы-то ведь попали не в Ижоры, а в Обжоры. Так что нечего хвастать своей образованностью.

В Обжорах и впрямь живут страшные лакомки: все они без конца что-то жуют.

В посёлке только одна улица, но каждая её сторона имеет своё название: «Обжоры среднеарифметические» и «Обжоры среднегеометрические».

Сначала я не обратил на это внимания. Но оказалось, что между жителями двух сторон большая разница, хоть и те и другие одинаково зазывали нас в гости.

Ну, мы порядком проголодались и отказываться не стали.

Пошли сперва к обжорам среднеарифметическим.

И здорово прогадали.

Ничем, кроме разговоров, нас не угостили. Под конец им, правда, неудобно стало, и они рассказали, в чём дело.

Все жители у них, ясное дело, работают. Кто лучше, кто хуже, кто больше наработает, кто меньше. Но они на это не смотрят: складывают всё вместе, а потом делят на всех поровну. У одного, например, на грядке выросло четыре килограмма огурцов, а у другого — девять. Сумма этих чисел равна тринадцати. Тринадцать делят на два. Вот каждый и получает по шести с половиной килограммов огурцов. Конечно, обжор-то не два, а гораздо больше. Но сколько бы их ни было, они складывают всё, что наработали, сумму делят на число работников, и каждый съедает свою долю до крошки. Где уж тут гостей кормить! Могли бы, правда, оставить кое-что про запас, так нет! На то они и обжоры.

После такого приёма не очень-то хотелось идти к обжорам среднегеометрическим. Но мы всё-таки пошли, и на этот раз нас накормили на славу!

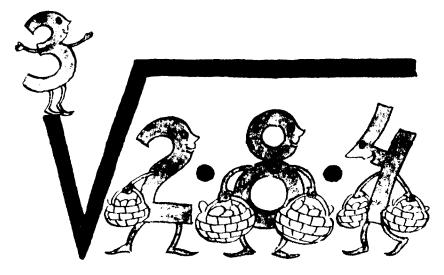
Мы никак не могли понять, в чём дело.

- Может быть, спрашиваем, у вас делят не поровну?
- Нет, говорят, тоже поровну.
- Так, может быть, спрашиваем, вы не обжоры?
- Нет, -- говорят, -- обжоры.
- Откуда же у вас такие запасы?

Тут они нам и объяснили. Дело в том, что собранные продукты они не складывают, а перемножают. То есть не продукты, конечно, а количество их.

Один, скажем, снял с грядки четыре килограмма огурцов, а другой опять-таки девять:

Ты небось думаешь, что тридцать шесть надо разделить на два? А вот и нет. Обжоры среднегеометрические и тут поступают по-своему. Они не делят, а извлекают из полученного произведения корень. Да, да, не удивляйся: у чисел есть корни, и их можно извлекать. Об этом нам ещё в прошлый раз рассказала Тройка с чемоданчиком на проспекте Действующих Знаков. Эти самые знаки высыпались у неё из чемоданчика прямо на асфальт.


Помножь три на три. Получится девять. Знаешь, что ты сделал? Ты возвёл три во вторую степень. Если же ты хочешь возвести три в третью степень, помножь его само на себя три раза. Получится двадцать семь. Пятая степень трёх будет уже двести сорок три...

Так можно возвести число и в сотую, и в двухсотую, и в какую хочешь степень.

А теперь ответь на такой вопрос: какое число нужно возвести во вторую степень, чтобы получить девять? Разумеется, три. Вот это три и есть корень второй степени из девяти.

Стало быть, извлечение корня — действие, обратное возведению в степень. Совсем как вычитание — действие, обратное сложению, а деление — умножению.

Так вот, из числа тридцать шесть среднегеометрические обжоры извлекают корень квадратный, иначе говоря, корень второй степени. Получается шесть.

Выходит, каждому обжоре досталось по шести килограммов огурцов. Это на полкило меньше, чем получил бы обжора среднеарифметический. Но зато при такой делёжке один килограмм остаётся в запасе: 13—12—1.

Тут мне пришло в голову, что обжор среднегеометрических тоже ведь не двое, а гораздо больше.

- Ну и что ж,— ответили мне,— каждый соберёт своё количество килограммов, мы все эти числа перемножим.
 - И извлечёте корень второй степени? перебил я.
- Что вы, что вы, возмутились обжоры, мы извлечём корень той степени, сколько у нас жителей!

Таня поинтересовалась, как обжоры обозначают такое действие.

Как? Да очень просто: закорючкой, которая похожа на сачок для ловли бабочек и называется радикалом. Только над сачком порхает не бабочка, а число, обозначающее степень корня. И называется оно показателем корня:

$$\sqrt{36} = 6$$
.

Если в посёлке четверо обжор, извлекается корень четвёртой степени:

Ну, а если сто четыре? Тогда и корень будет сто четвёртой степени:

Ты небось хочешь знать, почему это над радикалом не ставится двойка, согда извлекается корень квадратный? Почему, почему... Просто так уж /словились.

Из всего, что мы увидели в Обжорах, мы с Таней поняли, что среднее прифметическое всегда больше среднего геометрического. Но Олег сообразил, что вовсе не всегда. Если бы жители Обжор собирали все до одного одинаковый урожай, среднее геометрическое и среднее арифмечическое тоже были бы совершенно одинаковы. Не веришь? Я тоже начала не поверил. Но Олег доказал.

Допустим, двое собрали по восьми килограммов огурцов. Среднее рифметическое найдётся так:

$$\frac{8+8}{2}$$
 - 8.

А среднее геометрическое так:

$$\sqrt{8\cdot 8} = 8.$$

Веший Олег!

Среднегеометрические обжоры долго нас не отпускали. Да и нам не хотелось расставаться с такими гостеприимными хозяевами. Но стручок в кармане у Олега так разбушевался, что нам пришлось попрощаться.

Все высыпали нас провожать. Каждый тащил на дорогу что под рукой: кто помидоров, кто яблок... Но вкуснее всего были пирожки. Жаль, ты не попробовал! Всем нам досталось по-разному. Олегу — четыре, Тане — два, а мне — один. Я, понятно, плакать не стал. Но ребята сами решили разделить пирожки поровну.

Сначала попробовали делить, как обжоры среднеарифметические. Сложили число пирожков:

$$4+2+1=7$$
.

А семь разделили на три. Получилось по два и одной трети пирожка на брата. Не очень-то удобно. Во-первых, у нас нет ножа. Да если б и был, всё равно разделить пирожок на три равные доли очень трудно. И потом, как же Пончик? Он хоть и маленький, но ведь и ему есть надо!

Тогда решили вычислить среднее геометрическое.

Сначала число пирожков перемножили:

$$4 \cdot 2 \cdot 1 = 8$$
.

А потом из восьми извлекли корень третьей степени:

$$\sqrt[3]{8} = 2.$$

Вот и вышло по два пирожка на душу населения. А один остался для Пончика.

В общем, неплохо провели время. Но мне всё равно досадно. Ведь не из-за пирожков мы сюда пришли, а из-за Чёрной Маски! А о ней пока ни гугу. В следующий раз меня в это бешеное подземелье никакими пирожками не заманишь. Будь здоров.

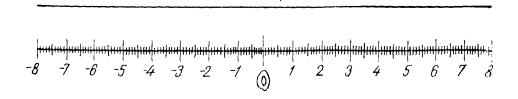
Cesu.

воздушная монорельсовая дорога

(Таня — Нулику)

Вот, Нулик, наконец наступила и моя очередь писать. Дожидаться пришлось долго, зато есть о чём порассказать. Понимаешь, мы в первый раз побывали на воздушной монорельсовой дороге.

Чтобы тебе зря не ломать голову, скажу сразу: монорельсовая — значит, с одним рельсом. «Монос» — слово греческое и означает «один».


Вообще-то надземные дороги теперь строят всюду. Но эта совсем. совсем особенная. Не знаю только, сумею ли я описать всё как следует. На всякий случай наберись терпения и читай внимательно.

Представь себе, что твоя мама выстирала бельё и хочет его развесить. И вот она берёт верёвку и натягивает туго-натуго прямо в воздухе. Верёвка такая длинная, что концов её не видно. А вместо белья на ней висят маленькие разноцветные вагончики. Бельё прикрепляют к верёвке зажимом, а у вагончиков имеется для этого специальное колёсико на крыше.

Конечно, мама не смогла бы натянуть такую длинную верёвку. Тем более что это вовсе не верёвка, а стальной рельс, и концы его ухолят неведомо куда.

Вдоль рельса, немного пониже, тянется такая же бесконечная платформа, и на ней, совсем как на линейке, на равном расстоянии друг от друга расположены числа по порядку: один, два, три, четыре, пять и так далее.

К каждому числу с земли ведёт узкий эскалатор. Разница в том, что числа на линейке откладываются только вправо от нуля, а здесь и влаво. А между двумя единицами светится большой нуль, точь-в-точь как букыз «М» над станциями метро. Это Нулевая станция.

Когда мы подошли к ней, было ещё довольно рано.

Мы поднялись на пустынную платформу и стали прогуливаться вдоль невысокой ограды, которая состоит из тоненьких палочек. От нечего делать начали их считать. На том месте, где находится число, палочка чуть повыше, вслед за ней — девять палочек пониже. Против следующего числа — снова палочка повыше. И так без конца.

Мы отошли уже довольно далеко вправо от Нулевой станции, как вдруг позади послышался детский плач. Обернулись: возле эскалатора, обозначенного числом 2, сидели две маленькие Двоечки. На них были прехорошенькие ситцевые платьица в горошек (обязательно сошью себе такое!), и обе они горько плакали.

Мы подошли и спросили, что у них стряслось.

- Мама задала нам задачу,— сказала одна из них,— а она не решается!
 - Не решается! повторила другая.

И обе снова заплакали.

Прелестные малышки! Мне так жалко их стало! Я спросила, какая такая задача. Оказалось, она и впрямь чудная: вычесть из двух три. Мы лодумали, что малыши перепутали и вычесть надо из трёх два.

- Нет, нет,— закричала первая Двоечка,— из трёх два это мы умеем.
 - Это мы умеем, сейчас же отозвалась другая.

Мы очень рассердились на маму, которая мучает детей такими ужасными задачами. Но мама никого и не думала мучить. Она просто отлучилась куда-то ненадолго и вскоре появилась на платформе.

Это была симпатичная Двойка. Она приветливо поздоровалась, и Сева (ох уж этот Сева!) с места в карьер попросил её рассказать, как устроена взздушная монорельсовая дорога. Я незаметно дёрнула его за куртку—неудобно всё-таки! Но Двойка охотно согласилась стать нашим экскурсоводом.

— Ведь устройство этой дороги,— пояснила она,— имеет прямое отношение к тем правилам, которые я собираюсь растолковать моим близняшкам.

Вместе с ней мы снова подошли к Нулевой станции и увидели большой щит с множеством кнопок и клавиш. Как это мы его раньше не заметили?

Кроме кнопок, там были ещё микрофоны.

Хочешь знать, для чего всё это нужно? Сейчас объясню.

Я ведь уже говорила, что эта дорога особенная. Здесь нет ни расписаний, ни запасных путей, ни депо. Никаких кондукторов, диспетчеров, кассиров, проводников... даже поездов. Каждый пассажир может в любое время вызвать вагончик и ехать куда вздумается. Станции здесь не имеют названий. Они обозначаются числами. Захочешь поехать на станцию номер 2782 — нажимаещь кнопку «вызов» и говоришь в микрофон нужное число. И тут же, как Сивка-Бурка вещий Каурка, на Нулевой станции появляется совершенно бесцветный прозрачный вагончик, такой про-

зрачный, что сразу его и не заметишь. Садишься в него и через несколько секунд попадёшь туда, куда нужно.

— Очень хорошо! — обрадовался Сева. — Вот я вызову вагончик и поеду на станцию... ну, скажем, 75!

Он нажал кнопку и назвал число. На Нулевой станции сейчас же появился прозрачный вагончик. Сева хотел в него войти, но мама-Двойка живо оттащила его назад.

- Что вы делаете? закричала она. Разве вам туда можно?
- А что? Это же совсем недалеко! Станция 75.
- Да, 75, но не вправо, а влево от нуля! Вы случайно задели рычаг, переключающий направление.

Она указала на большой минус, загоревшийся в воздухе слева от светящегося нуля.

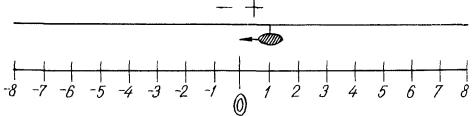
- Знаете вы, что это такое?
- Минус!
- -- Не просто минус, а светофор, открывающий путь к отрицательным числам. И вам туда ни в коем случае нельзя.
 - Но почему? огорчились мы.
- Да потому, что свободный проезд влево от нуля разрешён только нам, карликанам.
 - Значит, мы туда никогда не попадём?
- Отчего же, улыбнулась Двойка, только для этого вам понадобится другой транспорт: воображение.

Все сразу приуныли, но мама-Двойка заметила, что воображаемое путешествие иной раз ничуть не хуже настоящего. Нашего Севу $_{\rm ЭТО}$, конечно, не устраивало.

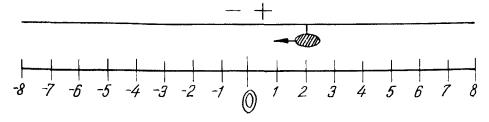
- На что они нужны, эти странные числа? Ведь с ними и не пообщаещься по-человечески!
- Что вы такое говорите? возмутилась мама-Двойка. Да ещё при маленьких! Дети, не слушайте!

Двоечки послушно отвернулись.

— Отрицательные числа очень нужны,— продолжала мама-Двойка,— и я это сейчас докажу. Дети, можете повернуться.


Двоечки не заставили себя упрашивать.

- Вам было задано: вычесть из двух три. Решили вы мою задачу?
- Мы решали, но она не решается! сказала первая.
- Не решается! подтвердила вторая.
- Тогда я покажу вам, как это делается. Сейчас,— добавила мама-Двойка, обращаясь к нам,— вы увидите, что на нашей дороге не только ездят, но и учатся производить разные действия с числами.


Она прикоснулась к кнопке и негромко сказала в микрофон:

— Два!

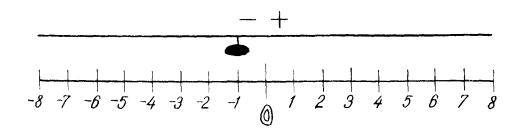
Справа от Нулевой станции зажёгся знак плюс и против числа 2 на монорельсе появился вагончик, на этот раз не прозрачный и не бесцветный, а ярко-красный.

— Начнём вычитать из двух три. Сперва вычтем один. Двойка нажала кнопку, и вагончик передвинулся влево, на станцию 1.

— Теперь вычтем ещё один.

Раз — и вагончик исчез.

- Вот ничего и не осталось! позлорадствовал Сева.
- Как это не осталось! возразила Двойка. Посмотрите получше.


И мы увидели, что на Нулевой станции вагончик есть. Только из красного он превратился в бесцветный и прозрачный. Оттого мы его и не заметили.

Но Севу не так-то легко смутить.

- Ну и что ж,— сказал он,— пусть вагончик на нуле есть, но ведь нуль это ничто, пустое место!
 - Тут-то вы и не правы! улыбнулась Двойка. Нуль тоже число.
- Хоть бы и так, горячился Сева, но он всё-таки меньше единицы. Как же из него эту самую единицу вычесть?
 - Сейчас увидите.

Двойка нажала ещё какие-то кнопки.

Слева от светящегося нуля вспыхнул знак минус. И не успели мы глазом моргнуть, как вагончик очутился слева от Нулевой станции, точно против числа минус единица. Только теперь из бесцветного и прозрачного он уже стал синим.

— Вот вам решение. Два минус три равно минус единице:

$$2-3=-1$$
.

Понятно вам теперь, для чего нужны отрицательные числа?

Сказать по правде, мы ещё ничего не понимали. Просто нам всем понравилось смотреть, как ловко вагончики меняют цвета. Особенно Севе.

— Можно и мне повычитать? — спросил он и, не дожидаясь разрешения, приступил к делу.

Сначала вычел из трёх пять — получил минус два:

$$3-5=-2$$
.

Потом из семи одиннадцать. Получилось минус четыре:

$$7-11=-4$$

Мы с Олегом тоже несколько раз попробовали. И каждый раз слева от нуля загорался знак минус, а красный вагончик, миновав Нулевую станцию, превращался в синий и останавливался против какого-нибудь отрицательного числа.

- Интересно! сказал Олег. Из пяти вычесть три получится два, а из трёх пять тоже два, только со знаком минус. Значит, вычесть из меньшего числа большее это всё равно что вычесть из большего меньшее. Надо только перед разностью поставить знак минус. Очевидно, добавил он, знаки плюс и минус не имеют в этом случае ничего общего со знаками сложения и вычитания.
- Не забегайте вперёд, посоветовала Двойка. А чтобы не было путаницы, советую вам на первых порах ставить знаки положительных и отрицательных чисел не слева от числа, а над ним. Вот так:

$$2^{+} - 3^{+} = 1$$
.

Мама-Двойка хотела продолжать своё объяснение, но в это время Сева чихнул. Раз, другой, третий... Вечно на него что-нибудь нападает некстати — то смех, то насморк. Он полез за носовым платком — из кармана у него выпал зелёный стручок. Все мы сразу помрачнели, потому что вспомнили про Чёрную Маску. Если так пойдёт дальше, ходить ей век заколдованной.

Тут, откуда ни возьмись, со страшным лаем вылетел Пончик. Он за кем-то гнался. Этот кто-то бежал так быстро, что рассмотреть его мы не успели. Пробегая мимо щита, незнакомец нажал кнопку, крикнул

что-то в микрофон и вскочил в вагончик. В окне мелькнуло лицо, наполовину скрытое чёрной маской, и вагончика как не бывало.

Держите! — закричал Сева. — Это он! Это она!

Мы бросились к щиту, чтобы вызвать другой вагончик и догнать беглеца, но в это время стручок взмыл в воздух и стал с такой быстротой кружиться перед нами, что нажать кнопку не было никакой возможности. Мы отмахивались от него, как от назойливой мухи, а он всё кружился, кружился...

— Он не желает, чтобы мы уезжали, -- вздохнул Олег.

Хочешь не хочешь, пришлось подчиниться. Стручок тотчас угомонился, и Сева снова спрятал его в карман. Мама-Двойка отнеслась к этому происшествию совершенно спокойно. Она и не думала спрашивать о причине переполоха, только сказала, ни к кому не обращаясь:

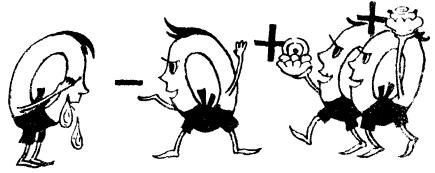
— Всякому овощу своё время!

И ушла, пообещав скоро вернуться и объяснить правила движения на монорельсовой дороге. Так мы и не поняли, о чём это она: то ли о стручке, то ли о Чёрной Маске!

Что было дальше, узнаешь из следующего письма. А пока веди себя прилично: не забывай, что ты теперь не просто Нулик, а действительный член отряда PBT!

Таня.

школа на числовой площади


(Нулик — отряду РВТ)

Здравствуйте, ребята! Пишет вам Нулик. Ваши письма получил. Большое спасибо. Про Чёрную Маску я маме ничего не говорил. Но, по-моему, она кое о чём догадывается. Недавно, например, сказала, что за последнее время мой культурный уровень очень повысился и что меня просто не узнать. Но я думаю, что ещё не очень изменился, потому что Пончик узнаёт меня сразу.

Что у меня вправду переменилось, так это имя. Я уже больше не Нулик-Озорник. Теперь меня зовут Нулик-Профессор. Я открыл на Числовой площади школу для Нуликов. Они почти совсем не шалят, а учатся. Все мои ученики внимательно слушают ваши письма, и я объясняю непонятные места. Каждое письмо мы прочитали по несколь-

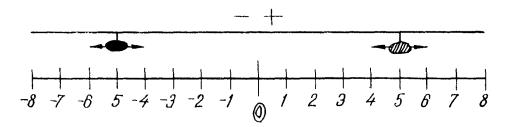
ку раз. Пишите поскорей дальше, а то мне уже нечего объяснять и $прид\ddot{e}_{T-}$ ся ни с того ни с сего объявить каникулы.

Недавно у нас были практические занятия. Нулик-Сластена принёс четырнадцать пирожных. А у нас в школе пятнадцать Нуликов. Одному не хватило. И я сказал, что ему досталось отрицательное пирожное. Он заплакал и сказал: почему это всем положительные, а ему отрицательное? И нам стало его жалко. Тогда я вспомнил про ваших обжор. Решили разделить пирожные по среднеарифметическому способу. Это было очень трудно, но мы всё-таки разделили. Каждому досталось поровну, а вот по скольку — я уже забыл. Хотел спросить у моих учеников да победися потерять свой афторетет.

Ах да! Я очень расстроен. Как это вы упустили Чёрную Маску? Не подумайте, что я хвастаюсь, но со мной бы этого не случилось. Пока до свидания.

Действительный член отряда РВТ Нулик-Профессор.

Совсем забыл спросить: зачем нужны отрицательные числа?



правила движения

Уважаемый Профессор! Тебе пришла в голову отличная мысль— занять своих товарищей полезным делом. Советую только: перед тем как что-нибудь объяснять другим, самому сперва хорошенько в этом разобраться. Вот лучший способ не потерять авторитета. Что же касается афторетета, то потерять его нельзя, потому что такого слова нет.

Если ты послушаешься меня, никому из твоих учеников не придётся есть отрицательные пирожные. Отрицательными бывают только числа. И числа эти очень нужны. Без них многие задачи в Аль-Джебре так бы и остались нерешёнными. Ты это мог понять хотя бы из той задачи, которую мама-Двойка задала своим маленьким дочкам. Задача была простая. Но в Аль-Джебре есть и посложнее. Их здесь называют уравнениями. Мама-Двойка сказала, что нам их пока решать рано. Сперва надо как следует познакомиться с правилами движения на монорельсовой дороге. Как раз о них она сегодня и рассказывала.

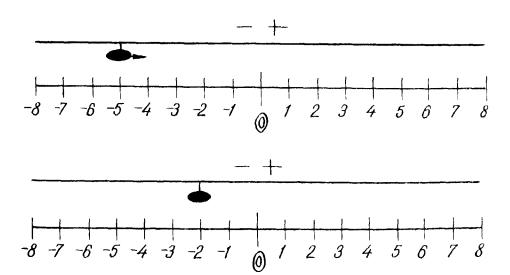
Ты ведь помнишь, что справа от Нулевой станции живут только положительные числа, а слева — отрицательные. Так вот, отрицательные числа, так же, как и положительные, можно складывать, вычитать, умножать и делить. Вагончики движутся там по тем же правилам, что и у положительных чисел, только всегда в противоположном направлении. Уж очень они упрямы, отрицательные числа. Всё у них наоборот!

Вот как мы складывали и вычитали положительные числа:

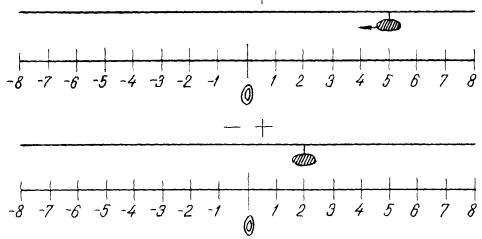
$$5 + 3 = 8;$$

 $5 - 3 = 2.$

Против числа пять появлялся красный вагончик. При сложении он двигался вправо от пяти на станцию 8, а при вычитании — влево $_{61}$ пяти на станцию 2.


С отрицательными числами происходило то же самое, только в обратном направлении:

$$\frac{1}{5} + \frac{1}{3} = \frac{1}{8};$$


При этом против отрицательного числа пять появлялся синий вагончик, при сложении он переезжал влево— на станцию минус 8, а при вычитании вправо— на станцию минус 2.

- Понятно,— сказал Сева.— Но что будет, если одно слагаемое положительное, а другое отрицательное?
- Какое же это имеет значение? пожала плечами Двойка. Правило движения во всех случаях одно и то же. Прибавляем положительное число вагончик движется вправо, прибавляем отрицательное влево. Вот смотрите:

$$\bar{5} + \bar{3} = \bar{2};$$
 $\bar{5} + \bar{3} = \bar{2}.$

- Гм! Сева недоумевающе поднял брови.— Чудно как-то... Пять плюс три равно двум! Что-то я не очень понимаю такое сложение. Может, лучше повычитаем?
- Можно и повычитать,— согласилась мама-Двойка.— Отнимем из минус пяти плюс три:

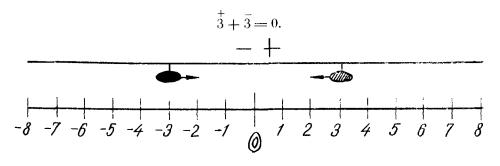
$$\frac{1}{5} - \frac{1}{3}$$

Она нажала кнопку. Слева от нуля на станции минус 5 появился синий вагончик, который сейчас же покатился влево и остановился у станции минус 8.

- Час от часу не легче! ещё больше удивился Сева. Вычитаем из пяти три и получаем восемь! Разве при вычитании числа увеличиваются?
- Не забывайте, что мы вычитали не из пяти, а из минус пяти,— ответила мама-Двойка,— и получили не восемь, а минус восемь! А ведь минус восемь вовсе не больше, а меньше, чем минус пять!
 - Вот те раз! Ничего не понимаю!
- Сейчас поймёте. Чем ближе положительное число к Нулевой станции, тем оно меньше. Но при этом оно всё-таки больше пуля. Так ведь? А числа, расположенные слева от Нулевой станции (то есть отрицательные числа), меньше нуля. И становятся всё меньше и меньше, чем дальше они от Нулевой станции. Ведь у них всё наоборот!

- Что же это, минус миллион меньше, чем минус тысяча?
- Конечно.
- Выходит, минус миллион на столько же меньше нуля, на сколько плюс миллион больше его,— сообразила Таня.
- Молодец! похвалила мама-Двойка. Но так как оба миллиона находятся на одинаковом расстоянии от нуля, принято говорить, что они равны по абсолютным значениям. И записывается это так:

$$|1.0000000| = |1.0000000|$$


— А это что за чёрточки? — поинтересовался Сева.

Двойка насмешливо улыбнулась:

- Что-то вроде загонов, куда посадили числа, чтобы они не подрались.
 - А чего они не поделили?
- Видите ли, положительные и отрицательные числа хорошо знают, какая между ними разница. Они терпеть не могут, когда их приравнивают по абсолютным значениям. Стоит их выпустить из загонов и сложить, как они тут же накинутся друг на друга и взаимоуничтожатся.

Она нажала какие-то кнопки, и на монорельсе появились сразу два вагончика: на станции плюс 3— красный, на станции минус 3— синий. Вагончики двинулись навстречу друг другу. Вот они достигли Нулевой станции и превратились в один бесцветный прозрачный вагончик.

- Чудо! закричал Сева.
- Ну, если и чудо, то самое обыкновенное! засмеялась наша провожатая. Просто к числу три прибавлялась отрицательная тройка, вот красный вагончик и поехал влево. А к числу минус три прибавлялась положительная тройка. И синий вагончик поехал вправо. А так как абсолютные значения этих чисел одинаковы, они взаимоуничножились на Нулевой станции:

Ну, дорогой Профессор, не знаю, как у тебя, а у нас от всех этих премудростей головы вспухли. Хорошо ещё, чуткая мама-Двойка заметила, как мы устали, и предложила нам немного погулять.

Мы очень обрадовались, потому что она обещала повести нас в здешний парк.

На этом кончаю.

Следующее письмо тебе напишет Сева.

Олег.

ЦЕНТРАЛЬНЫЙ ПАРК НАУКИ И ОТДЫХА

(Сева — Нулику)

Здорово, Профессор! Ты, наверное, уже привык, что о Чёрной Маске ни слуху ни духу. Зато других новостей сколько угодно.

До сих пор не могу понять, что за государство такое — Аль-Джебра! Уж очень оно разнообразное. То попадаешь в большой современный город, то в какой-то древний восточный городишко с узкими улочками, где не то что два троллейбуса — два осла не разойдутся! И называется этот городишко Хива.

Когда-то он был здесь столицей, потому что больше тысячи лет назад в нем жил основатель Аль-Джебры Мухамме́д ибн Муса аль-Хорезми́. Не пугайся: имя хоть и длинное, но разобраться можно. Ибн Муса значит сын Мусы, по-нашему — отчество. Аль-Хорезми — читай из Хоре́зма. Хорезм — древнее государство, где находилась эта самая Хива. А в общем — Мухаммед Му́сович Хорезми́ец.

Ну, с Мухаммедом мы всё выяснили. А вот что такое Аль-Джебра? Нам сказали, что это слово арабское и в переводе на русский язык означает «восстановление». Пусть так, но что здесь восстанавливают? На этот вопрос мама-Двойка ответила своей любимой поговоркой: «Всякому овощу своё время». И пояснила, что из слова «Аль-Джебра» вышло название той самой науки, которую проходят у нас в каждой школе: алгебра. Вот те на! Отдохнули! Нигде от науки спасения нет. Даже парк, куда привела нас мама-Двойка, называется Центральным Парком Науки и Отдыха. Я сразу скис. Но оказалось, что не так уж он плох, этот парк. Здесь столько аттракционов, что со всеми за один раз не познакомищься.

В парке полно народу. Кроме карликан, там разгуливают и буквы.

Что-то часто они стали нам встречаться. Некоторых мы уже видели, но попадаются и совсем неизвестные. Мама-Двойка со многими здоровалась и называла по имени: «Здравствуйте, дорогой Пи! Как вы себя чувствуете, уважаемая Оме́га? Давно я тебя не видела, крошка Эпсилон!»

Мы хотели разузнать об этих буквах получше, но мама-Двойка, как на грех, разговорилась с какой-то толстушкой Сигмой. Тут мы увидели павильон с вывеской «Автоматическая справочная». Вот где нам ответят на все вопросы!

Поднялись по широким ступенькам и очутились в большом светлом помещении. Там всюду стоят пластикатные щиты. На каждом щите микрофон и динамик. Подходишь к микрофону, задаёшь вопрос и тут же получаешь ответ. В Аль-Джебре, как и у вас в Карликании, секретов нет. Каждый может слышать, что автомат отвечает соседу.

Рядом с нами стояла какая-то непонятная буковка с маленьким красным зонтиком: *i*. Мы слышали, как она грустно спросила:

- Скажите пожалуйста, найду ли я место в жизни?

Автомат призадумался, а потом ответил:

— И Мнимая Единица на что-нибудь да годится!

Мнимая Единица облегчённо вздохнула и выпорхнула из павильона. Ты что-нибудь понимаешь, Профессор? Мало нам отрицательных единиц, так тут ещё появились мнимые!

Мы решили больше ничего не слушать и приступили к делу. Олег подошёл к микрофону и спросил:

- Скажите, пожалуйста, как нам разгадать тайну Чёрной Маски?
- Нет ничего проще! ответил автомат. Для этого нужно решить одно уравнение.
 - Какое?
 - То, которое вы сами составите.
 - Но как это сделать?
- Прочтите записку, которая была в зелёном стручке.
 - А как её расшифровать?
 - Закусите в кафе «Абракадабра».
 - -- Как туда попасть?
- Для этого надо познакомиться с обычаями нашей страны.

- -- Мы уже познакомились, -- не выдержал я.
- Молодой человек,— вспылил автомат,— вы даже не успели до конца разобраться в правилах движения на монорельсовой дороге!
- Как это не успели? обиделся я.— Мы уже знаем сложение и вычитание положительных и отрицательных чисел.
 - А умножение? А деление? А дробные числа? А мнимые? А...

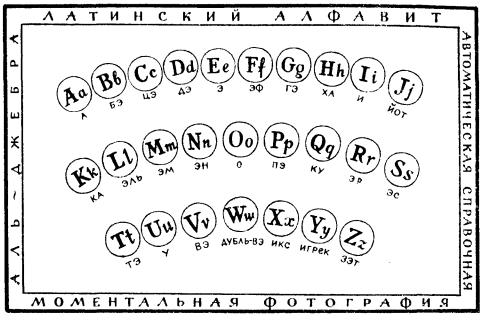
И тут он пошёл говорить такие слова, каких я и не слыхивал. Мы стали переспрацивать. Тогда автомат ещё пуще раскипятился:

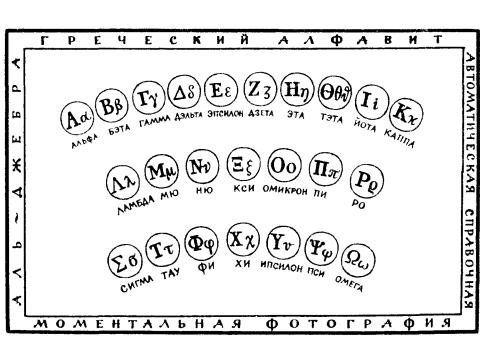
— Вот видите! Вы не понимаете самых обыкновенных вещей. Нет, нам положительно не о чем разговаривать!

И замолчал. Напрасно мы задавали ему всякие вопросы, он и ухом не повёл. Но Таня всё-таки его разжалобила — девчонки это умеют.

— Милый автомат,— сказала она,— не сердитесь, пожалуйста! Мы ведь ещё такие неопытные. Лучше помогите нам!

Автомат нерешительно хмыкнул.


— Так и быть, — проворчал он. — Возьмите с подноса жетон и опустите в щель под динамиком.


Наконец-то! Сейчас мы узнаем тайну зелёного стручка!

Я так разволновался, что никак не мог опустить жетон. И всё зря. Из широкого отверстия в щите выпали две картонки. На них были фотографии тех самых букв, которые мы видели в парке. На каждой фотографии по две буквы. Одна большая, другая маленькая. А внизу—имя. Ну прямо как на ежегодном снимке учеников нашего класса.

 ${\bf Я}$ чуть не заплакал с досады. Но автомат (и как он только всё замечает?) заворчал, что на первый раз хватит и этого и что, пока мы не будем знать каждую букву в лицо и по имени, лучше нам к нему не обращаться.

- Почтенный автомат,— сказал Олег,— мы готовы выучить всё, что угодно, но объясните, пожалуйста, что это за буквы?
- Так бы и спрашивали,— подобрел тот,— от этого я никогда не отказываюсь. На первой картонке вы видите основных жителей Аль-Джебры — двадцать шесть букв латинского алфавита. Этот алфавит употребляегся во многих странах. Ведь он был принят ещё в Древнем Риме, и многие народы пользуются им до наших дней. Поэтому тем из вас, кто изучает какой-нибудь иностранный язык — английский, немецкий, французский,— эти буквы уже знакомы. Зато вряд ли вы знаете буквы, изображённые на другой картонке. Это двадцать четыре представителя

греческого алфавита. В Аль-Джебре они встречаются не так уж часто, но знакомство с ними вам ещё пригодится.

Ну, мы рассмотрели и те и эти фотографии. Латинские буквы ничего себе, а греческие мне не особенно понравились. По-моему, они ужасные кривляки. Взять хотя бы Кси: прямо змея!

А потом за нами пришла мама-Двойка. Мы простились с автоматом и вернулись на монорельсовую дорогу, чтобы раз и навсегда разделаться с этими трудными правилами воздушного движения.

Напоследок я успел опустить в щель ещё один жетон и снова получил две картонки с фотографиями. Посылаю их тебе: пригодятся для следующих уроков.

А пока — кси-пси! Привет.

Сева.

нулики подрались

(Нулик — отряду РВТ)

Здравствуйте, ребята! Не знаю, может, вы и правы, что отрицательных пирожных не бывает, зато отрицательные Нулики встречаются. Сегодня утром один такой отрицательный Нулик напал на другого, который до сих пор считался очень положительным. Ну и драка была! Ещё немного — и они бы взаимоуничтожились. Я уж думал, не рассадить ли их по разным загонам — ну, как эти самые... абсолютные значения. Но тут их растащили другие Нулики. Из этого я сделал вывод, что положительный Нулик только прикидывался положительным. На деле он самый что ни на есть отрицательный! И я им обоим поставил по поведению жирный минус.

В нашей школе занятия продолжаются. Греческие буквы трудные. Мы их пока отложили. Зато латинский алфавит всем понравился. Только как туда попали русские буквы? И почему некоторые из них называются по-другому: Р — Пэ, В — Бэ? А вот «О» молодчина! И там и тут пишется одинаково. Это потому, что оно похоже на меня.

Если снова побываете у автомата, непременно спросите: куда ведёт воздушная монорельсовая дорога? Не к тем ли Великанам, которых вызывают, когда мы безобразничаем? И где эти Великаны живут? Справа или слева от Нулевой станции?

Нулик-Профессор

В ТЕСНОТЕ, ДА НЕ В ОБИДЕ

(Таня — Нулику)

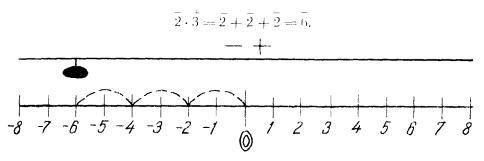
Бедный, бедный Нулик! Ну и каша у тебя в голове! Сначала изобрёл какие-то отрицательные пирожные, потом — положительных и отрицательных Нуликов!

Запомни раз и навсегда: нуль — единственное число, которое не бывает ни положительным, ни отрицательным. Это что-то вроде пограничника, который стоит на рубеже между положительными и отрицательными числами.

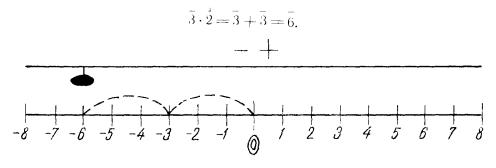
Конечно, в твоей школе тоже есть положительные и отрицательные Нулики. Но это ведь совсем другое дело. Просто одни из них хорощие, а другие — плохие.

Второй твой вопрос — о Великанах — очень интересный. Но ответил на него не автомат, а мама-Двойка. Она говорит, что ты любознательный ребёнок.

Оба конца монорельсовой дороги и вправду ведут в Бесконечность. А в Бесконечности, понятно, живут числа — Великаны. Бесконечность тоже бывает положительная и отрицательная. Только там свои, особые законы. Положительные и отрицательные Великаны прекрасно уживаются. Но как это им удаётся, мы не узнали. Это как раз один из тех вопросов, на которые мама-Двойка отвечает: «Всякому овощу своё время».


А теперь танцуй! Мы научились умножвть и делить отрицательные числа.

Ты ведь знаещь, что умножение можно рассматривать как сложение.

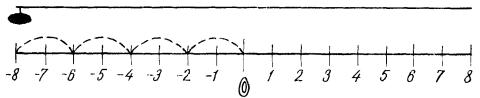

 $\overset{+}{2} \cdot \overset{+}{3} = \overset{+}{2} + \overset{+}{2} + \overset{+}{2} = \overset{+}{6}.$

Умножить два на три — всё равно что сложить три двойки:

То же самое происходит, когда отрицательное число умножают на положительное. Разве умножить минус два на плюс три — это не то же самое, что сложить три отрицательные двойки? А так как при сложении отрицательных чисел вагончики двигаются влево от Нулевой станции, то и произведение будет отрицательное — минус шесть:

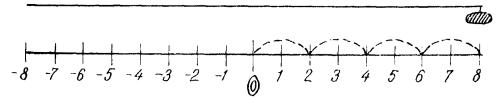
- Ну, а если умножить минус три на плюс два? спросил Сева. Тогда что?
- Какая же разница? сказала мама-Двойка. Как было минус шесть, так и останется минус шесть. Вот смотрите:

- Ясно! кивнул Сева. Пусть себе множители меняются знаками сколько хотят, произведение всё равно остаётся то же. Оно всегда будет отрицательным, если мы перемножаем два числа с разными знаками. Сева важно посмотрел на всех. Он был страшно собой доволен. Все поняли? Тогда поехали дальше. Выясним теперь, что получится, если оба множителя отрицательные?
- Ну что ж, выясняйте, сказала мама-Двойка, мы с удовольствием вас послушаем.


- Вы меня не поняли, смутился Сева. Это я вас собирался послушать.
 - Ах вот оно что! Тогда другое дело.

Всем нам стало неловко за Севу. Мы подумали, что мама-Двойка обиделась, но она посмотрела на нас смеющимися глазами и продолжала:

— Вы хотели знать, что происходит при перемножении двух отрицательных чисел? Нетрудно догадаться. Чтобы умножить любое число на положительное, надо отложить его на монорельсе в гу же сторону от Нулевой станции, с какой оно находится. Это мы только что видели.


Когда же мы умножаем любое число на отрицательное, всё происходит наоборот. Вы ведь знаете, какие упрямцы эти отрицательные числа! Поэтому умножаемое откладывается не с той стороны, где оно находится, а по другую сторону от нуля:

$$\begin{array}{ccc}
\bar{2} \cdot \bar{4} &= \bar{8}. \\
- & + \end{array}$$

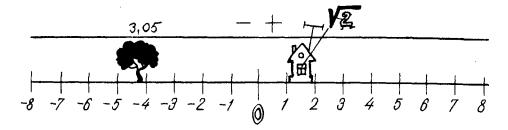
Теперь нетрудно понять, что получится при умножении отрицательного числа на отрицательное; в этом случае умножаемое надо откладывать вправо от нуля:

$$\overline{2} \cdot \overline{4} = \overline{8}.$$

— Вот те раз! — Брови у Севы стали прямо как два вопросительных знака. — Отрицательное число, умноженное на отрицательное, становится положительным?! Чудеса!

- Такие чудеса случаются у нас в Аль-Джебре на каждом шагу,— ответила мама-Двойка.
- Ну, если так, расскажите нам поскорее про деление. Там, наверное, будут какие-нибудь новые чудеса?
- Ничуть не бывало. Деление действие, обратное умножению. Стало быть, и правила знаков не меняются:

$$\bar{6}: \dot{\bar{3}} = \bar{2};$$


$$\bar{6}:\bar{3}=\hat{2}.$$

Мы почувствовали себя ужасно образованными. А пуще всех — Сева.

- Теперь нам всё нипочём! заявил он. Мы знаем эту дорогу как свои пять пальцев!
- Ошибаетесь, сказала мама-Двойка, вы познакомились только с целыми числами.
 - А разве здесь есть и другие?
 - А как же!
- Вы, наверное, подразумеваете дробные числа,— предположил Олег.
- Не только. Дробные числа это те, что расположены между целыми числами. Мама-Двойка указала на палочки ограды, которые мы недавно пересчитывали. Здесь расстояние между двумя целыми числами разделено на десять равных частей. Каждая из них составляет одну десятую единицы. Но ведь этих делений может быть и гораздо больше. Мысленно мы можем разделить это расстояние на любое число частей.
- Значит, вагончик может останавливаться не только у целого числа, но и у любой дроби, то есть между станциями?
 - Ну конечно! В любом месте, по первому требованию!

Мы тут же вызвали вагончик и заставили его остановиться сперва против числа 2.5 а потом против 3.44... Этого нам показалось мало. Мы назвали число минус пять и четыре миллионных: $-5.000\,004$, и красный вагончик, миновав Нулевую станцию, превратился в синий и остановился на волосок дальше станции минус 5.

— Выходит,— неуверенно сказал Сева,— вся эта бесконечная дорога сплошь заполнена числами?

- Именно сплошь! ответила мама-Двойка. Можно сказать, непрерывно. У нас очень большая плотность населения. На всём пути не сыскать ни одной точечки, не заселённой каким-нибудь числом. Есть среди этих чисел и такие, величину которых мы никогда не можем вычислить точно.
 - Что ж это за число, которое нельзя вычислить?
- Ну хотя бы корень квадратный из двух: $\sqrt{2}$. Попробуйте найти число, которое при возведении в квадрат давало бы два.

Сева наморщил лоб, подумал немного, потом махнул рукой и засмеялся:

- И много таких чисел?
- Бесконечное множество. Их называют иррациональными в отличие от рациональных. Латинское слово «рацио» значит «разум». Следовательно, рациональные числа это разумные числа, то есть числа, постижимые разумом.

Сева прямо задохнулся от смеха:

- Ой, умираю! Рациональные значит разумные. А иррациональные безумные, что ли?
- Ну зачем же так! обиделась мама-Двойка. Просто они не поддаются точному вычислению. Поэтому их долгое время не признавали числами. Но с тех пор как у нас появилась воздушная монорельсовая дорога (или числовая прямая так её называют по-другому), иррациональные числа после долгих скитаний получили, наконец, точный адрес. Вычислить их по-прежнему можно только приближённо. Зато легко указать место на монорельсовой дороге, где они живут. Вместе с числами рациональными они образуют дружную семью действительных чисел, закончила мама-Двойка и снова заставила нас удивиться.
 - А разве бывают и недействительные?
 - Конечно. Есть числа мнимые, есть комплексные.

Сева не дал ей договорить.

- Вспомнил! заорал он. И Мнимая Единица на что-нибудь да голится!
- Да, да,— подтвердила я,— так ответил автомат маленькой буковке с зонтиком: i.
- Оно и понятно,— сказала мама-Двойка,— латинской буквой i (по-русски И) в Аль-Джебре обозначается Мнимая Единица.
 - Но почему мнимая? Она что, воображаемая?
- Настолько воображаемая, что ей, как и другим мнимым числам, не нашлось местечка на всей бесконечной монорельсовой дороге.
 - Так вот почему она была такая грустная! смекнул Сева.
 - А где же тогда живут мнимые числа? спросил Олег.
 - Всякому овощу своё время.

Пришлось спрятать любопытство в карман. Мы распрощались с мамой-Двойкой и пошли... Куда бы ты думал? Конечно, в Парк Науки и Отдыха.

Как мы там отдыхали, узнаешь из следующего письма.

Таня.

молотобойцы

(Сева — Нулику)

Здравствуй, старик! Не удивляйся, что вместо Олега пишу тебе я. Мне так захотелось самому рассказать, как я здорово отличился, что он уступил мне свою очередь.

Говорят, великие люди занимались физическим трудом и спортом. Лев Толстой косил траву, шил сапоги. Учёный Павлов играл в городки. А я решил стать молотобойцем.

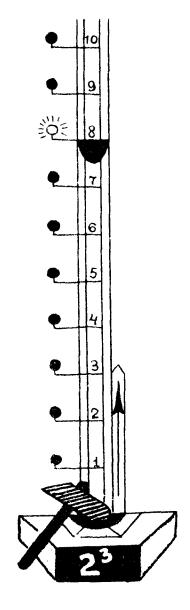
Здесь, в парке, есть занятный аттракцион — силомер. Такие встречаются и у нас, но этот устроен немного по-другому.

У нас ударяещь молотом по наковальне, и гирька подскакивает вверх. Чем сильнее ударишь, тем выше она поднимется. На таком силомере меряются силами. На здешнем — знаниями.

Рейка, вдоль которой движется гиря, очень похожа на монорельсовую дорогу. Только числовая прямая здесь расположена по-другому: не в длину, а в вышину. И числа на ней, начиная с нуля, только положительные. На этом силомере возводят числа в степень.

Задумываешь число, возводишь в уме в какую-нибудь степень, а потом, чтобы проверить себя, бьёшь молотком по наковальне. Гирька долетает до вычисленной степени. Если ты возвёл правильно, у этого числа зажигается зелёный огонёк. ошибся — красный.

Первый удар предоставили Тане. Ничего не поделаещь: девочка! Она возвела два в третью степень. У неё получилось восемь. Таня стукнула молотком, гирька взлетела к восьмёрке, и зажглась зелёная лампочка.


Потом стукнул Олег. Он возвёл два в десятую степень. Получилось 1024. И когда гирька долетела до этого числа, снова зажглась зелёная лампочка. Всё это показалось мне очень уж обыкновенным. Захотелось отмочить что-нибудь такое, чтобы все ахнули. Я объявил, что сделаю удар в честь моего друга Нулика-Профессора.

Возвёл двойку в нулевую степень. У меня получился нуль.

Я изо всей силы трахнул молотком по наковальне, и — ха-ха! — гирька осталась на нуле. Этого-то я и хотел! Но как же я удивился, когда вместо зелёного огонька зажёгся красный! Может быть, я так сильно ударил, что силометр испортился? Но почему же тогда все кругом засмеялись?

Я не знаю, что и подумать, но тут какая-то латинская буковка— не то Эн, не то Эм — сказала, что таких ошибок у них даже дети не делают и что любое число, возведённое в нулевую степень, всегда равно не нулю, а единице. Я несколько раз проверил это на силомере — правильно! И пять, и сто, и двести — все они в нулевой степени равны единице.

Тогда я решил возвести в нулевую степень нуль. Я рассуждал так: коли нуль — это число,

а все числа в нулевой степени равны единице, то и нуль в нулевой степени тоже равен единице.

Ударил по наковальне и...

Лучше бы я этого никогда не делал!

Гирька словно взбесилась: сперва взвилась под облака, потом ушла куда-то под землю, потом опять взмыла вверх.

И так она металась туда-сюда, пока кто-то не догадался выключить силомер.

Тут уж никто не смеялся. У всех были испуганные лица — почти как на том представлении, где твой тёзка, Нулик, стащил знак умножения.

Я и сам-то перепугался до смерти.

Страшнее всего было то, что гиря всё время куда-то проваливалась. Оказалось, числовая прямая уходит другим концом в бездонный колодец, где помещаются отрицательные числа.

Наверное, у меня был очень несчастный вид, потому что та жє буква не то Эм, не то Эн— подошла ко мне и стала утешать.

— Успокойтесь,— сказала она,— так может быть со всяким, кто впервые в Аль-Джебре. Нуль и в самом деле число, но совсем особенное. Вы ведь помните, что оно не бывает ни положительным, ни отрицательным. Поэтому обращаться с ним надо осторожно. А когда возводишь нуль, да ещё в нулевую степень, нужно быть осторожным вдвойне. Потому что при этом получается неопределённое число. Оно может быть и пятёркой, и миллионом, и бесконечностью, и положительным, и отрицательным, и даже нулём! Поэтому гирька до того растерялась и разнервничалась, что силомер испортился.

Славная буковка!

Мне захотелось сказать ей что-нибудь приятное. Вообще-то у меня это плохо получается. Но я вовремя вспомнил, как моя тётя Нина разговаривает с гостями.

- Ax, ax, это в высшей степени интересно! сказал я самым что ни на есть разлюбезным голосом.
- Благодарю вас, засмеялась буковка. Но не советую употреблять выражение «в высшей степени» в Аль-Джебре. Как бы ни была высока степень, всегда найдётся ещё более высокая. Ведь числа бесконечны.

Эх, подвела меня тётя!

Тут силомер снова наладили, и Тане вздумалось возвести число не в целую степень, а в дробную.

- Если возвести четыре в половинную степень, по-моему, получится два,— сказала она.
 - С чего это ты взяла? спросил я.
- А вот с чего: четыре в нулевой степени равно единице. Четыре в первой степени четырём. Значит, четыре в половинной степени равно половине от четырёх, то есть двум.

Таня стукнула молотком. Гирька остановилась у числа два, и вспыхнула зелёная лампочка. Тогда и мне захотелось попробовать.

— Возвожу девять в половинную степень, — объявил я. — Рассуждаю так: девять в нулевой степени это единица. Девять в первой степени — девять. Значит, девять в половинной степени равно четырём с половиной.

Я торжественно стукнул молотком, гирька остановилась на четырёх с половиной, и... вспыхнула красная лампочка. Я прямо обалдел. Несчастный я человек! Ну почему, почему мне так не везёт? Ведь я рассуждал точь-в-точь как Таня!

И снова на помощь мне пришла та же буковка (а я так и не запомнил — Эм она или Эн!).

- Дело в том,— сказала она,— что эта девочка допустила ошибку, а вы её повторили. Девять в половинной степени и вправду находится между единицей и девяткой. Но оно вовсе не равно половине от девяти. Для того чтобы возвести число в половинную степень, надо не делить его на два, а извлечь из него корень второй степени. А корень второй степени из девяти равен трём, а не четырём с половиной.
 - Так почему же у Тани получилось правильно?
- Да потому, что корень второй стелени из четырёх равен двум, а два и есть как раз половина от четырёх. И это простое совпадение.

Таня, конечно, покраснела, а Олег (он всегда её выручает), чтобы отвлечь от неё внимание, сделал вывод:

— Значит, возвести число в степень, равную одной пятой,— это всё равно что извлечь из этого числа корень пятой степени. Например:

$$3^{\frac{1}{5}} = \sqrt[5]{3}$$
.

- Ваша правда, -- подтвердила буковка.
- Тогда, наверное, и обратно, продолжал Олег. Возвести чи-

сло в пятую степень — это всё равно что извлечь из него корень степени одна пятая:

$$3^5 = \sqrt[\frac{1}{5}]{3}.$$

Что ты скажешь! Он и на этот раз попал в самую точку!

Тут мне пришло в голову, что если можно возводить числа в положительные степени, то почему бы не попробовать в отрицательные? Буковка посмотрела на меня пристально:

— Уж очень вы торопитесь! Аль-Джебра — государство большое. Для того чтобы с ним как следует познакомиться, нужны не дни, не недели. а годы...

Ещё чего! А как же Чёрная Маска? Так и останется без лица?

Посовещались немного и решили, что довольно ходить вокруг да около. Пора приниматься за дело. Но прежде неплохо бы закусить! Тото мне стали вспоминаться гостеприимные обжоры...

Буковка словно угадала мои мысли:

— Может быть, вы проголодались? Тогда советую зайти в кафе «Абракадабра».

А нам только того и надо!

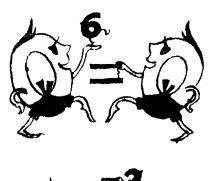
Хочешь знать, что дальше? Потерпи немножко. Всякому овощу...

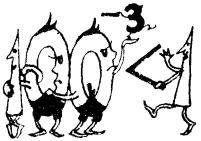
Сева.

НУЛИК-ПОГРАНИЧНИК

(Нулик — отряду РВТ)

Пламенный привет от Нулика-Пограничника! Теперь наша школа называется пограничной. Мы не пропускаем ни одной цифры, пока не узнаем, какой у неё знак отличия: плюс или минус. Один Нулик даже не пустил домой собственную маму, потому что она рассердилась и не хотела отвечать на его вопросы. Кончилось тем, что мама его наказала, пожаловалась моей маме и нашу школу чуть не закрыли.


Хорошо ещё, что у меня такая добрая мама. Она меня простила и даже подарила силомер. Получше вашего-то: волшебный! Выбираешь число, задумываещь, в какую степень его возвести, бьёшь молотком, и гирька сама показывает ответ.


Я принёс силомер в школу, и все стали возводить нуль в разные степени. Но как мы ни старались, гирька ни разу не поднялась выше нуля. Словно её приклеили. Как вы думаете, отчего это? Может, у нас сил не хватает, чтобы ударить как следует?

Потом я надумал сделать то, чего вы не успели: возвести целое положительное число в отрицательную степень.

Но и от этого толку мало: какое число ни возьмёшь, гирька хоть и поднимается, но очень немножко, не выше единицы. Тогда мы взяли большущее число 1000 и возвели его в минус третью степень: 1000 ⁻¹. Ухватились за молоток сообща и как трахнем! А противная гирька почти не сдвинулась с места. Что ж это такое? Неужели мама подарила мне испорченный силомер?

Я на неё очень обиделся, но она только рассмеялась. Она вообще любит смеяться. А потом сказала, что если возводить целое положительное число в целую отрицательную степень, то больше единицы никогда не полу-

чится. И чем большее число возводишь, тем меньшее число получается. Вот силометр и показал всего-навсего одну миллиардную: 0,000 000 001.

Пришлось поверить на слово. Потому что, отчего это происходит, мама не объяснила. Зато она сказала, что число, которое возводится в степень, называется основанием степени, число, в которое возводится это основание,— показателем степени, а уж сама степень получается только в ответе.

На этом основании я могу сказать, что не только вы меня, но и я вас могу кое-чему научить. Вот как!

Нулик-Пограничник.

Когда же вы напишете про кафе «Абракадабра»?

КАРНАВАЛ

(Олег — Нулику)

Здравствуй, дружище! Ты просишь рассказать про кафе «Абракадабра», но так случилось, что мы опять туда не попали. Заколдованное оно, что ли? Мы уже были совсем близко, но тут дорогу нам преградило весёлое карнавальное шествие. Впереди всех шли цифры.

Многие держали на плечах маленьких Нуликов, прямо как у нас ребятишек на первомайской демонстрации.

Вслед за цифрами дружно выступили латинские и греческие буквы.

Чётким строевым шагом прошли знаки равенства, за ними — действующие знаки.

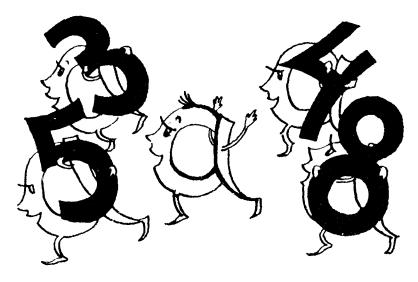
Легко подпрыгивали разноцветные точки, похожие на целлулоидовые мячики. Некоторые плавали в воздухе, как воздушные шары.

Вот промелькнули, кувыркаясь на ходу, ловкие гимнасты: знаки сложения и вычитания. Проковыляли на ходулях радикалы. Над ними — ни дать ни взять рой бабочек — порхали показатели корней.

А потом пошли скобки, скобки, скобки... Круглые, квадратные, фигурные...

Позади маршировал сводный оркестр восклицательных знаков.

— Слава доблестным факториалам! — закричали в толпе.


Мы хотели спросить, что за слово такое, но тут эти самые факториалы грянули марш. Разом ударились друг о друга десятки медных тарелок, загремели трубы. Защебетали, словно стая ласточек, флейты, и все кругом запели.

Так никто нам и не объяснил, что такое факториал и что вообще происходит.

- Может быть, это праздник Кирилла и Мефодия? сказала Таня. Её мама недавно была в Болгарии. Там каждый год устраивают торжества в честь создателей славянской письменности. В этот день жители надевают свои лучшие платья и выходят на улицу, чтобы посмотреть парад букв. В параде участвуют школьники. Каждый из них изображает какую-нибудь букву.
- При чём тут Кирилл и Мефодий? фыркнул Сева. Аль-Джебра государство математическое. Не пойму только, как сюда попали буквы. Наверное, по недоразумению?

Он, как всегда, сказал это чересчур громко. Вот когда нас наконец услышали!

— Как это — по недоразумению? — возмутились толпивщиеся кругом

буквы.— Это мы-то по недоразумению? Нас оскорбляют! Нас унижают!

- Да знаете ли вы, кипятилась латинская буква Тэ, знаете ли вы, что без нас, может, и не было бы никакой Аль-Джебры!
 - Может, и не было бы! подтвердили хором другие буквы.

Мне с трудом удалось объяснить им, что Сева не хотел никого обидеть. Просто мы здесь впервые и многого ещё не знаем. Буквы сменили гнев на милость и стали наперебой что-то нам объяснять. Но они так волновались и галдели, что ничего нельзя было разобрать.

— Граждане буквы,— сказал я,— говорите по очереди! Так мы легче поймём друг друга.

Тогда из толпы вышел важный Дэ.

- Пусть каждый из вас,— сказал он,— задумает какое-нибудь число. Задумали? Хорошо. Теперь умножьте его на три. Так. Прибавьте четыре. Готово? Теперь пусть каждый скажет, какое число у него получилось.
 - Десять! объявила Таня.
 - Нет, девятнадцать! возразил Сева.
 - А у меня шестьдесят четыре, сказал я.
- Видите, вас трое, и у каждого получилось по-разному. Но в этой игре могут быть тысячи, миллионы участников. Каждый может задумать любое число, и мы получим целую гору ответов. Для того только, чтобы прочитать их не то что записать, понадобится уйма времени. А я вот записал на этом клочке бумаги все возможные ответы.

И Дэ показал нам свою запись:

3a + 4.

- -- Позвольте, где же девятнадцать? -- всполошился Сева.
- Да здесь же. Вы, как я догадываюсь, задумали число пять. Трижды пять пятнадцать. Прибавим четыре получится девятнадцать.
 - Но где же тут пять?
 - Да вот оно: буква a.
 - Значит, u это пять?
- Для вас, улыбнулся Дэ. Для другого оно три. И тогда ответ будет тринадцать. Для третьего сто. В этом случае ответ триста четыре. Буква а может быть по вашему желанию заменена любым числом:
 - Вот не знал, что она такая особенная! почтительно сказал Сева.

— Ничего особенного в ней нет. Вместо a вы можете поставить любую другую букву. Ответ нисколько не изменится:

$$3c + 4$$
.

- Дайте нам ещё одну задачу! попросила Таня. A мы запишем её буквами.
- Пожалуйста. Задумайте два числа. Первое умножьте на два, второе на пять и сложите эти произведения.
 - Очень просто, 2a+5a,—сказал Сева.

Дэ удивлённо поднял брови:

- Вы что, задумали два одинаковых числа?
- Нет, разные.
- Тогда почему же они обозначены одинаковыми буквами? У нас, слава богу, и других достаточно. Уж если вы задумали разные числа, так и обозначайте их разными буквами:

$$2a + 5b$$
.

- Почему это,— спросила Таня,— вы говорите, что умножаете два на a, пять на b, а знаков умножения не ставите? Может, вы экономите крестики? Поставили бы хоть точку.
- Мы и вправду экономим, но не крестики, а время. И не только время, но и место. Разве 2a не тоже самое, что a, умноженное на два, иначе говоря: a, взятое два раза? Для чего же тратить место на знак умножения? Однако что же это мы здесь стоим! спохватился Дэ.— На стадионе, наверное, уже начался физкультурный парад. Вот где вам по-кажут разные действия, которые у нас называются алгебраическими.

И мы заторопились на стадион. А теперь, как в театре, антракт.

Олег.

Примечание: скажи тому Нулику, который не пускал домой маму,—пусть зарубит на носу, что положительными и отрицательными бывают только числа, а не цифры. А так как у вас, в Карликании, все мамы—цифры, то дома никаких знаков отличия у них нет. Эти знаки появляются только на работе, когда мамы-цифры становятся числами. Вот как!

КРУГ ПОЧЁТА

(Таня — Нулику)

Дорогой Нулик! Праздник был просто замечательный!

Мы пришли как раз вовремя. Переполненный стадион гудел, как пчелиный улей. Но вот на главной трибуне в убранной цветами ложе появился величественный А. Он подошёл к микрофону, поднял руку, и улей сейчас же затих.

— Дорогие сограждане! Дорогие друзья! — начал А. — Приветствую вас в день ежегодного праздника Аль-Джебры. Сегодня мы чествуем всех, кто в разные века и в разных странах трудился во славу нашего великого государства.

Все вы знаете, что государство это очень древнее. Но многие учёные, создававшие его, жили задолго до его рождения. Они работали не так, как мы сейчас — сообща, в тесном содружестве, а врозь, разделённые временем и пространством. Они начинали эту науку, а начинать всегда труднее. Тем выше их заслуги перед людьми, а значит, и перед нашим государством.

Государство это не всегда было таким, как сейчас. Да оно и не сразу стало государством. Но необходимость в нём появилась давным-давно, ещё у древних народов: вавилонян, индийцев, а потом и у греков.

Это были народы большой культуры. Развитие земледелия, торговли, мореходства требовало решения трудных арифметических задач. Но вот

беда! Рассуждения древних математиков были так длинны и запутанны, что простые люди не могли в них разобраться.

Тогда учёные стали думать, как бы упростить решения задач. И не только упростить, но и обобщить, то есть найти для многих однородных задач одно общее решение. Достаточно подставить в него нужные числа — и ответ готов.

Учёные трудились не напрасно: решать задачи становилось всё легче. Зато сами задачи становились всё труднее. Потому что жизнь шла вперёд. Некоторые задачи ставили даже математиков в тупик: их

нельзя было решить ни одним известным способом. И тут на помощь пришли особые, до тех пор незнакомые числа: отрицательные, иррациональные, мнимые и другие.

Числа эти входили в обиход долго, с трудом. Многие математики их поначалу не признавали. Отрицательные числа они называли ненужными, а мнимые — ложными. Но со временем польза этих чисел стала очевидной для всех. Теперь она ясна каждому школьнику, побывавшему на воздушной монорельсовой дороге. Попробовал бы он обойтись без отрицательных чисел, вычитая из меньшего числа большее!

Но особую роль в расцвете Аль-Джебры сыграли буквы. Они сразу навели порядок в беспорядочном ворохе самых различных задач.

Буквенные обозначения появились очень давно. Их ввёл в арифметику двадцать четыре столетия назад величайший мыслитель древности Аристотель. Однако широкое применение буквы нашли не сразу.

Сейчас научные новости распространяются быстро. Ещё бы! Ведь у нас есть и печать, и радио, и телевидение! Но в далёкие времена ничего этого не было. И понадобилось двадцать веков, чтобы люди по достоинству оценили изэбретение Аристотеля.

Это было начало новой эпохи в геометрии, физике, астрономии, химии и других науках. А уж о математике и говорить нечего! Вряд ли сам Мухаммед ибн Муса аль-Хорезми мог мечтать о таком расцвете своего детища.

Не хочу этим сказать, что нашим учёным больше уже нечего делать. Ничего подобного! У науки нет предела. Развитие её бесконечно А что такое Бесконечность, объяснять не нужно. Все вы это отлично знасте. Поэтому мы с особенным удовольствием приветствуем сегодня всех, кто изучает историю и законы нашего государства. Мы возлагаем на них особые надежды: ведь им предстоит решить многие нерешённые задачи!

Здесь вдруг оратор повернулся в нашу сторону и низко нам поклонился. И все сидящие на трибунах встали и громко зааплодировали.

От смущения мы просто не знали, куда деваться, и очень обрадовались, когда зрители снова уселись.

Но тут A скомандовал: «Поднять флаги!» — и все встали опять. Заиграла музыка, и в воздух взвились десятки разноцветных полотнищ. Среди них были флаги многих стран. Некоторые мы видели впервые, но наш — алый — узнали сразу!

Потом начался парад. На огромном зелёном поле появился движу-

щийся помост. На помосте толпились костюмированные буквы и цифры.

Кого только здесь не было! И важные бородатые арабские мудрецы, и древние греки в белоснежных одеждах. Тут же сидели индийцы в тюрбанах и пёстрых халатах. Ах, Нулик! Это была целая костюмерная! У меня до сих пор в глазах рябит от фесок, тюбетеек, шаровар, пудреных париков, камзолов, фраков, сюртуков... Мы спросили у Дэ, что означает этот маскарад.

- Как?! Неужели вы не поняли? Перед вами учёные, которым посвящён сегодняшний праздник. Они совершают круг почёта. Впереди в белой чалме Мухаммед аль-Хорезми, рядом — Аристотель.
- **А** это кто? Сева указал на длиннокудрую маску в плаще и широкополой шляпе с перьями.
- Знаменитый французский математик Виет. Ему мы обязаны тем, что буквы в шестнадцатом веке получили наконец всеобщее признание. Справа от него стоит другой великий француз математик и философ Рене́ Декарт. Он жил несколько позже, в семнадцатом веке, и тоже многое сделал для Аль-Джебры.
 - А вот и ещё один древний грек! обрадовалась я.
- Вы, наверное, говорите о Диофа́нте? догадался Дэ.— О, это замечательный человек! Ещё в третьем веке нашей эры он решал сложнейшие алгебраические задачи. Диофант изложил их в своей знаменитой книге «Арифметика». Правильнее было бы назвать её «Алгебра», но тогда этого слова ещё не знали.
- На полях «Арифметики» Диофанта записал свою теорему Ферма,— сказал Олег.

Дэ посмотрел на него недоверчиво:

- Вы знакомы с Ферма? С великим французским математиком?
- Мы встречались с ним на Дороге Светлого Разума, когда возвращались из Карликании. Да вот он, рядом с Диофантом!
 - Ребята, ребята, смотрите, Лобачевский! тормощил нас Сева.
- Как, вы и Николая Ивановича знаете? ещё больше изумился Дэ.
- Конечно! важно ответил Сева.— Он нам и письмо прислал: «Кажется, нельзя сомневаться... в истине того, что всё в мире может быть представлено числами».
- И буквами, добавил Дэ. Уверен, Лобачевский не сказал так лишь потому, что это само собой разумеется.

Платформа с учёными сделала три круга и покинула поле под гром приветствий.

И тогда началось самое интересное.

Но об этом тебе расскажет Сева. Так что жди письма.

Таня.

Не думай, что я такая умная и запомнила всё, что говорил А.

Речь его была тут же отпечатана и размножена. Мне оставалось только переписать. А листок я сохранила на память.

РАЗНОЦВЕТНЫЕ БЕРЕТЫ

(Нулик — отряду РВТ)

Дорогие ребята! Как же мне досадно, как обидно, что я не был на стадионе!

Но зато я сделал важное открытие. То есть открытие сделала мама. И вообще это не открытие, а давно известная вещь. Но для меня она была открытием.

Дело было так.

Мои ученики тоже решили устроить карнавал. И семь Нуликов явились в школу в новеньких беретах, все береты разных цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Словом, семь цветов радуги. Нулики в беретах должны были идти во главе карнавального шествия. Но мне не понравилось, в каком порядке они стоят. Мне показалось, что красный берет должен быть рядом с синим, а синий — с оранжевым. А другому Нулику захотелось, чтобы жёлтый был рядом с фиолетовым. Тут каждый стал вносить свои предложения:

- -- Жёлтый с красным!
- Красный с синим!
- Фиолетовый с жёлтым!

Все так расшумелись, что я долго не мог их успокоить. Порешили перепробовать все перестановки. А потом большинством голосов выбрать самую красивую.

И началось! Расставили Нуликов так, как они стояли вначале: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый.

Потом Нулики стали меняться местами. Красный оказался на месте оранжевого, потом перешёл на место жёлтого, потом на место зелёного

и так до тех пор, пока он не очутился на месте фиолетового. Теперь впереди оказался Нулик в оранжевом берете. Мы стали его тоже постепенно передвигать вправо. Так же поступили и с зелёным, и со всеми остальными. А когда красный берет опять оказался первым слева, мы решили его оставить на месте и стали двигать вправо другие береты: жёлтый, зелёный, синий... Переставляем, переставляем... Второй день переставляем. О карнавале никто уж не заикается. Сделали 527 перестановок, а до конца — далеко.

Мы было хотели бросить, но тут появилась моя мама. Пришлось рассказать, в чём дело. А она давай смеяться! А когда отсмеялась, спросила:

- Неужели вы не знаете, что такое факториал?
- Знаю! выпалил я, вспомнив ваще письмо. Это оркестр восклицательных знаков.

Мама стала смеяться снова. А потом сказала, что факториалы могут, конечно, играть в оркестре. Но это не мешает им оставаться математическим знаком. Его ставят после какого-нибудь числа. И тогда он показывает, сколько чисел натурального ряда надо перемножить. Вот например: если написать 3! — значит, надо перемножить все числа натурального ряда от единицы до трёх включительно:

$$3! = 1 \cdot 2 \cdot 3 = 6$$
.

А записывается это так, чтобы было покороче. Задумали перемножить числа от единицы до миллиона — пожалуйста: пишем 1 000 000!. Коротко и ясно.

А ещё мама сказала, что слово «факториал» произошло от латинского слова «фактор». По-нашему — это «производящий действие». Вот факториал и производит перемножение чисел натурального ряда.

Ну, это я запомнил сразу. Одного только никак не мог понять: при чём здесь разноцветные береты?

— А вот при чём, — сказала мама. — Если вы хотите узнать, сколько раз надо переставить семь Нуликов в разноцветных беретах, чтобы сделать все возможные перестановки, надо вычислить факториал числа семь, то есть перемножить все числа натурального ряда от единицы до семи.

Стали перемножать и получили большущее число:

$$7! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 = 5040.$$

Пять тысяч сорок! Пять тысяч сорок перестановок! А мы сделали всего 527, Ужас!..

Хорошо, что в разноцветных беретах явились всего семь Нуликов. А что если бы двадцать семь? Пришлось бы вычислять факториал двадцати семи. Нет уж, дудки! Хотите — считайте сами. А я не буду.

Всего вам хорошего. С нетерпением жду новых сообщений.

Нулик-Факториал.

РЕПОРТАЖ СО СТАДИОНА

(Сева — Нулику)

Внимание, внимание! Говорят все радиостанции Аль-Джебры! Начинаем репортаж с Центрального стадиона. Здесь сейчас будут выступать самые юные гимнасты страны.

Слышите гул приветствий? Это на поле выбегают дошкольники — латинские буковки a в зелёных костюмах, за ними буковки b — они в красном, и, наконец, c — в светло-жёлтом. Они образуют несколько рядов и замирают. Теперь каждая из них не просто буква. Здесь она называется одночлен.

Сверху нам открывается чудесное зрелище: пёстрый прямоугольник из букв. Но вот грянул оркестр факториалов. Звучит вальс, и прямоугольник приходит в движение. Буквы делают шаг в сторону. Одни вправо, другие влево. Потом они берутся за руки, и вот уже перед нами десятки разноцветных пар:

ab, ac, bc.

Зелёное с красным, жёлтое с зелёным, красное с жёлтым...

Юные гимнасты показывают действие, которое называется перемножением одночленов. Разумеется, никаких знаков умножения при этом нет. Каждый младенец в Аль-Джебре знает, что если две буквы стали рядом, значит, они помножены друг на друга.

Не подумайте только, что от перемножения буквы превратились в двучлены. Боже упаси! Это грубая ошибка! Они как были, так и остались одночленами.

Но вот идёт новая перестановка. Теперь буковки объединяются по три: abc, acb, bac, bca, cab, cba.

Легко догадаться, что это тоже произведения и каждое из них опятьтаки одночлен.

Умножение одночленов закончилось. Буквы снова заняли первоначальные позиции. Оркестр играет весёлую полечку. На стадионе появляются знаки сложения и вычитания. Плюсы и минусы занимают места между буковками-одночленами:

$$a+b, b+c, a-b, b-c.$$

Вот когда буквы из одночленов превратились в двучлены. Но не успели зрители как следует полюбоваться этой картиной, как буквы образуют уже другие суммы:

$$a+b-c$$
, $a+c-b$, $a-b-c...$

Теперь это уже трёхчлены. Жаль, что в упражнениях принимают участие только a, b и c. Будь здесь другие буквы, мы увидели бы ещё более сложные алгебраические суммы.

Внимание! Начинается новое упражнение. Забавно! Очень забавно! Знаки плюс стали между одинаковыми буквами. Сейчас сложились семь буковок a, и... о чудо! Вместо семи осталась только одна. Остальные шесть исчезли на наших глазах, а вместо них на поле появилось число Семь. Оно встало слева от буквы a, и весь стадион хором прочитал: «Семь a».

Это волшебное алгебраическое упражнение называется приведением подобных. Оно возможно только тогда, когда все слагаемые действительно подобны, то есть совершенно одинаковы. Какая экономия места, времени и чернил! В Аль-Джебре очень любят экономию. В самом деле, к чему писать

$$a+a+a+a+a+a+a$$

если можно записать коротко и ясно:

7a.

Семёрка немного важничает. Оно и понятно: ведь она одна заменила шесть одинаковых букв и ей присвоено почётное звание числового коэффициента при букве a.

Ага! Другим буквам это тоже понравилось. Они просят плюсы занять места между ними. И вот число букв стремительно уменьшается. Вместо них на поле появляются числа-коэффициенты. Вместе с оставшимися буквами они образуют одночлены:

12b, 8a, 24abc, 3bc и так далее.

Их зорко охраняют рыцари-коэффициенты.

Упражнениям нет конца! Только что на поле образовался многочлен

$$abc+abc+abc+abc+abc+abc$$
,

как мигом произошло приведение подобных и появился вериый рыцарь — коэффициент Шесть:

6abc.

Но что это? Оркестр замолкает... Понимаю: сейчас произойдёт перегруппировка и начнётся новое упражнение. В самом деле: минусы и плюсы покидают поле под дружные аплодисменты. Буковки снова образовали пёстрый прямоугольник. Но теперь в первом ряду стоят буквы в зелёном, во втором — в красном, в третьем — в светло-жёлтом. Они повторяют самое первое упражнение — перемножение одночленов. Только теперь все сомножители одинаковые. И опять происходят чудеса. Как только две одинаковые буквы перемножатся, одна из них сейчас же исчезает, а на поле появляется число Два. Буква протягивает руку, и Двойка ловко вскакивает к ней на ладошку:

 a^2 .

Вы думаете, число Два и в этом случае называется коэффициентом? Ничего подобного! Это показатель степени. Вы уже с ним знакомы. Ведь упражнение, которое сейчас проделывают буквы,— это возведение в степень!

Вот перемножились три b, и получилось **Б**э в кубе:

 b^3 .


Десять *с*, перемножившись, образовали одночлен — Цэ в десятой степени:

 c^{10} .

Одна комбинация сменяется другой. Перед нами возникают

$$a^{25}$$
, b^{40} , c^{16} , a^6 .

И вот появлятся Цэ в степени эн:

Это уже что-то новое. Правда, только на первый взгляд. Мы ведь уже знаем, что буквами обозначаются числа. Цэ в энной степени означает Цэ, возведённое в любую степень. Подставьте вместо эн любое число — и ответ готов.

Музыканты после небольшой паузы снова заиграли вальс. Начались самые пластичные, самые замысловатые гимпастические упражнения: умьожение многочленов на одночлен.

Вог уже образовались двучлены:

$$a+b$$
, $a+c$,

потем трёхчлены:

$$a+b+c$$

и много других. Сейчас они начнут умножаться на одночлены... Но в чём дело? Произошла какая-то заминка. Музыка смолкла. Ага! Теперь всё ясно: оказывается, многочлены не могут ни на что умножаться, если их предварительно не заключить в скобки. Иначе может выйти ужасная путаница: никто не узнает, где тут одночлен, а где многочлен.

На поле появляются круглые скобки. Они становятся по бокам каждого многочлена. Ну вот, всё в порядке, можно продолжать.

Начинается представление под названием «Хитрый обманщик».

На поле появляется выражение:

$$(a+b)c$$
.

Цэ стучится в скобку, как в дверь.

Цэ. Хозяева дома?

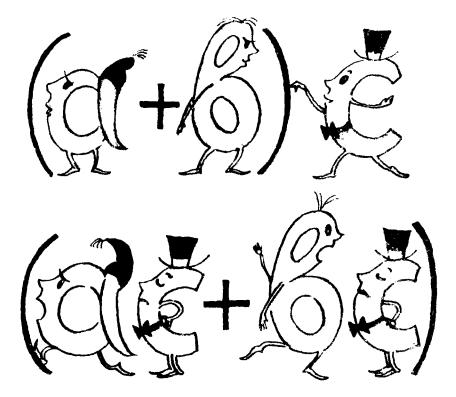
A--Бэ (вместе). Да! А кто это?

Цэ. Это я, Цэ.

А+Б з. А с вами никого нет?

Цэ (невинным голосом). Никого.

А+Бэ. Тогда входите.


Скобки открываются, Цэ входит и... раздваивается. Одно Цэ подходит к 3, другое — к Бэ. И вот мы уже видим новую сумму:

$$ac+bc$$
.

Все истодуют. Свист, крики:

- Голите обманицика!

 $A + Б \ni (вместе)$. На помощь! Спасите!!

Вбегают дружинники и выносят отчаянно сопротивляющихся Цэ за скобки. Здесь обе буквы снова превращаются в одно Цэ.

Обманщик наказан. Справедливость торжествует. На поле спова красуется прежнее выражение:

$$(a+b)c$$
.

Пьеса имеет шумный успех. Артистов вызывают много раз, точнее, эн раз — n раз.

Сказав так, я никого не обману, и дружинникам не придётся выносить меня за скобки.

Дорогие радиослушатели! Как видно, эти упражнения никогда не кончатся, а я уже устал. Очень прошу вас, возьмите карандаши и бумагу и придумайте сами пример на перемножение многочленов.

До свидания.

Репортаж с Центрального стадиона Аль-Джебры вёл

ПЕКАРИ-ЖОНГЛЁРЫ

(Снова Сева — Нулику)

Ну как, Нулик, здорово у меня вышло? Конечно, у того комментатора, который вёл передачу со стадиона, получалось лучше. А по мне сойдёт и так.

А сейчас я тебе своими словами расскажу, что было дальше.

По радио объявили: «Следующий номер нашей программы — «Весёлые пекари»! Высший класс жонглирования! Перемножение и деление степеней!»

На зелёное поле выбежали три буквы Цэ. Все они были в белых поварских колпаках, у каждой палка, а на палке кольца — похоже на детские пирамидки. Только там кольца разноцветные, одно другого меньше, а здесь одинаковые, золотистые, как толстенькие поджаристые бублики.

Это и впрямь были бублики, да ещё с маком! У одного пекаря — два бублика, у другого — три. У третьего колец на палке не было.

Заиграла музыка.

Первый пекарь снял с палки верхнее кольцо и ловко метнул. Кольцо очертило в воздухе плавную дугу и угодило на пустую палку третьего пекаря. Вслед за первым кольцом туда же полетело второе. То же самое сделал другой пекарь, и вот уже у третьего пекаря на палке все пять колец, а первые два пекаря остались ни с чем.

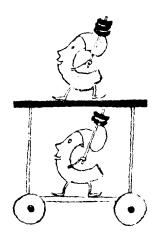
Потом жонглёры перестроились. Теперь у одного на палке было три кольца, у другого — шесть, у третьего опять ничего. Снова заиграла музыка, замелькали кольца.

И опять у третьего пекаря на палке — девять бубликов, а у других — ничего.

- Чистая работа, сказал Дэ, ни одно колечко не упало.
- Работа-то чистая, но при чём здесь умножение степеней? спросил я.— Не понимаю.
- А я понимаю, похвасталась Таня. При перемножении степеней показатели надо складывать:

$$c^3 \cdot c^6 = c^{3+6} = c^9$$

- Совершенно правильно,— подтвердил Дэ.— Число колец на палке обозначает показатель степени.
 - Пусть, сказал я, а мне всё равно непонятно.


— Поглядите на поле,— предложил Дэ,— тогда уж обязательно поймёте.

Я поглядел и увидел, что два Цэ (у одного на палке три кольца, у другого — щесть) стали рядом и между ними появился знак умножения точка. И тут на поле выбежали ещё девять Цэ. У них на палках было только по одному кольцу. Трое из них встали на место Цэ с тремя кольцами, а шестеро заменили Цэ с шестью кольцами. Тогда пекарь с пустой палкой отделился от них знаком равенства и стал следом за ними. А первые два пекаря отдали ему свои кольца, и получилось вот что: На этот раз и вправду всё было понятно: Цэ в третьей степени, умноженное на Цэ в шестой,всё это равно что Цэ, умноженное само на себя девять раз, или попросту Цэ в девятой степени. Потом началось деление степеней. На поле выкатили двухэтажную тележку. На верхнюю площадку вскочил жонглёр с тремя кольцами на палке - числитель, на нижнюю -

жонглёр с двумя кольцами — знаменатель. И вдруг Цэ стали лопать свои бублики: числитель съест один, и знаменатель — один, числитель — один, и знаменатель — один... Когда Цэ-знаменатель съел все свои бублики, он исчез. На площадке осталась только его палка.

А Цэ-числитель — у него на палке ещё болтался один бублик — продолжал стоять наверху как ни в чём не бывало.

- Ясно,— сказал Олег.— Деление действие, обратное умножению. Значит, показатели степеней надо при этом не складывать, а вычитать.
- Верно! поддержала Таня.— Из трёх бубликов отняли два. В знаменателе очутилась палка-единица. А в числителе Цэ с одним бубликом, то есть Цэ в первой степени.

— Первая степень не пишется,— вспомнил я. — Стало быть, просто Цэ:

$$\frac{c^3}{c^2} = c^{3-2} = c.$$

— Вот вам и частное от деления двух степеней,— пояснил Дэ.— Посмотрим теперь, что будет, если Цэ в квадрате разделить на Цэ в кубе.

Теперь на верхней площадке стоял Цэ-числитель с двумя бубликами, а на нижней Цэ-зна-

менатель с тремя. Опять они принялись уплетать, но теперь уже без бубликов оказался Цэ-числитель. Он исчез, оставив на площадке свою палку. А Цэ-знаменатель, у которого оставался один бублик, продолжал стоять на площадке.

- Видите,— сказал Дэ,— частное от деления равно единице, делённой на Цэ, или одной цэтой, как у нас говорят.
- Позвольте, вмешался Олег, при делении степеней показатели вычитаются. Значит, это можно изобразить так:

$$\frac{c^2}{c^3} = c^{2-3} = c^{-1}.$$

- Ой! испугалась Таня. Получилась отрицательная степень!
- Вполне законно,— возразил Дэ.— Одна цэтая— это то же самое, что Цэ в минус первой степени.

Вон оно что! Выходит, если целое число возвести в отрицательную степень, оно превращается в дробь:

$$c^{-1} = \left(\frac{1}{c}\right)^{1} = \frac{1}{c};$$

$$c^{-2} = \left(\frac{1}{c}\right)^{2} = \frac{1}{c^{2}};$$

$$c^{-3} = \left(\frac{1}{c}\right)^{3} = \frac{1}{c^{3}}$$

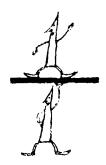
и так далее.

Слышишь, Нулик? Ты, помнится, хотел знать, отчего гирька твоего силомера не желала подниматься выше единицы? Вот тебе и ответ. Возвести пять в минус вторую степень — всё равно что возвести одну пятую в плюс вторую степень:

$$5^{-2} = \left(\frac{1}{5}\right)^2 = \frac{1}{25}.$$

Иначе и быть не может. Ведь у отрицательных чисел всё наоборот! И чем большее число возводишь в отрицательную степень, тем меньше получается дробь. Потому-то тысяча, возведённая в минус третью степень, оказалась равной одной миллиардной:

$$(1000)^{-3} = (\frac{1}{1000})^3 = \frac{1}{10000000000} = 0,000000001.$$


А теперь слушай дальше. В числителе и знаменателе очутились Цэ с тремя бубликами.

Каждый Цэ съел свои бублики и скрылся. На площадках остались только их палки.

- Вот так фокус! не удержался я.
- Ну что вы! скромно сказал Дэ. Это просто деление двух оди-

наковых степеней с равными основаниями. И получается при этом единица, делённая на единицу.

- Или просто единица, добавила Таня.
- Уж конечно! ввернул я. Подумаешь, открытие! Всякое число, делённое само на себя, равно единице. Двадцать, делённое на двадцать, равно единице; тридцать, делённое на тридцать, равно единице; Цэ в третьей степени, делённое на Цэ в третьей степени, равно единице. Об этом и говорить не стоит.

- Ты думаешь? возразил Олег. А по-моему, стоит.
- Отчего же?
- Оттого, что теперь я знаю, почему любое число в нулевой степени равно единице.

- Да ну?! Как это ты догадался?
- Очень просто:

$$c^3:c^3=1$$
, no $c^3:c^3=c^{3-3}=c^0$.

Следовательно: $c^0 = 1$.

Ну и голова у этого Олега! Жаль только, что он до этого не додумался раньше. Не пришлось бы мне срамиться там, у силомера. Впрочем, жалеть об этом не время. Письмо у меня и так получилось очень длинное. Но ты уж потерпи. Осталось немного.

Пекари-жонглёры убежали. А вместо них на поле вышли... Нет, нипочём тебе не догадаться кто! На поле вышли Чёрные Маски. Мы-то думали, что Чёрная Маска одна, а появилась целая армия. Во всяком случае, никак не меньше ста. И тут меня что-то кольнуло. Это проснулся в кармане талисман, о котором мы, сказать по чести, совсем забыли. Уж не хочет ли он намекнуть, что и наша Чёрная Маска тоже здесь? Но как её найдёшь? Ведь все они похожи друг на друга как две капли воды... вернее, как две капли чернил. Добро бы ещё здесь был Пончик. Но он, как назло, куда-то запропал.

Только я это подумал, как по рядам вихрем пронеслось что-то белое, мохнатое. Зрители шарахнулись. Секунда — и Пончик врезался в самую гущу растерявшихся артистов. Тут один из них как побежит! А Пончик — за ним!

— Держите, держите! — заорал я и помчался следом. Таня и Олег — за мной.

Что было! Все перепугались, вскочили. У выходов началась давка. Не знаю, что бы мы делали без стручка. Он снова выскользнул из моего кармана и полетел впереди, указывая дорогу. Скоро мы очутились у соверщенно свободного запасного выхода, а там и на улице.

Я хотел спрятать стручок, а он всё летел, летел, пока не привёл нас к какому-то красивому зданию.

У широких стеклянных дверей сидел Пончик. Он тяжело дышал и смотрел на нас виноватыми мокрыми глазами. А над дверьми поблёскивала большая треугольная вывеска: «Абракадабра». Чувствуешь?

лично севе от нулика

Уважаемый радиокомментатор! Большое Вам спасибо за репортаж. Если бы не подпись в конце, я бы ни за что не догадался, что он невзаправдашний.

А сейчас послушайте мой радиорепортаж.

Наша школа выросла. Теперь в ней учатся не только Нулики, но и другие карликанские малыши — цифры. Им очень понравилась алгебраическая гимнастика. Но так как букв у нас нет, решили проделать её с цифрами.

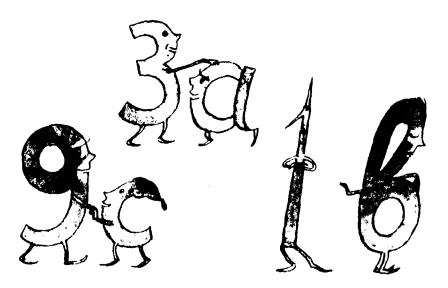
Пять Двоек взяли четыре знака сложения и поставили их между собой:

Потом четыре Двойки убежали. Осталась одна, а около неё встал коэффициент Пять:

52.

Тогда взрослые карликане подняли нас на смех. У вас, говорят, получилось пятьдесят два, а вовсе не пять Двоек. Чтобы правильно сделать приведение подобных, надо между Пятёркой и Двойкой поставить знак умножения. Тут вам, говорят, не Аль-Джебра. Да и вы, говорят, не буквы, а цифры.

Выходит: если рядом стоят две цифры — это двузначное число; если же рядом стоят две буквы — это их произведение. Я решил всё проверить на практике.


Потом я спросил, как написать буквами двузначное число? Оказывается, очень просто:

$$10a+b$$
.

Здесь a показывает число десятков, b — число единиц. Я сейчас же записал 52 алгебраическим способом:

$$10.5 + 2 = 52.$$

Тут нам пришлось прекратить занятия, потому что прибежала одна Единичка. Она горько плакала. Ей ужасно хотелось стать коэффициентом при какой-нибудь букве. А мама ей сказала, что коэффициент Единица

никогда не пишется, а только подразумевается. А Единичка подразумеваться не хотела.

Ну, мы как могли её утешили и заодно сделали другое великое открытие: при любой букве всегда имеется коэффициент, только его не всегда видно. Коэффициент, равный Единице, превращается в невидимку. Как только Единичка об этом узнала, она сразу развеселилась. Ещё бы! Это ведь не всякий может — стать невидимкой. Ну вот и всё.

С горячим приветом

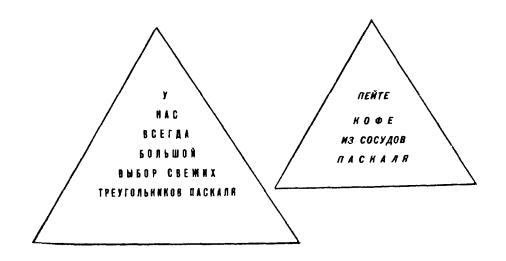
Нулик-Комментатор.

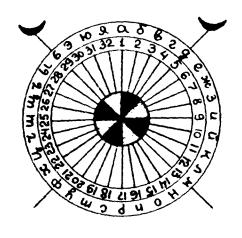
А почему это в вашем репортаже алгебраической суммой называется a+b-c?

До сих пор мы знали, что сумма получается только при сложении, а здесь ведь не только складывают, но и вычитают?!

«АБРАКАДАБРА»

(Олег -- Нулику)


Уф! Вот мы и в «Абракадабре»!


Это очень красивое кафе. Оно всё прозрачное, вроде фонаря. Такие у нас встречаются на каждом шагу. Только всё в нём из треугольников: стены, двери, окна. Даже вывеска, где слово «абракадабра» можно читать по-всякому — и сверху вниз, и ступеньками — как вздумается.

Когда-то это загадочное слово было магическим заклинанием. Теперь так называют всякую бессмыслицу.

Уж не потому ли нам советовали сюда зайти? Нам ведь тоже нужно расшифровать абракадабрскую записку!

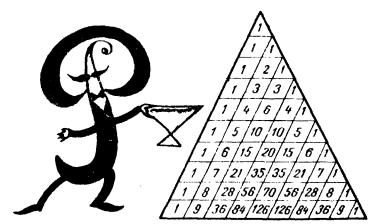
Кроме вывески, за зеркальными витринами висят и другие треугольные таблички:

А одна табличка круглая — не то солнце, не то циферблат башенных часов, только без стрелок. Вместо цифр по кругу написаны русские буквы. Все они перенумерованы. А что это значит, мы так и не поняли. Абракадабра!

Нам повезло: все столики были свободны. Мы ведь немного опередили зрителей, покидавших стадион. Из-за стойки, уставленной всякими вкусными вещами, навстречу нам поднялся директор, дородный Пэ из латинского алфавита.

— Очень рад познакомиться. Сегодня у нас исключительно вкусные треугольники.— Он посмотрел на нас многозначительно и добавил: — Уверен, что именно вам они очень понравятся.

Он подвёл нас к треугольному столу и усадил на треугольные стулья. Сева, конечно, не удержался от вопроса:


- Отчего это у вас всё треугольное?
- В честь Паскаля,— ответил директор.
- Но кто такой Паскаль? Нельзя ли с ним познакомиться?
- Отчего же! Это долг каждого культурного человека. Блез Паскаль почётный гражданин Аль-Джебры. Он жил в семнадцатом веке во Франции. О! Это был щедро одарённый человек. Он известен не только как талантливый учёный математик, физик, философ, но и как писатель. В этом вы когда-нибудь убедитесь, прочитав его интересное сатирическое сочинение «Письма к провинциалу». Но занятия литературой не помешали Паскалю изобрести первую счётную машину прапрабабушку нашего арифмометра. Кроме того, Паскаль знаменит тем, что открыл очень важный закон физики. Это закон давления жидкостей и газов на стенки сосуда. В нашем кафе можно увидеть его в действии. Если вы захотите кофе...
 - Что за вопрос! перебил Сева. Конечно, захотим!
- Тогда подойдите к этим аппаратам.— Пэ подвёл нас к стойке, где стояли до блеска начищенные кофеварки.
 - Все эти сосуды, продолжал он, самой различной формы, но,

заметьте, одинаковой высоты. И рассчитаны они на разное количество жидкости. В этом — четверть литра, в этом — литр, а в этом — два литра крепкого чёрного кофе. Зато донышки сосудов, так же как и высота, совершенно одинаковых размеров. Они прижаты к сосудам особым механизмом с пружинками. Как только вес жидкости в сосуде становится больше силы, с которой пружинки прижимают донышко к сосуду, донышко опускается и отводится в сторону рычажком.

Мы подумали, что пружинки в разных сосудах прижимают донышко с разной силой.

- Ничего подобного, возразил директор, пружинки всюду совершенно одинаковые.
- Как же так? удивились мы. Ведь сосуды вмещают разное количество жидкости. Чем больше налито кофе, тем больше будет его давление на дно?
- В том-то и суть закона Паскаля, что давление на дно не зависит от количества жидкости в сосуде! воскликнул Пэ. Оно зависит лишь от высоты сосуда.
- Проверим! сказал Сева и решительно направился к самому большому сосуду. Он уже собирался нажать кнопку, чтобы налить себе кофе, но директор его остановил:
- Как? Вы хотите выпить сразу два литра? Но ведь это же очень вредно! Из этого сосуда мы отпускаем кофе на дом многосемейным. Прошу вас за столик. Сейчас я подам вам по чашечке кофе и большую вазу с треугольниками. Они тоже приготовлены по рецепту Паскаля.

Вот не думал, что можно питаться треугольниками! При слове «треугольник» мне сейчас же вспоминаются папины чертёжные принадлежности.

Слава богу, треугольники в кафе «Абракадабра» вовсе не пластмассовые, а вафельные. И с самой разной начинкой: шоколадные, фруктовые, сливочные, ореховые, миндальные. Мы перепробовали все, какие были, и так увлеклись, что не заметили, как кафе заполнилось публикой. Скоро все столики были заняты. К этому времени у нас оставалось всегонавсего три вафли. Все взяли по одной и хотели уже прикончить, но нас остановила Таня.

- Смотрите,— сказала она,— на моём треугольнике какая-то надпись. Тогда и мы посмотрели и увидели, что на вафлях написано: «Треугольник Паскаля».
- Что-то вроде штампа фабрики,— сообразил Сева.— Как у нас «Красный Октябрь» или «Фабрика имени Бабаева».
 - А это тоже «фабрика Бабаева»?

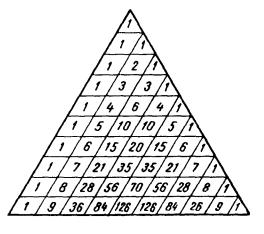
Таня перевернула треугольник другой стороной. Там были выпуклые числа. Мы сличили свои вафли — числа на всех были одинаковые.

Сначала нам показалось, что они расположены беспорядочно. Только слева и справа в каждом ряду обязательно стоит единица. Приглядевшись, мы увидели, что числа определённым образом чередуются. Вот, например, в пятом ряду: 1, 4, 6, 4, 1. В седьмом: 1, 6, 15, 20, 15, 6, 1. Мы заметили также, что, если спускаться по левой стороне треугольника, в первом наклонном столбце написаны единицы, во втором — натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9... Дальше числа стоят вразброд: 1, 3, 6, 10, 15, 21... А потом и того хуже: 1, 4, 10, 20, 35, 56...

- Одним словом, абракадабра! проворчал Сева.
- Напрасно думаете, заметила наша соседка, латинская буква Эс. В этих числах есть определённый порядок, и разобраться в нём вовсе не трудно.
 - Ну, где тут порядок? Где? горячился Сева.
- Немножко наблюдательности и вы перестанете спорить. Заметьте, что любое число в этом треугольнике равно сумме двух чисел, стоящих над ним.
- Правда! сказала Таня.— Число 28 из девятого ряда равно сумме семи и двадцати одного, которые стоят над ним.
- А 126 из десятого ряда равно сумме семидесяти и пятидесяти шести,— сосчитал Сева.
- Вот видите! Никогда не торопитесь с выводами,— сказала Эс.— Часто то, что кажется неразберихой, на самом деле имеет строгий поря-

- док. Надо только его обнаружить. В том-то и задача каждого учёного.
- До чего интересный треугольник придумал Паскаль! вздохнула Таня.
- О, в этом треугольнике ещё много замечательного. Сложите числа каждого ряда. В первом ряду так и будет единица. Во втором?
 - Два.
 - В третьем?
- Четыре. В четвёртом восемь, в пятом шестнадцать, затем тридцать два, шестьдесят четыре...
 - Слушайте! закричал я. Ведь это же разные степени числа два:

$$2^{0} = 1;$$
 $2^{1} = 2;$
 $2^{2} = 4;$


 $2^3 = 8;$

 $2^4 = 16;$

 $2^5 = 32$.

Мне показалось, что Эс посмотрела на меня одобрительно.

- Не кажется ли вам,— сказала она,— что все эти степени можно записать одним алгебраическим выражением: 2^{n-1} два в степени эн минус единица?
 - Отчего же не просто два в степени эн?

- Оттого что эн обозначает порядковый номер строки, а показатель степени здесь всегда на единицу меньше порядкового номера. В первой строке нуль, во второй единица, в третьей два и так далее.
- Aга! догадалась Таня. Выходит, сумма чисел, стоящих в десятой строке, будет равна двум в девятой степени, что можно изобразить так: два в степени десять минус единица: 2^{10-1} .
- Или два в степени эн минус единица, победоносно закончил Сева.
 - Очень приятно, что вы это поняли, обрадовалась Эс.

Но Сева сейчас же доказал, что радоваться рано.

— Жаль, что такое удивительное изобретение используется только для приготовления вафель,— заявил он.

Эс даже поперхнулась.

- Что вы такое говорите! Треугольник Паскаля широко применяется в Аль-Джебре. Он блестяще используется при возведении в степень двучленов. Кстати, этим вопросом занимался не только Паскаль, но и его великий современник, сэр Исаак Ньютон. С его формулой, известной под названием бином Ньютона, вы познакомитесь несколько позже. Каждому овощу своё время...
- А! Ньютон! небрежно отмахнулся Сева. Это тот самый, который подошёл к нам вместе с Лейбницем на Дороге Светлого Разума. Они там вдвоём что-то такое открыли, а потом разбирались, кто из них первый...
- Это «что-то такое» было началом высшей математики. И называется оно анализом бесконечно малых и бесконечно больших величин.

И Эс, сухо попрощавшись, удалилась.

Сева так смутился, что нам его жалко стало.

Но не прошло и пяти минут, как он уже составлял какие-то новые треугольники, которые решил, конечно, назвать своим именем.

Вот один из них. Покажи его своим ученикам. Может быть, вы наведёте в нём порядок.

Будь здоров.

3 1 7 9 1 5 36 1 6 11 20 1 13 24 15 28

Да! Совсем забыл ответить на твой вопрос. Ты хочешь знать, почему a+b-c называется суммой.

Дело в том, что знаки плюс и минус, обозначающие положительные и отрицательные числа, в то же время обозначают сложение и вычитание.

Что значит, например, 3+2? Разве это не то же самое, что 3-2? И то и другое равно единице.

Потому-то в алгебре сумму и разность часто объединяют одним названием: алгебраическая сумма.

Напиши a+b-c так:

$$a + b + c$$

и ты увидишь, что Сева нисколько не ошибся.

горячо — холодно

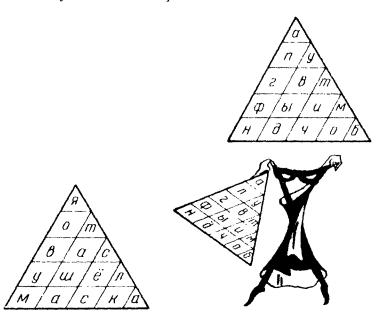
(Сева — Нулику)

Ну, Нулик, держись! Это письмо тебя наверняка удивит и обрадует, потому что... Впрочем, нет! Рассказывать, так по порядку.

Всё ещё торчим в «Абракадабре». То никак не могли попасть, то никак не выберемся. Совсем уж собрались уходить, но вдруг я вспомнил о стручке, сунул руку в карман — пусто!

Искали, искали, лазали по полу — хорошо, пол здесь чистый, — нигде его нет... А потом я подошёл к столу, где мы сидели, и вижу: в вазе на круглой бумажной салфетке лежит один треугольник. Откуда он взялся? Помнится, мы съели все.

Очень мне захотелось взять эту вафлю. На память. Тётя Нина говорит, это неприлично. Ну, да один раз — куда ни шло! Да и вафелька-то была совсем маленькая. Я поднял её. Глядь — а стручок-то под ней. Неспроста!


Стали мы рассматривать вафельку. Чисел на ней не было. Зато было пять рядов букв. Буквы стояли вразброс, но мы уже знали, что беспорядок бывает обманчивым. И всё-таки, как мы ни старались, никаких закономерностей не открыли. Тогда Таня перевернула вафлю. На другой стороне тоже было пять рядов букв. Посмотрели — и ахнули! Прочитай, что там было написано, и ахнешь тоже.

Первая весточка от Чёрной Маски! Вот она, тайна, где-то рядом. Как в игре «горячо — холодно». Я чуть не закричал: «Горячо, горячо!»

— Может быть, это ключ к шифру! — сказал Олег.

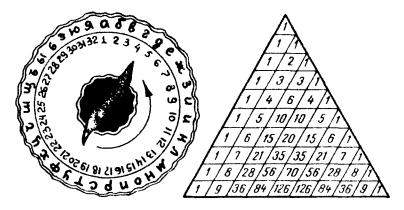
Он осторожно расслоил вафлю. Вместо одной толстой получились две тоненькие. Мы положили их рядом и стали сличать буквы. Олег вынул карандаш и бумагу и написал два ряда букв.

я от вас ушёл маска а пу гвт фыим ндчоб.

Вот когда мы расшифруем записку!

Но Олег снова задумался:

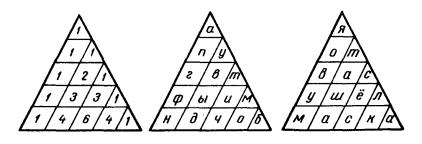
— Нет, тут что-то не так. В первом ряду буква «а» повторяется три раза. Но каждый раз она зашифрована по-разному. Сначала «а» — это «в», потом — «д», потом «б». Значит, шифр всё время меняется. Но как?


То-то и оно!

Мы опять приуныли.

Я с досадой взглянул на стручок. Разлёгся, как лодырь, на круглой бумажной салфетке, а до нас ему и дела нет.

Только сейчас я заметил, что на салфетке, точь-в-точь как на круглой табличке в витрине, написаны буквы русского алфавита. Под каждой буквой номер. Мы стали рассматривать салфетку.


И вдруг стручок начал медленно вращаться. Совсем как часовая стрелка. Острый кончик его медленно скользил от буквы к букве.

- Смотрите! сказал я.— После «я» на салфетке написано «а». И в шифре вместо «а» надо читать «я». После «о» стоит «п». И в шифре «п» означает «о». Значит, буквы надо заменять соседними.
- Ничего подобного! заспорила Таня. В слове «вас» буква «а» заменена буквой «в». А ведь буква «в» не соседняя, а вторая после «а». А в слове «ушёл» буква «ш» заменена «ы». А это уже третья буква после «ш».

Ну и задача! Абракадабра!

Мы растерянно смотрели на вафли. Но что это! Хочешь верь, хочешь не верь: буквы на шифрованном треугольнике исчезли. Вместо них появились числа.

Треугольник Паскаля! Вот так штука!

Олег внимательно переводил глаза с бумажки на салфетку, с салфетки на вафлю.

— Смотрите-ка, в слове «вас» буква «а» заменяется буквой «в». Это как раз вторая буква после «а». Теперь поглядим на треугольник Паскаля. Там на этом месте тоже двойка. То же самое и в слове «ушёл». Буква «ш» заменяется «ы», которая занимает третье место после «ш». И в треугольнике Паскаля там тоже стоит тройка.

Вот тебе и ключ к шифру! Только подойдёт ли он к нашей записке? Олег вынул её из потайного кармана, и мы стали расшифровывать. Сначала, правда, запнулись. Понимаешь, слова записки не были заключены в треугольник. А нам надо было знать, по какой строчке треугольника расшифровывать каждое слово. Но Олег быстро догадался, как это делается: если в слове пять букв — расшифровывай по пятой строке треугольника, если восемь — по восьмой и так далее.

Первое слово записки — «трэялрп». В нём семь букв. Но в нашем треугольнике было всего пять строк. Пришлось попросить большой треугольник. Для научных целей. Директор выбрал самый что ни на есть огромный.

Посмотрели на седьмую строчку. Там были такие числа: 1, 6, 15, 20, 15, 6, 1. Подписали под ними первое слово:

1 6 15 20 15 6 1 т р э я л р п.

Теперь надо было отодвинуться по кругу от «т» на одну букву, от «р» — на шесть, от «э» — на пятнадцать... Стали отсчитывать буквы по ходу часовой стрелки. Но вот беда: стручку это почему-то не понравилось. Он упорно двигался в обратном направлении.

Тогда мы смекнули, что по часовой стрелке надо отсчитывать буквы, когда зашифровываешь. А мы-то расшифровываем! Значит, и отсчитывать следует против часовой стрелки. Отсчитали от «т» одну букву назад — получили «с», от «р» шесть букв — получили «к», от «э» пятнадцать букв — получили «о»...

И вот уже вместо дурацкого слова «трэялрп» перед нами хорошее русское слово «сколько». Точно так же расшифровали и следующее слово «вюоп». В нём четыре буквы. Посмотрели на четвёртую строчку треугольника: 1, 3, 3, 1. Оказалось, что это никакое не «вюоп», а просто «было».

Так, слово за слово, распутали мы всю абракадабру. Вот что оказалось в записке:

«Сколько было у меня горошин, если Нулик сперва съел одну треть их, затем прихватил не то две, не то четыре горошины, половину остатка я потерял, а Нулик вернул мне половину того, что он прихватил; потом две горошины я подарил, а последнюю унёс ветер? $C \, r \, p \, y \, q \, o \, \kappa$ ».

Час от часу не легче! Разгадал одну загадку — теперь разгадывай другую.

Вот какие дела, старик!

Сева.

СТАРЫЙ ЗНАКОМЫЙ

(Таня — Нулику)

Дорогой Нулик!

Мы всё ещё в том же заколдованном месте.

Расшифровали записку и стали решать задачу стручка. Бились, бились — ничего не выходит! Хотели уж идти в Автоматическую справочную, но Пэ отсоветовал.

— Если вы в самом деле хотите помочь одному незнакомцу,— сказал он таинственно,— решите эту задачу сами. Но для этого необходимо составить уравнение...

Легко сказать, составить уравнение! Составить треугольник Паскаля — это ещё куда ни шло, но уравнение?..

- Понимаю, посочувствовал Пэ, вы ещё не были на нашем образцовом строительстве. Иначе вы уже знали бы, с чем это едят.
 - Строительство уравнение? покачал головой Сева.
- Ничего удивительного! Неужели вы думаете, что можно построить что-нибудь без уравнений?

Мы хотели сейчас же, сию минуту отправиться на это необыкновенное строительство, но директор напомнил, что сегодня праздник. Придётся подождать до завтра.

— Кстати,— добавил он,— сейчас в нашем кафе начнётся выступление знаменитого фокусника. Хотите посмотреть?

Не стоило и спращивать. Кто же откажется от такого удовольствия? И можешь себе представить, на эстраде появился тот самый фокусник,

который выступал в карликанском цирке! Мы обрадовались ему как родному. Сейчас он станет делить нуль на тысячу частей, покажет Великана из Бесконечности... Но всё было иначе.

Фокусник поднял руку, и в ней неизвестно откуда появилась длинная палка. Потом он выпустил палку, но она не упала, а продолжала лежать в воздухе, как на столе. Фокусник предложил публике убедиться, что палка не фальшивая, а выточенная из цельного куска дерева.

Первым на эстраду выскочил Сева, за ним — ещё несколько посетителей. Все они подтвердили, что никакого обмана нет.

Тогда фокусник взмахнул рукой, и вот уже на палке, как воробьи на проводах, уселись его ассистенты — числа 2, 4, 6, 8, 10, 12, 14, 16.

[—] Попрошу уважаемую публику ответить: какой порядок в этом ряду чисел?

- Каждое число больше предыдущего на пять, сказала я.
- Благодарю вас, поклонился фокусник. Так вот, должен вам сделать потрясающее сообщение: ряд чисел, где каждое последующее число больше предыдущего на постоянную величину, называется ар-р-р-ифметической пр-р-рогрессией. Но это ещё не всё. Эта постоянная величина называется разностью прогрессии. И более того: сами числа называются членами прогрессии!
- Ага! Значит, в первом случае разность прогрессии была равна двум, а во втором пяти, сказал кто-то.
 - Браво! воскликнул фокусник.

Сева толкнул меня локтем:

— Всё это хорошо, но когда начнутся фокусы?

Фокусник, наверное, услышал его слова. Он лукаво посмотрел на Севу и снова взмахнул рукой. И вдруг палка, толстая палка, выточенная из цельного куска дерева, согнулась посредине и концы ее сошлись. Теперь числа, сидевшие на равном расстоянии от концов, оказались точно друг против друга: три — против сорока восьми, восемь — против сорока трёх и так далее.

— Попрошу сложить любую пару чисел,— предложил фокусник.

Мы сложили: три и сорок восемь. Получилось пятьдесят один. Затем восемь и сорок три. Снова пятьдесят один. Тринадцать плюс тридцать восемь... Что такое? Опять пятьдесят один! И восемнадцать плюс тридцать три, и двадцать три плюс двадцать восемь — все они в сумме давали одно и то же число: пятьдесят один.

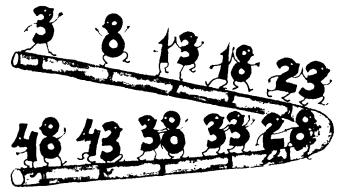
- Вот это уже фокус! закричал Сева.
- Где фокус? развёл руками фокусник. Это вы называете фокусом? Ха-ха-ха! Обыкновеннейшее алгебраическое правило.
 - Но в чём же тогда фокус? хорохорился Сева.

Фокусник небрежно разогнул палку, словно она была из бумаги.

— Попробуйте положить палку в воздухе, согнуть её пополам, потом снова разогнуть, и вы не станете задавать мне такие вопросы!

Все засмеялись, захлопали, а фокусник продолжал:

— Предлагаю сделать небольшой опыт. Кто из вас быстрее сложит все числа этой арифметической прогрессии? Раз, два, три — начали!


В зале зашептались, зашуршала бумага, задвигались карандаши. Мы тоже стали складывать:

$$3+8+13+18+23+28+33+38+43+48$$
.

Сначала складывали в уме, потом — столбиком. От волнения всё время сбивались. Нам очень хотелось сосчитать быстрее. Но почему-то получалось медленно. Под конец чуть не подрались.

Но тут фокусник поднял руку:

— Стоп! Никуда не годится, слишком долго считаете. Можно гораздо быстрее. — И он снова согнул палку пополам. — Попрошу убедиться! Перед вами пять пар чисел. Сумма каждой — пятьдесят один, а сумма пяти пар в пять раз больше. Беру пятьдесят один, умножаю на пять. И что я получаю? Я получаю двести пятьдесят пять! А теперь попробуйте сами. Желающие, подходите, подходите, не стесняйтесь!

Мне уж давно хотелось принять участие в опытах, да как-то неловко было. Но Олег подтолкнул меня, и я очутилась на эстраде.

Теперь на палке были уже другие числа: 7, 11, 15, 19, 23, 27, 31, 35.

- Прошу найти сумму этих чисел,— сказал фокусник.— Быстренько, быстренько!
- В прогрессии восемь членов,— сказала я,— значит, четыре пары. Сумма крайних членов сорок два. Умножаю сорок два на четыре. Получается сто шестьдесят восемь. Правильно?

- Абсолютно правильно! подтвердил фокусник. Сто шестьдесят восемь!
- Но позвольте, вмешался Сева, почему вы в Аль-Джебре решаете карликанские задачи? Это же простая арифметика!
- Вот именно, простая. Применяя такой способ, мы упрощаем решение. Обратите внимание: упрощение один из главных девизов Аль-Джебры. Другой её девиз обобщение. Правило, которое я сейчас вам показал, справедливо для любой арифметической прогрессии. И следовательно...
 - Следовательно, его можно выразить буквами, перебил Олег.
- Великолепно! воскликнул фокусник.— Вы попали в самую точку. Итак, размещаю на палке не числа, а буквы. Каждый член прогрессии обозначаю буквой а и снабжаю её порядковым числом, чтобы не было никакой путаницы. Такое число называется индексом и ставится чуть ниже и справа от буквы.

Фокусник подал знак, и буквы a в сопровождении индексов быстро расселись на палке: a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 .

- Внимание! Приступаю к выводу формулы. В этом ряду под a_1 и a_2 можно подразумевать любые числа.
 - Ну конечно, сказал Сева, так же как и под всеми остальными.
- Думайте, думайте, молодой человек! возразил фокусник. Ведь все эти a члены одной арифметической прогрессии. Поэтому произвольно могут быть взяты только первые два a. Величины остальных зависят от разности между двумя первыми. Итак, обозначаю разность буквой d. Ведь разность прогрессии постоянна. Тогда

$$a_2 = a_1 + d;$$

 $a_3 = a_2 + d;$
 $a_4 = a_3 + d.$

И так до конца прогрессии. Понятно?

— Понятно, понятно! — закричали все.

— Продолжаю! Надеюсь, все заметили, что в этой прогрессии восемь членов. Или четыре пары. Сумму крайних членов записываю так:

$$a_1 + a_8$$
.

Обозначаю сумму всех членов большой латинской буквой $\Im c - S$. Ведь слово «сумма» начинается с этой буквы! Значит,

$$S=4(a_1+a_8)$$
.

Кто-то спросил:

- А если в прогрессии десять членов? Как тогда вычислить сумму?
- Точно так же,— ответил фокусник.— Только пар станет уже не четыре, а пять, и последний член прогрессии будет a_{10} :

$$S=5(a_1+a_{10}).$$

- Стало быть, это справедливо для любого числа членов? не унимался дотошный зритель.
 - Какое число членов вам угодно сложить?
- Пять! Двадцать! Сто семьдесят пять! Двести сорок! Миллион семьсот тысяч! неслось со всех сторон.

Фокусник закрыл уши руками:

— Тише, тише! Сейчас все ваши просьбы будут исполнены.

Он подождал, когда все успокоятся, и снова заговорил:

— Обозначаю число членов буквой Эн — n. Тогда последний член прогрессии будет a энное — a_n , а сумма крайних членов:

$$a_1 + a_n$$
.

Нетрудно догадаться, что число пар будет в два раза меньше числа n, то есть $\frac{n}{2}$. Вот и выходит, что сумма членов запишется так:

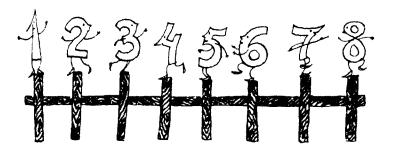
$$S = (a_1 + a_n) \cdot \frac{n}{2} .$$

- Разрешите спросить, сказал Олег, если число членов прогрессии нечётное, как вы его разобьёте на пары?
- А уж над этим вы подумайте сами. Но поверьте честному слову фокусника формула нисколько не изменится.

Он ещё раз сложил свою палку, и она тут же исчезла. Все захлопали, засмеялись. Φ окусник тоже сложился пополам и исчез так же неожиданно, как его палка.

Вот какие фокусы показывают в Аль-Джебре.

последняя калитка


(Нулик — отряду РВТ)

Здравствуйте, ребята! Письмо Тани нам ужасно понравилось. И все мои ученики сразу захотели стать фокусниками. Но я сказал, что фокусником буду я, а они — моими ассистентами. Их дело — сидеть на палке.

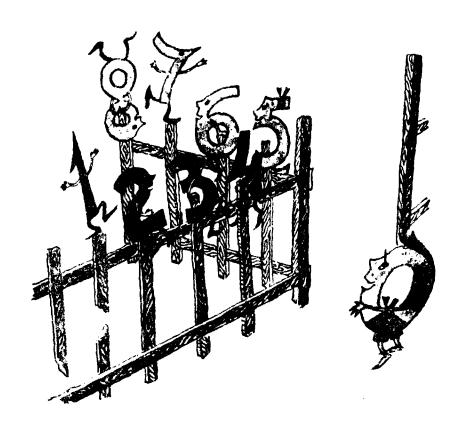
Сначала на палке никто сидеть не хотел. А когда я их уговорил, оказалось, что сидеть не на чем. Потому что мы нигде не могли найти палку, которая складывается.

Я очень расстроился, а все, наоборот, обрадовались и побежали кататься на калитке. Это у нас игра такая. В Арабелле давно уже нет никаких заборов. Случайно остался один по дороге в Римскую провинцию. Там ещё такая скрипучая калитка. Сядешь на неё и ездишь. Вперёд — назад, вперёд — назад!

Ну, я тоже поплёлся. Все стали кататься, а я стоял в сторонке и смотрел. А потом догадался: вот она, палка, которая складывается! То есть не палка, а забор с калиткой. Ведь калитка, если её открыть, доходит до самого забора! А забор сделан из редких поперечных планок. В калитке четыре поперечные планки. Отсчитать ещё четыре на заборе. Выбрать восемь ассистентов — на каждой планке по одному — и открыть калитку до самого конца. Моё предложение понравилось. На палке не хотел сидеть никто, зато на заборе захотели все. Чтобы не было скандала, я отобрал восемь ассистентов по порядку: Единицу, Двойку, Тройку, Четвёрку, Пятёрку, Шестёрку, Семёрку и Восьмёрку.

Сказать по правде, я думал, что это никакая не прогрессия, а натуральный ряд чисел, но у меня другого выхода не было, иначе все бы передрались.

Числа стали на планки. Несколько других ассистентов ухватились за калитку. Я взмахнул рукой, калитка со страшным скрипом поехала к забору... И вот уже у нас получились четыре пары чисел:


4 и 5;

3 и 6;

2 и 7;

1 и 8.

Сложили каждую пару — получилось девять. Вот так штука! Выходит, я сделал открытие: натуральный ряд чисел тоже прогрессия. И разность её равна единице.

Я сложил все числа натурального ряда от единицы до двухсот. Прямо в уме! Вот где мне пригодилась формула фокусника.

Первый член прогрессии a_1 =1, а последний a_n =200. Значит, сумма прогрессии равна:

$$S = (1 + 200) \frac{200}{2} = 201 \cdot 100 = 20100.$$

Двадцать тысяч сто! Вот здорово! От радости я изо всех сил ухватился за калитку и стал её раскачивать вместе с ассистентами. И тут ржавые петли не выдержали, калитка отвалилась, и все попадали на землю. Настроение сразу испортилось. Ещё бы! У кого синяк под глазом, у кого штаны порваны... И мы пошли домой.

По дороге я придумал ещё одну прогрессию:

И так до тысячи. В этой прогрессии разность равна нулю. Ведь нуль всётаки число! Подставил числа в формулу, и получилось:

$$S = (1+1)\frac{1000}{2} = 2 \cdot 500 = 1000.$$

А дома мне здорово влетело от мамы — ей уже успели на меня нажаловаться.

— Это что ещё за фокусы? — сказала она.— Никаких калиток! Чтобы больше этого не было!

Больше и не будет. Потому что кататься всё равно не на чем. Калиткато отвалилась, а она ведь была последняя!

Привет. Нулик-Фокусник.

простота и невероятность

(Олег — Нулику)

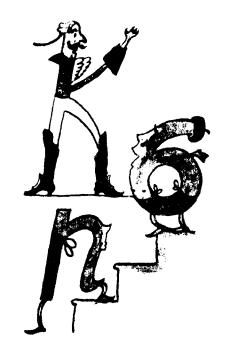
Вот мы и расстались с «Абракадаброй». Директор подробно объяснил, как нам завтра пройти на строительство. Мы поблагодарили его за угощение и пошли побродить.

Был уже вечер. Ярко светились огни домов, вспыхивали и гасли разноцветные вывески. Из раскрытых окон доносилась музыка. Там за накрытыми столами собрались жители Аль-Джебры, чтобы отметить свой праздник.

Нам вдруг стало не по себе. Почему-то захотелось домой. Но тут совсем близко раздался голос из репродуктора: «Внимание! Внимание! Через пять минут в Павильоне невероятных задач начнётся праздничное состязание. Председателем жюри единогласно избран всемирно известный барон Мюнхгаузен. Желающих принять участие просят поторопиться!»

Ты, уж наверное, догадался: мы снова очутились рядом с Парком Науки и Отдыха. Можно подумать, ноги несли нас туда сами!

Вот и Павильон невероятных задач. С трудом отыскали свободные места. На эстраду вышли судьи. Мюнхгаузена встретили громкими аплодисментами. Кстати, роль его исполняла буква Ка. Барон учтиво раскланялся и начал:


— Уважаемая публика! Разрешите мне объяснить правила предстоящего состязания. Каждый участник должен придумать задачу. На первый взгляд она должна быть очень простой — такой простой, чтобы всем показалось, что решить её легче лёгкого. Это — первое условие. Второе... О, второе условие — невероятность решения! Разумеется, я не говорю о решении на бумаге. Наоборот, задача должна быть решена в числах, но практически она должна быть невыполнима.

Итак, повторяю: условие состязания — простота и невероятность. Я мог бы для примера рассказать вам что-нибудь из своей практики. Но, к сожалению, все истории, которые со мной случались, были не только просты, но и вполне вероятны. Почему вы смеётесь? Все знают, что барон Мюнхгаузен самый правдивый человек на свете. Разве не правда, что я верхом на пушечном ядре влетел в неприятельский город? Разве не правда, что я нанизал на бечёвку целую стаю живых уток и вместе с ними взлетел в воздух? Таких правдоподобных историй у меня сколько угодно. Ваше же дело — придумать задачу, невыполнимую на практике. Не поду-

майте только, что она должна быть бессмысленной. За бессмысленные задачи участники платят штраф и выбывают из состязания. Ну что ж, начнём? Попрошу желающих.

На сцену поднялись пухлая Шестёрка и латинская буква Эн. Барон Мюнхгаузен предложил им тянуть жребий. Первой получила слово Шестёрка. Вот что она рассказала:

— В давние времена на Востоке жил могущественный и грозный шах. Он был несметно богат. Все трепетали перед ним. Приближённые не только исполняли, но и предупреждали любое его желание. Сначала это нравилось шаху. Но настал день, когда всё ему наскучило. Не радовали его больше ни наряды, ни яства, привезённые со всех концов света...

День ото дня становился он всё угрюмее. Напрасно поэты слагали в его честь стихи. Напрасно пели для него самые искусные певцы, танцевали самые прославленные красавицы. Ничто не могло развлечь скучающего владыку. Целыми часами сидел он в своих роскошных покоях, бессмысленно глядя в одну точку.

Дошло до того, что он заболел.

Врачи сменялись у его ложа чародеями и предсказателями. Но все их старания ни к чему не приводили. От шаха осталась одна тень. И все поняли, что дни его сочтены.

И вот у решётки шахского дворца появился странник. Босые ноги его были изранены, сквозь грязные лохмотья просвечивало тело. Странник сказался искусным врачом и потребовал, чтобы его пустили к шаху. Стража грубо оттолкнула оборванца. Тот поднял отчаянный крик. Услыхал его вопли шах и пожелал видеть безумца, который осмелился нарушить его покой. Нищего впустили.

— О великий шах,— сказал он,— я пришёл, чтобы излечить тебя от тяжкого недуга.

- Чтобы излечить, надо знать причину болезни,— возразил шах.— Откуда знать тебе то, чего я и сам не знаю?
- Ошибаешься,— сказал странник,— причина твоей болезни скука. Скука бич богатых. Им нечего желать, потому что желания их тут же исполняются. Им не о чем думать, потому что за них думают другие. Я принёс тебе лекарство, которое заставит тебя думать.

Странник достал из-под рваного плаща небольшую доску, расчерченную чёрными и белыми квадратами. Он положил её на низенький столик рядом с шахским ложем и выстроил на ней чёрные и белые фигурки.

— Эту игру,— сказал он,— я назвал шахматами: ведь ей предстоит излечить шаха.

С этой минуты шах ни о чём, кроме шахмат, и знать не хотел. Целые дни проводил он вместе со странником за шахматной доской и подолгу размышлял над каждым ходом. Здоровые его заметно улучшилось. А когда ему удалось впервые выиграть партию, он почувствовал себя совершенно исцелённым.

- Требуй у меня всего, чего пожелаешь,— сказал он своему спасителю.— Захочешь, подарю тебе гору золота, захочешь табун чистокровных арабских скакунов...
- О шах, перебил его странник, не надо мне ни золота, ни скакунов. В твоей стране столько голодных! Накорми их это будет для меня лучшим подарком!
- Какое мне дело до других! воскликнул разгневанный шах.— Я обещал одарить тебя.
- Для себя мне немного нужно, улыбнулся странник. Видишь эту шахматную доску? На ней шестьдесят четыре клетки. Положи на первую клетку одно зёрнышко риса, на вторую два зёрнышка, на третью четыре, на четвёртую восемь. И так удваивай число зёрен на каждой следующей клетке до тех пор, пока не заполнишь последней. Вот и всё.
- Только-то?! облегчённо вздохнул шах.— Мало же ты просишы! Я бы потребовал больше.

Принесли мешок риса, и шах сам начал выкладывать зёрна. На первую клетку положил одно, на вторую — два, на третью — четыре...

Уже на седьмой клетке для шестидесяти четырёх зёрен не хватило места.

— Что же, — сказал странник, — вели ссыпать зёрна в мешок.

Но шаху быстро наскучило считать. Он кликнул слуг. Теперь стали отсчитывать зёрна они: шестьдесят четыре, сто двадцать восемь, двести пятьдесят шесть, пятьсот двенадцать, тысяча двадцать четыре...

Но это была ещё только одиннадцатая клетка!

Стемнело. Зажгли светильники. Слуги чуть не падали от усталости. Когда они дошли до семнадцатой клетки, им нужно было отсчитать шесть-десят пять тысяч пятьсот тридцать шесть зёрен. Но тут они соились со счёта. Несмотря на то что была уже глубокая ночь, шах вслел разбудить мудрецов. Теперь он уже не смеялся — побледнел, осунулся...

Прошли сутки, и ещё одни сутки, и ещё одни сутки, а мудрецы всё считали... Вот уже и они стали валиться от усталости, а конца всё ещё не было видно. Слуги вносили всё новые и новые мешки...

Но вот вбежал насмерть перепуганный хранитель шахских запасов. Он доложил, что в амбарах не осталось ни одного рисового зёрнышка.

- Негодяй! закричал шах страннику. Ты разорил меня!
- Я просил тебя накормить голодных.— ответил странник,— ты не захотел этого. Тогда я изменил свою просьбу. И ты счёл меня глупцом. Попробуй теперь сосчитать, сколько зёрен нужно положить на последнюю, шестьдесят четвёртую клетку, и ты поймёшь, кто из нас глупен. Опустоши все рисовые поля на свете тебе и этого не хватит, чтобы со мной расквитаться.
- Ax так! в бешенстве закричал шах.— Сейчас ты узнаешь, умею ли я платить сполна. Отрубить ему голову!..
- Такова шахская справедливость,— закончила свой рассказ Шестёрка.— А теперь прошу вас убедиться, что задача эта очень проста, но практически невыполнима. Число рисовых зёрен росло по такому правилу: 1, 2, 4, 8, 16, 32 и так далее. Каждое последующее число больше предыдущего в два раза.

Такой ряд чисел называется геометрической прогрессией. Только, пожалуйста, не путайте её с арифметической. В арифметической прогрессии каждое последующее число больше предыдущего на одно и то же число оно называется разностью прогрессии. В геометрической прогрессии каждое последующее число больше предыдущего в одно и то же число раз, и число это называется знаменателем прогрессии.

В нашей задаче знаменатель прогрессии равен двум. Если хотите, эту прогрессию можно записать и так:

$$2^0$$
, 2^1 , 2^2 , 2^3 , 2^4 , 2^5 , 2^6 ...

Нетрудно догадаться, что на шестьдесят четвёртой клетке должно быть 2^{63} — два в шестьдесят третьей степени зёрен, потому что на первую клетку приходится 2^0 — два в нулевой степени зёрен, то есть одно зерно. Но если вы попробуете сосчитать, чему равно два в шестьдесят третьей степени, вы ужаснётесь. Такого огромного количества зёрен никогда не смог бы раздобыть жестокий шах. Он не смог бы даже прочитать это число. Вот оно:

9 223 372 036 854 775 808—

девять квинтиллионов двести двадцать три квадриллиона триста семьдесят два триллиона тридцать шесть миллиардов восемьсот пятьдесят четыре миллиона семьсот семьдесят пять тысяч восемьсот восемь... Уф!

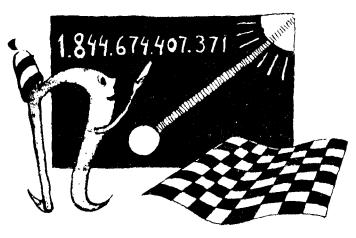
Попробуйте подсчитать, сколько это килограммов риса, если каждое зёрнышко в среднем весит 0, 0182 грамма. Знаете, что получится? Больше ста шестидесяти семи триллионов килограммов! Стоит ли доказывать, что моя задача хоть и проста, но практически невыполнима?

Шестёрка поклонилась и села. Ей долго хлопали. Потом поднялась латинская буква Эн. Она сказала так:

— Уважаемая Шестёрка познакомила нас с геометрической прогрессией, где все числа непрерывно растут. Такая прогрессия называется возрастающей. Я позволю себе занять ваше внимание сразу двумя геометрическими прогрессиями — возрастающей и убывающей. И сделаю это на одном и том же примере. Задача моя будет так же проста, как и предыдущая, и так же невыполнима. Моя предшественница рассказала прелестную сказку об изобретателе шахмат и коварном шахе. Позвольте и мне задать вам задачу, связанную с шахматами.

Эн вынула из кармана платок, развернула его и показала публике. На платке были нарисованы шестьдесят четыре квадрата, чёрные и белые,— как и на шахматной доске.

— Будем считать, — продолжала Эн, — что этот платок заменяет нам шахматную доску. Обратите внимание — толщина платка равна 0,1 — одной десятой миллиметра. Складываю платок пополам. Теперь его толщина стала вдвое больше: две десятых миллиметра. Зато и площадь его стала меньше в 2 раза. Складываю платок ещё раз вдвое. Теперь его толщина в 4 раза больше первоначальной, но и площадь уменьшилась в 4 раза. Попробуйте таким образом перегнуть платок 64 раза. — Эн бросила платок в зал, кто-то его подхватил и стал перегибать: раз, второй...


- Готово! Теперь видна только одна клетка. Площадь платка уменьшилась в шестьдесят четыре раза.
- Вы меня не поняли, возразила Эн самонадеянному зрителю. Я просила не площадь платка уменьшить в 64 раза, а перегнуть его 64 раза. А это совсем не одно и то же. Если бы вам удалось это сделать, толщина платка стала бы такой большой, что он перерос бы горы, миновал солнце и упёрся бы в какую-нибудь отдалённую звезду.
 - А вы докажите! крикнули в зале.

Тогда Эн стала решать задачу на доске.

— Неужели вы не догадались, что я почти повторила предыдущую задачу? После каждого перегибания толщина платка увеличивается вдвое и возрастает по закону геометрической прогрессии: 2, 4, 8, 16, 32, 64 и так далее. Разница только в том, что после шестидесяти четырёх перегибаний толщина платка станет больше не в $2^{5.3}$, а в 2^{64} раз. Оно и понятно: ведь эта прогрессия начинается не с 2^{0} — двух в нулевой, а с 2^{1} — двух в первой степени. Толщина развёрнутого платка 0,1 миллиметра. Чтобы вычислить толщину сложенного платка, надо 0,1 умножить на 2^{64} . Получается 1.844.674.407.371 километр.

Один триллион восемьсот сорок четыре миллиарда шестьсот семьдесят четыре миллиона четыреста семь тысяч триста семьдесят один километр.

А ведь расстояние от Земли до Солнца всего-навсего около ста пяти-десяти миллионов километров!

Кажется, условие состязания выполнено: задача проста и практически невыполнима.

- А где же обещанная убывающая прогрессия? спросил Сева.
- Да здесь же,— ответила Эн.— Ведь в то время как толщина платка увеличивается, площадь его всё время уменьшается: $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$ и так далее. Это и есть убывающая геометрическая прогрессия. После шестидесяти четырёх перегибаний площадь станет в два, взятое в шестьдесят четвёртой степени раз, меньше первоначальной. И если бы складывали платок дальше, то она всё время приближалась бы к нулю, а толщина (или высота) стремилась бы к Великанам в Бесконечность. Вы согласны? Тогда благодарю за внимание.

В зале снова зашумели, захлопали. Барон Мюнхгаузен позвонил в колокольчик и сказал:

— Жюри одинаково восхищено и той и другой задачей. Обеим участницам вручается первый приз.

Он передал победительницам шахматные доски с красивыми фигурами из слоновой кости и добавил:

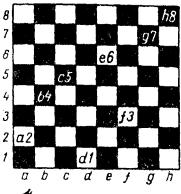
— Меня так заинтересовали оба выступления, что следующее путешествие я совершу в Бесконечность. А потом — кто знает? — может быть, доберусь и до Нуля!

Барон поклонился. Соревнования кончились, и мы отправились спать. Ведь завтра нам идти на строительство! А перед этим не мешает хорошенько отдохнуть.

Олег.

новые открытия нулика

(Нулик — отряду РВТ)


Здравствуйте, ребята! Ну и работу вы нам задали! Теперь мы только и делаем, что играем в шахматы. Каждый сам смастерил себе доску и фигуры. Играем с утра до вечера — то друг с другом, а то и каждый сам с собой. Но я всё-таки успел сделать открытие: по шахматной доске сразу видно, что Карликания и Аль-Джебра друзья. Ведь каждая шахматная клетка имеет своё обозначение, которое состоит из цифр и букв.

Например, e5, a4, d8. Разве это не доказательство дружбы?

Задачу с зёрнами всё-таки решили проверить. Конечно, без риса. Просто все стали писать на своих досках, сколько надо положить рисинок на каждую клетку: 1, 2, 4, 8, 16, 32, 64, 128... Когда заполнили первый ряд, выяснилось, что одни пишут слева направо, а другие справа налево.

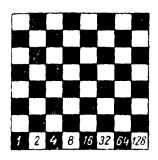
Стали спорить, как надо писать. Положили две доски одну под другой. На одной числа написаны внизу, слева направо, на другой — вверху, справа налево. Числа, одинаково отстоящие от края, оказались друг против друга. Прямо как на палке у фокусника!

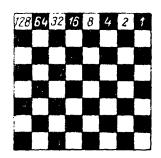
Я попробовал сложить каждую пару, но одинаковых чисел не получилось. Понятно: ведь прогрессия-то не арифмети-

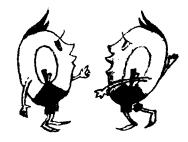
ческая, а геометрическая! Тогда я их перемножил и сделал второе открытие: все произведения оказались совершенно одинаковые:

$$1 \times 128 = 128;$$

 $2 \times 64 = 128;$


 $4 \times 32 = 128;$


 $8 \times 16 = 128$.


Да, теперь я уже не тот Нулик, что прежде. Меня и вправду не узнать. А всё ваши письма!

Дальше считать зёрна никто не захотел — кому же охота писать такие огромные числа? Но один Нулик задал интересный вопрос: если на шестьдесят четвёртую клетку надо положить девять с лишним квин гиллионов зёрен, то сколько всего зёрен будет на доске, если, конечно, заполнить все клетки?

- Что тут думать! сказал другой Нулик.— Всего на доске будет зёрен два в шестьдесят третьей степени. То есть вот эти девять квинтиллионов.
- Ничего подобного, возразил третий, девять квинтиллионов будет только на последней клетке, а на всей доске во много раз больше.

Они заспорили, а я снова посмотрел на свою шахматную доску, где в первом ряду написана геометрическая прогрессия: 1, 2, 4, 8, 16, 32, 64, 128.

После треугольника Паскаля я вообще стал очень внимательно рассматривать числа — всё время ищу закономерности! Вот и сейчас сложил первый член прогрессии со вторым: 1+2=3. Сумма их оказалась на единицу меньше третьего члена — четвёрки. Потом Я сложил 1+2+4. Получилось семь. А это на единицу меньше восьми. 1+2+4+8=15. И это тоже меньше шестнадцати на единицу. Выходит, сумма всех предыдущих членов этой геометрической прогрессии меньше последующего всегда на единицу. А это значит, что на шестидесяти трёх клетках шахматной доски будет столько же зёрен, сколько на последней, шестьдесят четвёртой, только на одно зёрнышко меньше. А всего на доске зёрен будет в два раза больше, чем на последней клетке, минус единица:

$$2 \cdot 2^{63} - 1$$
.

А это ведь всё равно что

$$2^{64}-1$$
.

Так я сделал третье открытие. И для этого мне не понадобилось ни писать всю

прогрессию до конца, ни умножать девять квинтиллионов с хвостиком на два. Так-то!

Нулик-Шахматист.

ВОЛШЕБНАЯ ПРАКТИКА

(Сева — Нулику)

Мы чуть не опоздали к началу рабочего дня. И всё из-за Тани. На стройках, говорит, всегда пыль и грязь. Как бы мне, говорит, там не испортить любимого платья в оборочках. Наконец она появилась в комбинезоне и сапогах, на голове косынка, защитные очки. Прямо хоть снимай для газеты: «Знатная электросварщица Татьяна Н.».

Девчонок хлебом не корми — дай надеть какую-нибудь обновку. Я-то знаю, что не платья ей жалко,— просто захотелось покрасоваться в комбинезоне.

Ну и лицо у нее было, когда она увидела, что строительство больше похоже на ухоженную детскую площадку, где ребята заняты разными техническими играми: пилят, вырезают, конструируют... Только «игрушки» здесь были гораздо крупнее. Кружевные стрельчатые краны легко передвигали в воздухе разноцветные пластикатные детали.

К нам подошла нарядная латинская буква Эф. Она удивлённо покосилась на Танин костюм:

— Хотите познакомиться с нашим экспериментальным строительством? Я вас провожу.

Первым долгом поинтересовались, что здесь строят.

— Да всё, что угодно,— ответила Эф.— Дома́, машины, бассейны... Мы залюбовались высоким домом из разноцветных кубиков... Он вырос прямо на наших глазах — ни дать ни взять воздушный замок. И как же мне жалко стало, когда этот замок вдруг рассыпался, а на его месте возникло длинное двухэтажное здание с плоской крышей.

— Охота была строить, а потом разрушать! — подосадовал я.

Но Эф объяснила, что здесь не просто строят, а делают расчёты, которые тут же проверяют на практике. Я подумал, что если это и практика, то, во всяком случае, волицебная.

К нам подошёл солидный карликан, Девятка.

— Здравствуйте, — обратился он к Эф. — Мы строим дом. Нам надо вырыть котлован для фундамента. Имеются три экскаватора. Первый может вырыть котлован за четыре часа, второй — за три, третий — за двенадцать. Через сколько часов будет готов котлован, если все три экскаватора работают одновременно? Это очень важно! Без этого я не смогу составить график строительства.

- Обратитесь к Главному Составителю,— ответила Эф. Мы переглянулись.
- Нельзя ли и нам повидать Главного Составителя?— спросила Таня.
 - А вы разве умеете решать уравнения? поинтересовалась Эф.

Таня только покраснела. А я сказал напрямик, что мы об этом понятия не имеем.

— В таком случае вам придётся начать с азов! Чтобы решать уравнения, следует прежде всего познакомиться с отрицательными числами.

Ну, это-то мы знали!

Эф облегчённо вздохнула:

- Тогда я могу зачислить вас на строительство в качестве практи-кантов.
 - И мы сейчас же начнём составлять уравнения? брякнул я.
 - О, до этого далеко. Сперва придётся поработать в весовой.

Что ты скажешь? Опять отсрочка! В кармане лежит готовая задача, а ты, изволь радоваться, работай весовщиком!

Эф заметила, как мне досадно.

— В нашем деле лучше не торопиться,— сказала она,— это верный способ сэкономить время.

Ничего не поделаешь, пошли в весовую. Кстати, я давно не взвешивался. А в этой Аль-Джебре похудеешь!

Сева.

ВЕСОВАЯ

(Таня — Нулику)

Что ни говори, Нулик, Аль-Джебра — удивительное государство! Вчера были в современном кафе, сегодня на сверхскоростном строительстве, и вот не успели опомниться, как попали в гости к древнему восточному кудеснику.

Как ты себе представляещь весовую? Большой амбар, тяжёлые неуклюжие весы. У весов — дюжий весовщик в брезентовом фартуке и рукавицах. А вокруг — мешки, ящики, корзины...

Так вот, ничего подобного не было. Нас ввели в полутёмный сводчатый зал с тонкими витыми колоннами, такой высоченный, что потолка не видно. Будто над тобой ночное небо, только без луны и звёзд. Вместо

них в полумраке светятся какие-то закорючки и загогулины. Должно быть, восточные письмена. Посреди зала — большие старинные весы: тяжёлые медные чашки, подвешенные на цепях к концам металлического коромысла. Весы тоже сплошь в закорючках и загогулинах. Они парят в воздухе, как большая диковинная птица. А между чашками, словно глазок радиоприёмника, сверкает зелёный кошачий глаз.

Садитесь, — шепнула Эф.

Мы оглянулись: ни стульев, ни кресел. Только несколько пёстрых ковриков на полу. Эф уселась на одном из них, скрестив ноги. Мы сделали то же самое.

Бам! Что-то зазвенело — будто стукнулись два медных подноса, — и из темноты вынырнула фигура в длинном чёрном балахоне с жёлтыми разводами. На голове — белая шёлковая башня. Называется тюрбан. И борода у него тоже белая и шелковистая.

— Главный Весовщик,— шепнула Эф.— Следите за ним внимательно.

Весовщик приложил руку к сердцу и поклонился. Мы тоже приложили руки к сердцу и поклонились. Потом он взмахнул палочкой, и на каждой чашке весов появилось по Семёрке — обе в светящихся костюмах. Я так на них загляделась — даже не заметила, что в кошачьем глазке засветились две чёрточки. Эф легонько толкнула меня локтем.

- Это знак равенства. Семь равно семи, негромко сказала она.
- Уж конечно, не восьми, фыркнул Сева.

Но тут Весовщик снова взмахнул палочкой, и на правой чашке весов вместо Семёрки оказалась Восьмёрка. Чашка сразу опустилась. Мы взглянули на зелёный глазок: чёрточки знака равенства соединились слева и образовали уголок:

7<**8**.

— A вот знак неравенства. Он обозначает, что семь меньше восьми,— пояснила Эф.

Тут Восьмёрка и Семёрка поменялись местами. Теперь уже опустилась левая чашка. Чёрточки в кошачьем глазке снова задвигались и соединились правыми концами:

— Понятно, — сказал Олег, — этот знак показывает, что восемь больше

a+b=c.

Сева.

Но в Севу точно бес вселился! Всё ему не нравилось.

- Почему это, придрался он, Весовщик думает, что a+b равно c?
- А он вовсе и не думает он требует этого, ответила Эф. Наверное, ему для какой-то задачи понадобилось, чтобы левая часть непременно была равна правой.
- А может быть, он всё-таки ошибается? заупрямился Сева. Ведь под буквой можно подразумевать любое число! Вот я сейчас попрошу заменить все три буквы числами.

Он встал и подошёл к Весовщику. Признаться, я очень испугалась: вдруг Весовщик рассердится и превратит Севу в какое-нибудь неравенство? Но он вовсе не рассердился. Наоборот, прижал руку к сердцу, и вот уже на левой чашке весов вместо буквы a стоит число Четыре, вместо b — Пять, а на другой чашке вместо c — Девятка:

$$4+5=9$$
.

Но Сева не унимался:

— Нет, так не пойдёт, уважаемый Главный Весовщик! Вы просто поставили те числа, которые вам выгодно. Позвольте, я сам!

Он назвал другие числа. Весовщик улыбнулся и снова пустил в ход свою палочку. Коромысло закачалось, в глазке зажёгся знак неравенства. И мы увидели вот что:

$$6 + 7 < 20$$
.

— Что я говорил!— закричал Сева.— Выходит, $\mathfrak a$ плюс $\mathfrak b$ не равно $\mathfrak c$.

И тут молчаливый Весовщик не выдержал.

— О неразумный отрок!— заговорил он тонким скрипучим голосом.— Если ты хочешь стать мудрецом, не болтай языком, не подумав. Под буквами действительно можно подразумевать произвольные числа. Но только до тех пор, пока они не связаны знаком равенства. В равенстве a+b=c можно произвольно заменить числами не три, а только две буквы. Величина третьей выяснится сама собой. Замени две из этих букв числами.

Сева подумал, пошевелил губами...

— Пусть a будет равно пяти, а c — двенадцати.

На весах появилось выражение:

$$5+b=12.$$

— Скажи теперь,— улыбнулся Весовщик,— можно ли вместо b подставить любое число?

Но Сева не успел и рот открыть, как на весах вместо буквы b засветилась Семёрка:

$$5+7=12.$$

Сева почесал за ухом.

— Да! С этими равенствами не разгуляещься. Зато уж в неравенстве подставляй что душе угодно — так неравенством и останется.

Весовщик укоризненно покачал головой:

- Опять говоришь не подумав. Неравенство неравенству рознь.

Он взмахнул палочкой. На левой чашке весов появились c+d, на правой c, а между ними — знак неравенства:

$$c + d < c$$
.

Правая чашка весов опустилась.

— Назови вместо этих букв любые числа,— предложил Весовщик. Сева назвал. И на левой чашке весов мы увидели 4+8, а на правой 9. Левая чашка весов опустилась, и знак неравенства повернулся остриём вправо:

$$4+8>9$$
.

- Ага! Неравенство сохранилось, обрадовался Сева.
- Да,— сказал Весовщик,— но теперь левая часть стала больше правой, а не меньше, как мы условились.
- Почтенный Весовщик,— вмешался Олег,— вы хотите сказать, что, подставив в левую часть этого неравенства 4+8, справа можно подставить любое число, но при одном условии: оно должно быть больше двенадцати. Тогда левая часть всегда будет меньше правой.
- Вот именно, вот именно!— умилился Весовщик и так закивал головой, что вот-вот борода отвалится! Потом он перестал кивать и взглянул на Севу.

Тот стоял надутый, взъерошенный, как воробей после драки.

— Вижу, — сказал Весовщик, — тебе во что бы то ни стало хочется подставлять любые числа под все буквы. Так и быть, попробуй ещё разок.

На весах засветилось равенство:

$$3a+2b=2a+3b-b+a$$
.

- Нет уж, спасибо!— Сева даже руками замахал.— Теперь меня не проведёшь.
- Зря отказываещься. В этом примере можно подставлять вместо a и b любые числа, какие вздумается.

Весовщик подставил вместо a Четвёрку, вместо b — Тройку:

$$3 \cdot 4 + 2 \cdot 3 = 2 \cdot 4 + 3 \cdot 3 - 3 + 4$$

И сейчас же числа эти исчезли, уступив место числу 18 на каждой чашке весов:

$$18 = 18.$$

Сева растерянно поморгал глазами. Опять он попал впросак. Но почему?

— Да потому, -- ответил Весовщик, -- что это равенство особое. Оно

называется тождеством. Какими числами ни заменяй буквы в тождестве, равенство всё равно сохранится.

- Но как отличить тождество от обычного равенства, не подставляя чисел вместо букв?— спросила я.
- Для этого надо обе части равенства сделать совершенно одина-ковыми. Смотрите!

Мы увидели на весах прежнее тождество:

$$3a+2b=2a+3b-b+a$$
.

Тут Весовщик протянул руки к правой чашке весов и как закричит:

— Подобные, приведитесь!

И сейчас же 2a в правой части соединились ещё с одним a; 3b, из которых вычли одно b, превратились в 2b, и на весах образовалось другое выражение:

$$3a+2b=3a+2b$$
.

Покончив с тождеством, Весовщик взмахнул палочкой, и на ней очутился металлический обруч. С такими у нас занимаются художественной гимнастикой.

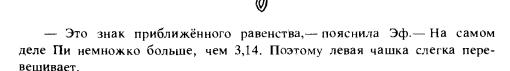
Я чуть не фыркнула: неужели Весовщик собирается танцевать с обручем? Вот будет весело! Но танцевать он не стал, а достал верёвочку и измерил ширину круга в самом его широком месте.

— Эта ширина называется диаметром круга,— пояснил он. Хотя кто же этого не знает?

Потом Весовщик стал укладывать этот верёвочный диаметр по обручу, чтобы измерить длину окружности. Сделал отметку, уложил верёвочку один раз, второй, третий, но до отметки все ещё не дошёл. Выходит, длина окружности больше, чем три её диаметра. Весовщик стал откладывать верёвочку в четвёртый раз, но её оказалось слишком много. На глаз получалось, что надо отложить только одну пятую верёвочки. Весовщик отрезал одну пятую, но и этот кусочек оказался длиннее, чем нужно. Значит, длина окружности меньше, чем три и одна пятая диаметра.

Тогда Весовщик разрезал этот кусочек верёвки пополам, и он стал равен одной десятой диаметра. Но теперь его не хватило до отметки. Значит, длина окружности меньше, чем три и одна пятая, но больше, чем три и одна десятая диаметра.

Долго Весовщик возился с этой задачей, а потом улыбнулся и сказал:


- О мои юные друзья, я пошутил. Я и раньше знал, что решить эту задачу точно невозможно. Мне только хотелось, чтобы вы убедились в этом сами. Во сколько раз длина окружности больше своего диаметра, можно подсчитать только приближённо. Вычислите это число с точностью хоть до миллиона знаков, оно всё равно не будет совершенно точным.
 - Значит, это иррациональное число? спросил Олег.
- Конечно! подтвердила Эф. Мы можем указать, где оно живёт на монорельсовой дороге, но выразить его точным числом нельзя. В Аль-Джебре его обозначают греческой буквой $\Pi u = \pi$. Смотрите, вот оно.

На левую чашку весов вспорхнула буковка, слегка напоминающая русское «п», а на правой появилось число 3,14.

— Число Пи приближённо равно трём целым и четырнадцати сотым,— объяснил Весовщик.

Он взмахнул палочкой. Чашка с буквой Пи чуть-чуть опустилась, а в кощачьем глазке появились две волнистые линии: \approx .

Снова стукнулись два медных подноса, и Главный Весовщик исчез. Прямо-таки растаял.

— Перерыв на пятнадцать минут!— объявила Эф. Как ты думаешь, может, и мне объявить небольшой перерыв?

АЛЬ-ДЖЕБР!

(Сева — Нулику)

Знаешь, Нулик, напрасно я злился на этого Весовщика. Он даже почище фокусника. Фокусников и у нас пруд пруди. А настоящего живого чародея днём с огнём не сыщешь.

В перерыве я подговаривал ребят смыться. Сколько можно возиться с неравенствами, равенствами и всякими Пи? Пришли составлять уравнение, так чего там!.. Но Олег сказал, что сперва неплохо бы выяснить, что такое уравнение. Ах да! Я и позабыл.

Снова стукнулись медные подносы, вернулась наша Эф, и мы опять уселись на коврики. Только я хотел спросить, где же Весовщик, а он уж тут как тут! Сидит под весами, словно никуда не исчезал.

Весовщик взмахнул палочкой, и над каждой чашкой весов появилось по числу 14. В глазке засверкал знак равенства.

«Здравствуйте! — подумал я. — Всё сначала!»

Но я ошибался. Кроме чисел 14, на каждой чашке весов появилось по Пятёрке:

$$14+5=14+5$$
.

Чашки не дрогнули, глазок по-прежнему показывал равенство. Потом вместо этих чисел на весы стали две суммы:

$$a+b=c+d$$
.

И снова подле каждой из них засветились одинаковые числа, на этот раз Тройки:

$$a+b+3=c+d+3$$
.

Чашки не шелохнулись.

- Видите, сказал Главный Весовщик, если к обеим частям прибавить по одинаковому числу, равенство не нарушится. Понятно, что можно не только прибавить, но и вычесть по одинаковому числу. Можно умножить обе части или разделить их на одинаковые числа равенство всё равно сохранится.
 - А если прибавить не числа, а одинаковые буквы? спросил я.
- На здоровье!— ответил Весовщик.— Ведь буква то же число. Вот смотрите.

Теперь к суммам на весах прибавились буквы n. Равенство не исчезло:

$$a+b+3+n=c+d+3+n$$
.

Ох, и заскучал я от этих равенств, даже спать захотелось! Но тут случилось такое, что сон с меня как ветром сдуло.

На левой чашке весов засветилась буква, на которую я до сих пор и внимания не обращал,— Икс из латинского алфавита: х. Ты её знаешь, она точь-в-точь знак умножения или русское Ха. Ставь её на голову, поворачивай спиной — со всех сторон одинаковая! Рядом с Иксом засветилась Тройка, между ними вспыхнул знак минус, а на правой чашке весов оказался твой тёзка, Нулик:

$$x - 3 = 0$$
.

В кошачьем глазке появился знак равенства и... Только не пугайся! Икс быстро обернулся (он, оказывается, стоял к нам спиной), и мы увидели, что на нём чёрная маска. Вот так история! Подумать только, под Чёрной Маской скрывается Икс!

Тут мы все повскакали, бросились к этому Иксу, схватили его за руки — а вдруг опять убежит? А он и не думает убегать. Стоит себе, глазами хлопает,

- В чём дело? спрашивает. Мы как будто незнакомы.
- Как? Разве не вы та самая Чёрная Маска, которая подбросила Нулику зелёный стручок? И разве не вас мы должны расколдовать?
- Нет, я не тот, кого вы ищете. Ведь в Аль-Джебре нас, Иксов, как капель в море. Этой буквой обозначается неизвестное число.

Пришлось нам извиниться и вернуться на свои коврики. Но коечто мы всё-таки разузнали: Чёрная Маска — неизвестное число.

А Весовщик продолжал как ни в чём не бывало:

— Перед вами равенство x-3=0. Но оно немного отличается от тех, что я вам показывал до сих пор. Это не тождество, не просто равенство, а уравнение первой степени.

«Давно бы так!» - подумал я.

— В чём его особенность? — продолжал Весовщик. — Если в тождестве можно заменить любыми числами все буквы, а в обычном равенстве — только некоторые, то в уравнении первой степени вместо буквы Икс может стоять только одно-единственное число. Иначе равенство нарушится. Найти это единственное неизвестное число и значит решить уравнение. Пока уравнение не решено, никто не знает, чему равен Икс. Потому-то он и надевает чёрную маску. Стоит решить уравнение, и маска упадёт сама собой.

С этой минуты скуки моей как не бывало. Я вдруг понял, что всё, что

мы до сих пор узнавали в Аль-Джебре, нужно, чтобы решить уравнение и расколдовать Чёрную Маску. Не зря мы дрожали от страха в тёмном подземелье, не зря торчали на воздушной монорельсовой дороге, корпели над шифром в «Абракадабре», не зря и сейчас слушаем этого кудесника с белой башней на голове. А в том, что он кудесник, можешь не сомневаться. Разве простой человек заставил бы меня полюбить то, что я терпеть не мог?

Теперь Весовщик говорил, а я смотрел ему в рот, боялся словечко пропустить.

— Как же решается уравнение x-3=0? Это очень простое уравнение. Чтобы решить его, достаточно, пожалуй, одного заклинания.

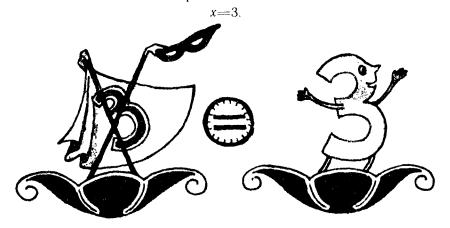
Он распахнул руки в широченных шёлковых рукавах и завопил:

— Аль-джебр!

«Аль-джебр, аль-джебр!» — отозвалось где-то наверху.

И сейчас же на весах появилось равенство:

$$x-3+3=3$$
.


— Вы уже знаете,— пояснил Весовщик,— если прибавить к обеим частям равенства по одинаковому числу, ничего не изменится. Вот я и поставил на каждую чашку весов по числу Три.

Но тут обе Тройки слева от знака равенства исчезли.

- Куда это они? удивился я.
- Неужели ты забыл правила движения на монорельсовой дороге? Минус Три и плюс Три числа с разными знаками. Значит, они взаимоуничтожаются. Получается, что Икс равен Трём:

$$x - 3 + 3 = 3$$
.

На весах появилось новое равенство:

Чёрная маска, закрывавшая лицо Икса, свалилась. Икс низко по-клонился и убежал.

- Занятно!— Олег задумчиво поглядел на весы.— В уравнении x—3=0 Тройка была на левой чашке весов. Теперь она очутилась на правой.
- Правильно,— подтвердил Весовщик.— Но слева она была со знаком минус, а справа оказалась со знаком плюс. Хоть он там и не стоит, но подразумевается.
- Зачем же тогда добавлять к обеим частям уравнения по Тройке? — сказал Олег. — Можно ведь просто перенести Тройку с левой чашки весов на правую, только с обратным знаком.
- Твои слова для меня мёд!— поклонился Весовщик.— Именно так и решают уравнения. А Тройки я прибавил лишь затем, чтобы вы поняли, почему можно переносить число с одной стороны на другую. Да будет вам известно, что перенос отрицательного числа из одной части равенства в другую называется восстановлением. Название это осталось у нас с тех самых пор, когда отрицательные числа считались бессмысленными. Перенос отрицательного числа в другую часть равенства с обратным знаком как бы восстанавливал его в правах, превращал в положительное число. Восстановление по-арабски «аль-джебр». Это волшебное слово завещал нам великий учёный Мухаммед ибн Муса аль-Хорезми. Оно есть в заглавии написанной им книги, которая положила начало нашему государству и называется «Книга восстановлений и противопоставлений».

Он указал на светящиеся в полумраке арабские письмена и прочитал:

- «Китаб аль-джебр валь-мукабала».
- Большое вам спасибо,— сказал Олег.— Что такое восстановление, мы как будто поняли. Но что такое противопоставление?

Тут снова стукнулись медные подносы. Весовщик загадочно улыбнулся и растаял в темноте. Мне послышался голос мамы-Двойки: «Всякому овощу своё время!» С тех пор как мы здесь, эта пословица так и звенит у меня в ушах!

Даже не верится: неужели настанет день, когда мы сядем рядом, возьмём задачу зелёного стручка и решим её сами, без всяких провожатых и весовщиков?

Сева.

вверх-вниз!

(Олег — Нулику)

Что ты скажешь, Нулик, не дают нам лететь вперёд сломя голову! Вышли из весовой, спрашиваем у Эф:

— Когда начнём составлять уравнения?

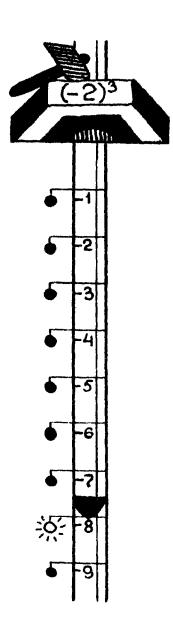
А она:

- Сперва научитесь решать.
- Вот те раз! Сперва решать, а составлять потом?
- В Аль-Джебре считают, что так целесообразней.

Что ж, решать так решать. Чем скорее, тем лучше.

— Как раз наоборот,— отвечает Эф,— чем скорее, тем хуже. На сегодня довольно. Ваш рабочий день кончился. Отдохните, а завтра приходите снова.

И мы пошли отдыхать.


В общем, это не так уж плохо, особенно если под боком Парк Науки и Отдыха.

В парке, как всегда, было полно народу.

Стали думать, куда пойти. Сева непременно хотел посмотреть чтонибудь новенькое. Тане не терпелось опять побывать у силомера. Но я их помирил: предложил пойти к силомеру и всё-таки увидать кое-что новое. Потому что мы ведь не успели заглянуть в колодец, где живут отрицательные числа!

Когда мы подошли к молотку, какой-то чудак возводил в квадрат квадратные корни. Задумает, например, корень квадратный из трёх и возведёт его в квадрат. Понятно, ничего, кроме трёх, при этом получиться не может. Потому что извлечение корня и возведение в степень — действия взаимоуничтожающиеся.

$$(\sqrt{3})^2 = 3.$$

Представь себе, что к какому-нибудь числу прибавили пять и тут же снова вычли. От этого число не изменилось. Точно так же не изменится число, если из него сперва извлекут корень квадратный, а потом снова возведут в квадрат.

Покончив с квадратными корнями, чудак стал возводить в третью степень корень третьей степени из пяти и, конечно, получил пять:

$$(\sqrt[3]{5})^3 = 5.$$

Он долго стучал молотком, и каждый раз зажигалась зелёная лампочка.

Сева спросил у него, зачем он зря тратит время. Чудак неодобрительно хмыкнул:

— Погостите у нас — узнаете, что без этого иной раз не проживёшь.

Наконец он устал и отошёл в сторону. А молоток взяла крохотная буковка $\mathbf{B}\mathfrak{d}-\mathfrak{d}$. Она возвела в квадрат число 41. Гирька взлетела высоко-высоко, к числу 1681, и зажглась зелёная лампочка. Малютка $\mathbf{B}\mathfrak{d}$ запрыгала от радости: ничего, мол, что росточком не вышла, зато гирьку вон куда забросила!

Подошла очередь Севы.

— Дайте-ка мне возвести в квадрат отрицательное число. Возведу, а потом загляну в колодец. Только гирьки, пожалуй, там и не увидишь. Ведь чем больше число, тем глубже она уходит в колодец. А я возьму число не маленькое. Ну, хотя бы минус сорок один. Насколько я понимаю, минус сорок один в квадрате равно минус тысяче шестистам восьмидесяти одному.

Кругом защептались. Сева стукнул молотком, гирька ушла вниз. Мы заглянули в колодец: где-то там, в тёмной глубине, зажглась красная лампочка.

- В чём дело? всполошился Сева. Что-нибудь не так?
- Конечно, пропищала крошка Вэ, вы забыли переменить знак. Ведь отрицательное число, возведённое в квадрат, становится положительным.

Сева схватился за голову.

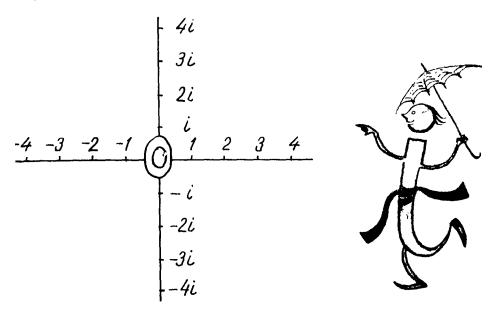
— Какой же я осёл! Ведь возвести в квадрат — значит помножить число само на себя! А минус на минус даёт плюс.

Он отощёл, уступив место Тане.

Она возвела в квадрат минус три. Получилось плюс девять. Гирька подскочила, и загорелся зелёный огонёк. Потом Таня возвела минус три в третью степень. Получилось минус двадцать семь. Гирька ушла в колодец, и там снова вспыхнула зелёная лампочка.

— Дай-ка мне!

Я взял у Тани молоток и стал возводить минус три в четвёртую степень, пятую, шестую, седьмую...


Гирька по очереди то подпрыгивала всё выше и выше, то уходила всё глубже в колодец. И каждый раз загорался зелёный огонёк. Тут-то я и понял, что, когда отрицательное число возводишь в чётную степень, ответ получается положительный, а когда в нечётную — отрицательный. Хочешь знать почему? Возьми карандаш и разберись сам.

Наконец мы решили, что достаточно углубили свои знания в колодце, и отправились дальше.

По дороге нам повстречалась старая знакомая — та самая Мнимая Единичка, которая спрашивала у Автомата, найдётся ли ей место в жизни. Мы её сразу узнали по маленькому красному зонтику.

- -- Здравствуйте, как поживаете?
- Отлично, ответила она. Автомат сказал правду: и Мнимая Единица на что-нибудь да годится.
- Неужели вы нашли себе место на воздушной монорельсовой дороге?
- Конечно, но не на той ветке, где живут действительные числа. У нас, Мнимых Единиц, собственная дорога. Она пересекает воздушную монорельсовую как раз на Нулевой станции.
 - Как же мы её не заметили? спросил Сева.

- Так ведь наша дорога мнимая и не сразу бросается в глаза.
- Жаль, что не сразу!— сердито отрезал Сева.— Теперь придётся возвращаться, чтобы посмотреть на неё.

— Возвращаться к старому иногда полезно,— заметила Мнимая Единичка.— Но с небольшим кусочком мнимой дороги вы можете познакомиться и здесь. В парке построен новый аттракцион. Он называется «Мнимая карусель». Я там работаю. Хотите взглянуть?

Хотим ли мы взглянуть на карусель, да ещё мнимую? Как ты думаешь?

Олег.

МНИМАЯ КАРУСЕЛЬ

(Таня — Нулику)

Вот тебе, Нулик, наши последние новости.

По дороге к аттракциону всё чаще мелькали рекламные плакаты:

ПЕРВАЯ В МИРЕ МНИМАЯ КАРУСЕЛЬ!

Исключительно для мнимых единиц!

ЕДИНСТВЕННОЕ МЕСТО, ГДЕ МНИМЫЕ ЕДИНИЦЫ МОГУТ СТАТЬ ДЕЙСТВИТЕЛЬНЫМИ!

Мнимые Единицы, кружитесь на здоровье!

Наша симпатичная подружка щебетала без умолку и рассказала кучу интересного.

Оказывается, Мнимая Единица — это просто-напросто корень квадратный из отрицательной единицы: $\sqrt{-1}$.

- A разве из минус единицы нельзя извлечь корень? спросил Cева. Ведь корень квадратный из единицы всегда равен единице.
- Ой-ой-ой!— ужаснулась Мнимая Единичка.— Это касается только положительной единицы. Ведь что значит извлечь корень квадратный, скажем, из девяти?
- Это значит найти такое число, которое при возведении в квадрат равнялось бы девяти,— ответил Олег.— Это число три.
- Верно. А теперь попробуйте найти число, которое при возведении в квадрат даёт минус единицу!— Мнимая Единичка тоненько засмеялась. Сева озадаченно взъерошил волосы:
- М-да! Такого числа нет. Какое число ни возводи в квадрат, положительное или отрицательное, ответ всё равно получится положительный. Уж я-то знаю!
- Вот видите. Потому-то корень квадратный из минус единицы называется мнимой единицей.
- Выходит, мнимые единицы совсем особые числа. Наверное, и дорога у вас устроена как-нибудь особенно?
- Ничуть. Наша дорога очень похожа на ту, где живут действительные числа, только расположена она под прямым углом к ней. Это такая же бесконечная прямая, в центре которой находится всё та же Нулевая станция.

- Раз у вас есть Нулевая станция, значит, есть положительные и отрицательные числа?
- Что вы! Разве мнимые числа могут быть положительными и отрицательными? Просто на нашей дороге, так же как и на дороге действительных чисел, есть два направления от нуля. Одно из них условились обозначать знаком плюс, другое знаком минус.
 - Но как же мнимые числа отличают от действительных?
 - С помощью буквы i:

$$2i$$
, $5i$, $-8i$, $-12i$.

- Вот как! У вас, как и у других букв в Аль-Джебре, тоже есть коэффициенты?
 - Конечно.
 - А где же ваш коэффициент? ляпнул Сева.

И когда только он научится вести себя в обществе? Хорошо ещё, воспитанная Единичка сделала вид, что не заметила его бестактности.

— Мой коэффициент — единица, и он, как всегда, невидимка.

Но Сева уже закусил удила. Ужасный он спорщик!

- Вот вы говорите, что мнимая монорельсовая дорога похожа на действительную. Значит, и правила движения на ней те же. Так ведь? Тогда при чём здесь карусель? Ведь на обычной монорельсовой дороге движение идёт по прямой, а карусель-то кружится?
- Вы отчасти правы,— ответила Мнимая Единичка.— Правила движения у нас более разнообразны. При сложении и вычитании вагончики на мнимой дороге движутся по прямой и по тем же правилам, что и действительные числа:

$$2i+3i=5i;$$

 $8i-15i=-7i.$

или вот ещё:

$$-3i+9i=6i$$
,

ну и конечно:

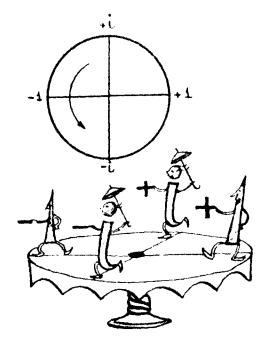
$$5i - 5i = 0.$$

Мнимые Единички с разными знаками и одинаковыми коэффициентами взаимоуничтожаются на Нулевой станции.

Иное дело — умножение, деление, возведение в степень... Тут уж Мнимые Единицы двигаются не только по прямой, но и по кривой. Именно это вы сейчас и увидите.

Мы вошли в круглый павильон. Там было полным-полно Мнимых Единиц. Все они с нетерпением ждали своей очереди покружиться.

Павильон очень похож на цирк. Места расположены амфитеатром. В центре — арена, её под прямым углом друг к другу пересекают две перекладины. Одна перекладина изображает монорельсовую дорогу действительных чисел. На концах её укреплены таблички $\begin{bmatrix} +1 \\ +1 \end{bmatrix}$ и $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$. Другая перекладина изображает дорогу мнимых чисел. Здесь на концах находятся таблички $\begin{bmatrix} +i \\ -i \end{bmatrix}$ и $\begin{bmatrix} -i \\ -i \end{bmatrix}$. На пересечении дорог, в центре арены, — Нулевая станция. Здесь укреплена вращающаяся ось, и на неё (совсем как патефонная пластинка) надет прозрачный пластмассовый круг.


Когда мы вошли, карусель только что остановилась. С неё легко соскочила Мнимая Единица с зелёным зонтиком. Вместо неё на круг против таблички $\boxed{+i}$ стала Мнимая Единица с жёлтым зонтиком.

Наша спутница подошла к микрофону и скомандовала:

— K возведению в степень приготовиться!

Прозвенел звонок, и под звуки плавного вальса круг тронулся. Только не по часовой стрелке, а в обратную сторону. И тут-то начались необыкновенные вещи!

Мнимая Единица с жёлтым зонтиком пересекла дорогу действительных чисел у таблички $\boxed{-1}$ и превратилась в действительное число — Отрицательную Единицу. Возле таблички $\boxed{-i}$ она снова стала Мнимой Единицей, но уже со знаком минус. Вот она снова пересекла действительную дорогу, поравнялась с табличкой $\boxed{+1}$ и — невероятно! — опять превратилась из Мнимой Единицы в Действительную, да ещё положительную. А потом как ни в чём не

бывало возвратилась к табличке [i]. Тут она снова стала Мнимой.

Оркестр заиграл песню «Каким ты был, таким остался!», и всё началось сначала. Карусель кружилась, а Мнимая Единица всё превращалась и превращалась.

- Не понимаю, сказал Сева. Мнимая Единица превращается в Действительную, Действительная опять в Мнимую... Как это?
- На то и возведение в степень!— отозвалась Мнимая Единичка.— Ведь Мнимая Единица равняется корню квадратному из минус единицы: $i = \sqrt{-1}$. Но если возвести в квадрат корень квадратный из любого числа, что получится?
 - Подкоренное число, ответил Олег.
- Так это же мы недавно видели!— вспомнил Сева.— Один карликан целый час возводил в квадрат то корень квадратный из трёх, то корень квадратный из двух... И каждый раз получалось число, стоящее под радикалом.
 - То же самое происходит и с Мнимой Единицей:

$$i^2 = i \cdot i = (\sqrt{-1})^2 = -1.$$

- Ну, это понятно. А как же действительное число минус единица превращается в мнимое?
- При этом Мнимая Единица возводится уже не в квадрат, а в куб, то есть в третью степень:

$$i^3 = i^2 \cdot i$$
.

А это ведь всё равно что умножить минус единицу на і:

$$-1 \cdot i = -i$$
.

— Теперь,— сказал Олег,— нетрудно понять, как Мнимая Единица с минусом -i превращается в Действительную Единицу со знаком плюс +1. Она возводится в четвёртую степень:

$$i^4 = i^2 \cdot i^2.$$

А это можно представить себе и так:

$$-1 \cdot -1 = +1$$
.

— Прекрасно! — воскликнула Мнимая Единичка. — Остаётся выяснить, как Действительная Единица снова становится Мнимой.

В самом деле, как? Тут даже Олег ни до чего не додумался. Но оказалось, что для этого Мнимую Единицу надо возвести в пятую степень.

- Не может быть! i^5 равно i?!— растерялись мы.— Как же так? Что же это такое?
- Да ничего особенного: $i^4 = 1$. Чтобы получить i^5 , умножим единицу на i. А это ведь всё равно что i, взятое один раз, то есть просто i:

$1 \cdot i = i$.

- Вот так история! Мнимую Единицу нельзя возвести более чем в четвёртую степень?— удивился Олег.
- Отчего же!— возразила Мнимая Единичка.— Возводите себе на здоровье и в шестую, и в седьмую, и в сто двадцать первую... Словом, в любую целую степень. Но ничего, кроме того, что уже было, не получится. На то и карусель!

Тут Севе срочно понадобилось выяснить, чему равняется i^{17} .

- Ну, это совсем нетрудно, i в пятой равно i,— сказала Мнимая Единичка.— Значит, i в девятой тоже равно i...
- Понимаю! перебил Сева. Каждый раз надо прибавлять к показателю степени четыре: i^{13} равно i, значит, i^{17} тоже равно i.

Вот, Нулик, хорошая задача для твоих учеников. Попробуйте вычислить, чему равно i^{24} . А чтобы вам легче было, загляните в чертёж мнимой карусели.

Долго ещё любовались мы превращениями Мнимых Единиц, а когда уже собрались уходить, Сева хлопнул себя по лбу:

- Чуть не забыл спросить! Вы сказали, что при возведении в степень Мнимые Единицы движутся по кривой. А ведь здесь они движутся по окружности!
- Окружность тоже кривая, но такая, где все точки находятся на одинаковом расстоянии от центра. При умножении и возведении в степень перемещаются по окружности только Мнимые Единицы.
- А как движутся другие мнимые числа при возведении в степень?— спросил Олег.— Два *i*, три *i*, четыре *i*?
- На нашей карусели вы этого не увидите,— сказала Мнимая Единичка.— Да оно и к лучшему. Нельзя же всё сразу...

- Всякому овощу своё время? подмигнул Сева.
- Пожалуй, улыбнулась Мнимая Единичка.

Мы поблагодарили её и распрощались. Но тут пришла очередь Олегу хлопать себя по лбу.

- Извините, пожалуйста, сказал он, обернувшись, а зачем вообще нужны мнимые числа?
- Это вы поймёте, когда начнёте решать уравнения второй и третьей степени. Там в ответе часто получаются мнимые числа.
 - На что нужны уравнения с мнимыми ответами? буркнул Сева.
- Спросите об этом у физиков, химиков, инженеров, астрономов... Мнимые числа помогают им рещать вовсе не мнимые, а действительно важные практические задачи.
 - Но почему же тогда вас называют мнимыми?
- По привычке,— грустно ответила буковка *i.* Так нас окрестил французский учёный Рене Декарт. Это было в семнадцатом веке, когда мнимые числа ни во что не ставились. Но с тех пор многое переменилось. Если бы Декарт жил в наши дни, он непременно придумал бы для нас более подходящее название.
 - Например, необходимые числа, сказал Олег.
 - О! Это было бы чудесно! вздохнула Мнимая Единичка.

Мы ещё раз попрощались и ущли. На этот раз совсем.

Таня.

АЛЬ-МУКАБАЛА!

(Сева — Нулику)

Селям алейкум, старина! Я теперь тоже умею говорить по-восточному. Поживёшь в Аль-Джебре—не то ещё узнаешь!

Сегодня мы учились решать уравнения. Правда, пока ещё первой степени. Но и это не так уж мало.

Здесь есть особая площадка, где решают эти уравнения. И не какнибудь вручную, а подъёмными крапами. Механизация!

Когда подходишь к этой площадке, видишь одни только краны. Длинношеие, вроде жирафов. «Жирафы» то поднимают голову, то опускают, то тянутся другу навстречу. Только переносят они не кирпичи, не блоки, а буквы, числа, знаки сложения, вычитания. Словом, всё, что понадобится.

Таня оставила в покое свой фасонистый комбинезон, пришла в школьном платье. И очки сняла. Правильно сделала: электросваркой ей здесь заниматься не пришлось.

Что нам бросилось в глаза — это иксы. Их здесь видимо-невидимо. Ведь там, где решают уравнения, без иксов не обойтись.

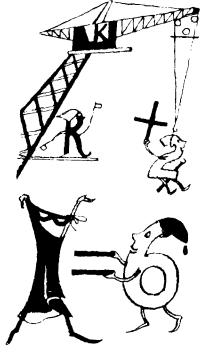
Эф не отпускала нас ни на шаг. Наверное, боялась, как бы кого не ушибло краном, хотя везде и так развешаны плакаты:

под краном не стояты

ВО ВРЕМЯ АЛЬ-ДЖЕБРЫ И АЛЬ-МУКАБАЛЫ к уравнениям не подходить!

Высоко-высоко, в кабинке крана, сидела молоденькая крановщица — буква Ка. Она передвигала рычаги и зорко следила за регулировщицей Эр. Та стояла внизу. В каждой руке — по флажку. Ими она указывала крановщице, куда двигать кран.

Под краном чинно стояли Икс в чёрной маске, Двойка и Шестёрка.


Они образовали такое уравнение:

$$x-2=6$$
.

Регулировщица медленно опустила один флажок, и так же медленно наклонил свою жирафью шею кран с большим крюком на конце. Крюк осторожно подцепил Двойку, которая торопливо прихватила свой минус. Регулировщица помахала флажком, и кран замер. Потом она крикнула: «Аль-джебр!» — прямо как у нас кричат «майна» или «вира». И вот уже Двойка с минусом заболтала ножками и поплыла к правой части уравнения.

Когда она поравнялась со знаком равенства, регулировщица скомандовала: «Переменить знак!» Двойка быстро положила минус в карман и вынула оттуда знак плюс. И вот уже она рядом с Шестёркой в правой части равенства:

$$x = 6 + 2$$
.

А через секунду вместо этого мы увидели:

$$x = 8$$
.

Чёрная маска упала, Икс поднял её, низко поклонился Ка и Эр и скрылся. А мы перешли к другому крану. Там уже стояло такое уравнение:

$$3x + 6 = 12$$
.

Снова крановщица нажимала на рычаги, снова регулировщица махала флажками, кричала: «Аль-джебр!»—и скоро под краном появилось вот что:

$$3x = 12 - 6$$
.

Мы переглянулись.

- В чём дело? спросила Эф. Что-нибудь непонятно?
- Непонятно, признался Олег. До сих пор нам показывали только такие задачи, где отрицательное число переносится из левой части равенства в правую и превращается в положительное. Действие это называется «аль-джебр», по-нашему восстановление. На этот раз в левой части равенства было положительное число шесть, и его перенесли в правую часть со знаком минус. При чём же здесь восстановление?
- Законный вопрос, развела руками Эф. Но вспомните, что «аль-джебр» слово, пришедшее к нам из далёкой древности. А древние слова по дороге часто теряют своё первоначальное значение. Взять хоть слово «чернила». Поначалу чернила были только чёрные. Сейчас есть и красные, и зелёные, и синие, и фиолетовые. Но никто же не называет их ни краснилами, ни синилами!
 - Как интересно! сказала Таня. Таких слов, наверное, много.
- Перочинный ножик!— вспомнил я.— Раньше им перья чинили, а теперь карандаши.
- Правильно!— сказала Эф.— То же самое случилось и со словом «аль-джебр». Мухаммед ибн Муса применил его тогда, когда отрицательные числа были бесправными. Перенося их в правую часть равенства с положительным знаком, он восстанавливал их в правах. Но отношение к отрицательным числам давно уже переменилось. И теперь понятие «аль-джебр» расширилось. Оно означает не только перенос отрицательного числа из одной части равенства в другую с положительным знаком, но и вообще перенос любого числа с обратным знаком. Но вернёмся всё-таки к нашему уравнению,— закончила свою речь Эф.

Мы посмотрели на площадку. Там теперь вместо 3x=12-6 стояло:

$$3x = 6$$
.

Странное дело: уравнение решено, а на Иксе по-прежнему чёрная маска.

- Ошибаетесь, сказала Эф. Решить уравнение значит вычислить, чему равен один икс. Мы же пока знаем, чему равны три икса.
- Ну, это нетрудно,— сказал Олег.— Чтобы вычислить икс, надо шесть разделить на три.

И словно в ответ на его слова, кран приподнял число Шесть над землёй и плавно опустил на двухэтажную тележку. Потом крюк подцепил коэффициент при Иксе—Тройку, перенёс её в правую часть равенства и поставил под числом Шесть:

$$x = \frac{6}{3}$$
.

Тележку быстро откатили, и на месте дроби $\frac{6}{3}$ появилась Двойка: x=2.

- Э-э, нет,— запротестовал я,— так не годится. Ведь числа переносятся в правую часть равенства с обратным знаком. Почему же это Тройку перенесли с тем же?
- Да потому, что в этом уравнении Тройка не слагаемое, а коэффициент при Иксе. А коэффициент это множитель, не так ли? Коли три в левой части множитель, так в правой оно превращается в делитель. Стало быть, правило сохранилось, потому что деление и умножение такие же обратные действия, как сложение и вычитание.

Не удаётся мне их подловить на ошибке. Пришлось прикусить язык и вместе со всеми перейти к следующему уравнению. Его решал уже не один, а два крана. В каждом сидела крановщица. А регулировщица, как и прежде, была всего одна. Наверное, многостаночница.

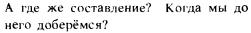
Уравнение было такое:

$$6x-7=2x+8-x$$
.

На этот раз регулировщица дала команду подлиннее: «Аль-джебр! Аль-мука́бала!» И сейчас же один кран подцепил все иксы справа вместе с коэффициентами и перенёс с обратными знаками в левую часть уравнения. В то же время второй кран подхватил Семёрку с минусом и перенёс в правую часть. Семёрка тоже переменила знак минус на плюс:

$$6x-2x+x=8+7$$
.

Потом регулировщица (точь-в-точь как Главный Весовщик) скомандовала: «Подобные, приведитесь!» — и вместо прежнего выражения перед нами очутилось новое:


$$5x = 15$$
.

Что было дальше, ты, уж наверное, сам догадался. Под краном появилось: x=3.

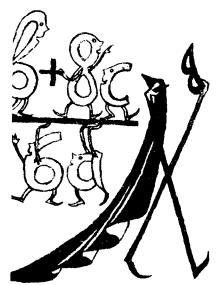
и чёрная маска упала.

- Скажите,— спросила Таня,— почему это в первый раз регулировщица кричала только «аль-джебр», а теперь прибавила какую-то алькула... альбума...
 - Аль-мукабалу, подсказала Эф.
 - Да, да, аль-мукабалу!
- Так ведь это и есть противопоставление. То самое действие, о котором не успел рассказать Главный Весовщик.
 - Что же здесь противопоставляется?
- Неизвестные известным. Все иксы переносятся в левую часть уравнения, все свободные числа в правую.

И тут мне невтерпёж стало. Восстановление, противопоставление...

И в эту минуту Эф сказала:

- Ну теперь, пожалуй, можно бы перейти к составлению уравнений...
 - Ура! выпалил я.


Эф посмотрела на меня хитрыми глазами:

— А может, всё-таки решить ещё одно?

Я даже зубами заскрипел: издевается она надо мной, что ли? Но сдержался. Если хочешь научиться терпению, приезжай в Аль-Джебру, Нулик. Здесь из тебя сделают человека.

И мы пошли решать новое уравнение. Оно было какое-то чудное:

4ax-7c=b+c-2ax.

- Ты что-нибудь понимаешь?— спросил я у Тани вполголоса. Зря спрашивал. Разве она сознается?
- Вас, наверное, смущает выражение 4ax? сказала Эф.— Ничего особенного в нём нет. Икс неизвестное, 4a коэффициент при Иксе. Ведь под a можно подразумевать любое число. Скажем, семь. Тогда числовой коэффициент при Иксе равен:

$$4.7 = 28.$$

Вот и вся премудрость.

И опять регулировщица скомандовала: «Аль-джебр! Аль-мукабала!» — задвигались краны, и мы увидели вот что:

$$4ax+2ax=b+c+7c$$
.

Потом она закричала: «Подобные, приведитесы» — и вместо прежнего выражения появилось новое:

$$6ax = b + 8c$$
.

Мы с интересом ждали, что дальше? И дождались:

$$x = \frac{b + 8c}{6a}$$

— Дудки!— сказал я.— Какое же это решение? Маска с Икса нипочём не свалится.

Но маска всё-таки свалилась.

- Вы привыкли, что Икс равен числу, улыбнулась Эф. Но не забывайте, где вы находитесь. Ведь главный девиз Аль-Джебры...
 - Упрощение и обобщение! сказали мы хором.
- Правильно. Вот в этом решении и собраны все возможные ответы при любых числовых значениях a, b и c. Замените буквы какими угодно числами, и вы убедитесь, что я права.

Вот когда я наподставлялся в своё удовольствие! Это было так здорово, что ребята чуть не силком отвлекли меня от этого занятия.

Мы пошли дальше. По дороге Таня всё время ворчала:

- Несуразный ты человек! То покоя не давал торопился составлять уравнения, а теперь, когда уже можно составлять, тебя отсюда калачом не выманишь!
- Я, конечно, мог бы ей ответить как следует, но промолчал. Мужчина я или нет?

У ЦЕЛИ

(Олег — Нулику)

Да, Нулик, вот мы и у цели.

Эф привела нас на то самое место, где вырос и тут же разрушился воздушный замок. Помнишь, он нам ещё так понравился?

— Теперь,— сказала Эф,— пора вам составлять уравнения. Подходите к любому Составителю. Каждый научит вас чему-нибудь новому. Здесь составляются уравнения на все случаи жизни.

Ну и дела! Без уравнений теперь «и ни туды и ни сюды». Задумал построить мост — составляй уравнения, хочешь запустить космический корабль — составляй уравнения. И для атомного реактора, и для нефтяной скважины, и даже для того, чтобы сшить на фабрике ботинки, — для всего нужно сперва составить уравнения, решить их и только тогда приступать к делу. Это уж точно.

Мы тут наблюдали за многими Составителями. Чтобы написать про всех, надо гору бумаги. Поэтому я расскажу тебе о двух-трёх. На первый раз хватит.

Кроме Составителей, на этом строительстве много практикантов вроде нас.

Они тоже ещё только учатся и потому часто попадают впросак. Но Составители на них не сердятся, а терпеливо разъясняют ошибки.

Один практикант строил стену из кирпичей. Положит несколько рядов, рассыплет и опять начнёт. Мы слышали, как он сам с собой разговаривал:

- Так и через десять лет не построишь! Ну и задачка!
- Что это вы делаете? спросила Таня.
- Стену строю, вздохнул тот, да вот ничего не получается.
- Наверное, потому, что вы не кладёте цемента, догадался Сева.
- Нет, цемент тут ни при чём.

Он протянул нам листок, где была такая задача: «Построить стену высотой в пять кирпичей так, чтобы в каждом следующем ряду было на два кирпича меньше, чем в предыдущем. При этом надо использовать 145 кирпичей».

- Разве это так трудно? удивились мы.
- Ещё бы! Ведь здесь не сказано, сколько кирпичей надо уложить в первом ряду. А без этого у меня ничего не получается. Положил 30

кирпичей. Тогда во втором надо уложить 28, в третьем — 26, в четвёртом — 24, в пятом — 22. А 15 кирпичей остаётся! Попробовал положить в первый ряд 35 кирпичей, во второй — 33 и так далее. На пятый ряд кирпичей уже не хватило.

— Дайте-ка мне попробовать! — попросил Сева.

Он положил в первый ряд 34 кирпича, во второй — 32... Дошёл до пятого,— опять не хватило!

- Не угадаешь!
- А тут гадать не надо, сказал кто-то.
 - Это к нам подошёл Составитель уравнений Тэ. Мы познакомились.
- Чем гадать, продолжал он, лучше составить уравнение. Обозначим неизвестное число кирпичей в первом ряду буквой икс. Сколько же в таком случае их будет во втором ряду, если там должно быть на два кирпича меньше, чем в первом?
 - Конечно, х—2, сообразила Таня.
- Правильно. Тогда в следующем ряду будет x—4, затем x—6 и, наконец, в последнем, пятом, ряду x—8 кирпичей. Сколько же всего пойдёт кирпичей на строительство?
 - Сумма всех этих чисел, подсказал Сева, —

$$x + (x - 2) + (x - 4) + (x - 6) + (x - 8).$$

— Верно. А так как всё это вместе по условию равно ста сорока пяти, получим уравнение:

$$x + x - 2 + x - 4 + x - 6 + x - 8 = 145.$$

- Ну, теперь уж просто, отмахнулся Сева. Остаётся сказать: «Аль-джебр! Аль-мукабала!» Одна минута, и бульон готов!
- Нет, возразил Составитель, не готов! Вы забыли привести подобные члены в левой части уравнения.

Привели подобные. Получилось:

$$5x-20=145$$
.

— Вот теперь и в самом деле можно приступить к восстановлению. Перенесли число минус 20 в правую сторону с обратным знаком. Вышло, что 5x=165, а x=33.

Я забыл тебе сказать, что составляли и решали уравнение мы не на бумаге: нам помогали живые буквы и цифры. А как только уравнение

было решено, расколдованный Икс помахал нам своей маской и убежал. Мы стали проверять ответ и построили стену. И всё оказалось правильно:

$$33+31+29+27+25=145$$
.

Потом мы увидели того самого карликана, который собирался рыть котлован для фундамента. Он стоял возле одного Составителя, и они решали его задачу. Мы подошли и стали помогать. Это уравнение оказалось посложней первого.

- Итак,— сказал Составитель,— у вас три экскаватора. Первый может вырыть котлован за четыре часа, второй за три, третий за двенадцать. Неважный, наверное, экскаватор. Вы хотите, чтобы все три работали одновременно. Конечно, так они выроют котлован быстрее. Но за какое время? Составим уравнение. Что примем за икс?
- Время, за которое все три экскаватора выроют весь котлован,— предложил я.
 - Верно. Давайте дальще:

Тут я, как назло, запнулся. Ни туда ни сюда.

- Ладно уж, сказал Составитель, придётся помочь. Выясним, какую часть котлована выроет каждый экскаватор за один час. Для этого условимся, что объём всего котлована равен единице.
 - И что из этого следует? спросил Сева.
- A из этого следует,— догадался я,— что первый экскаватор за час выроет одну четверть котлована, второй одну треть, третий одну двенадцатую.
- Ну конечно! обрадовался Составитель. Какую же часть они выроют за час, если будут работать все вместе?

На этот раз ответил Сева:

- Вот какую:

$$\frac{1}{4} + \frac{1}{3} + \frac{1}{12}$$
.

- Молодец! А за икс часов?
- А за икс часов они выроют в икс раз больше, сказала Таня. —
 Это и будет весь котлован, объём которого мы приняли за единицу.
 Так у нас получилось уравнение:

$$x\left(\frac{1}{4} + \frac{1}{3} + \frac{1}{12}\right) = 1.$$

Ну а решить такое уравнение было уже совсем легко:

$$\frac{8}{12} x = 1$$
.

Значит, Икс равен двенадцати восьмым, или

$$x = \frac{3}{2}$$
.

Выходит, что три экскаватора, работая вместе, выроют котлован за полтора часа.

Неловко об этом говорить, но мне было очень приятно, когда маска с Икса упала и он стал нас благодарить.

Карликан заторопился к своим экскаваторам, а Составитель тут же предложил решить ещё одну задачу, точно такую же, но... Что это за «но», ты сейчас поймёшь.

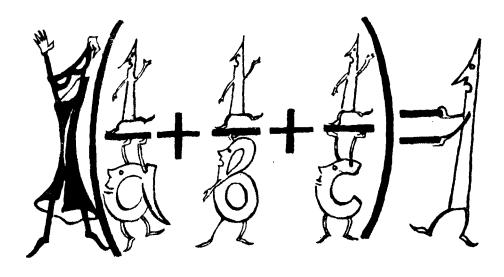
- Признаться, надоели мне такие уравнения,— сказал Составитель,— слишком часто приходится их составлять. Везде идут стройки, везде роют котлованы. Пора бы уж сразу найти один ответ на все подобные вопросы. Ведь мы как-никак живём в Аль-Джебре...
 - И потому должны упрощать и обобщать, докончил Сева.
- Уж конечно! Не хотите ли вместе со мной вывести такое единое решение?

Мы молча кивнули, и Составитель начал:

- Так как экскаваторы бывают разных мощностей, то пусть первый из них роет котлован за a часов, второй за b часов, ну а трегий, допустим, за c часов. Спрашивается, за сколько часов выроют они котлован, если будут работать вместе?
- По-моему, сказал я, решение должно быть таким же, как и в предыдущей задаче. Только та задача была в числах, а мы её изобразим буквами. Снова примем за Икс число часов, необходимое, чтобы закончить работу, а всю работу за единицу.
 - Так-так, подбадривал Составитель.

Теперь рассуждала Таня:

- Очевидно, первый экскаватор совершит за час $\frac{1}{a}$ часть работы, Это, наверное, читается так: одну атую часть работы?
 - Хорошо, хорошо.
- Тогда второй,— сказал Сева,— за час совершит одну бэтую: $\frac{1}{b}$, а третий одну цэтую: $\frac{1}{c}$ часть работы. А все вместе они выроют за час сумму этих дробей:


$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

Теперь нетрудно составить уравнение, ведь за икс часов они выполняют работу в икс раз большую:

 $X \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right).$

И всё это должно быть равно единице:

$$x\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1.$$

- Вот вы и составили уравнение, похвалил Составитель.
- Теперь приведём подобные, сказал Сева. Вспомнил, наверное, как он недавно оплошал.
- Нет,— возразил Составитель,— здесь я не вижу никаких подобных. Просто надо сложить три дроби, которые стоят в скобках. Для этого приведём их к общему знаменателю и введём дополнительные множители у каждой дроби.
 - Это мы знаем, вмещалась Таня и тут же написала:

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc}{abc} + \frac{ac}{abc} + \frac{ab}{abc} = \frac{bc + ac + ab}{abc}.$$

$$x \frac{bc + ac + ab}{abc} = 1.$$

Или

— Вот какой огромный коэффициент оказался у Икса!— заметил Сева.— С гаким провожатым ничего не страшно.

- Что же остаётся сделать, чтобы найти Икс?— спросил Составитель.
- Разделить правую часть уравнения— единицу— на этот коэффициент,— ответила Таня.

$$x = 1: \frac{bc + ac + ab}{abc}.$$

С этим она справилась быстро:

$$x = \frac{abc}{bc + ac + ab}.$$

Икс подошёл к Тане и поклонился, помахав вместо шляпы чёрной маской. Д'Артаньян, да и только!

— Вот вам и уравнение, пригодное для любых трёх экскаваторов,— сказал напоследок Составитель.— Может быть, хотите проверить?

Тут уж пришёл на Севину улицу праздник. Подставлять — его любимое занятие. Вместо $a,\ b$ и c он подставил числа из предыдущей задачи — 4, 3 и 12:

$$x = \frac{4 \cdot 3 \cdot 12}{3 \cdot 12 + 4 \cdot 12 + 4 \cdot 3} = \frac{144}{96}.$$

Сократил дробь и получил:

$$x = \frac{3}{2}.$$

— Упрощение и обобщение! Упрощение и обобщение!— приговаривал он, похлопывая себя по животу, словно только что съел что-нибудь вкусное.

Потом он придумал другие числа и опять другие. И каждый раз, вычислив Икс, выкрикивал те же слова и снова хлопал себя по животу. Забыл он, что ли, что теперь в самый раз разобраться в задаче зелёного стручка и попробовать составить уравнение самим?! Пришлось обратиться к талисману. В последнее время он что-то совсем притих — лежит себе в кармане и помалкивает. Видно, не считает нужным вмешиваться. Я вынул его и поднёс к самому Севиному носу. Увидев стручок, Сева снова хлопнул себя — на этот раз по лбу, — и через несколько минут мы уже сидели на скамейке в Парке Науки и Отдыха.

Ну вот и всё пока. Наберись терпения и подожди следующего письма. Так всегда делают в журналах — прерывают рассказ на самом интересном месте и пишут: «Продолжение следует».

О лег.

пончик на крючке

(Нулик — отряду РВТ)

Дорогие ребята! Вся наша школа страшно волнуется. Как-то вы раскроете тайну Чёрной Маски? Но больше всех переживаю я: может быть, сейчас вы уже расколдовываете моего незнакомца. Когда чегонибудь ждёшь, время тянется ужасно медленно. Прямо не знаешь, куда деваться. Вот мы и решили обмануть время и чем-нибудь заняться.

А так как на уме у нас только составление уравнений, мы захотели сами придумать какую-нибудь задачу.

Эту мысль нам подсказал Пончик. Я с ним очень подружился. Не могу даже подумать, что скоро нам придётся расстаться!

Так вот, я заметил, что путь в Аль-Джебру и обратно занимает у Пончика всё больше времени. Каждый раз он всё дольше задерживается в дороге с письмами. Наверное, потому, подумал я, что вы постоянно продвигаетесь вперёд. Последний раз Пончик вернулся только через тридцать четыре часа.

Мы решили выяснить, как далеко вы ушли. Расставили наблюдателей с часами, и они посчитали, что Пончик мчится прямо-таки с космической скоростью: двенадцать километров в час!

Потом мы стали думать, сколько времени он проводит у вас в Аль-Джебре. Наверное, столько же, сколько и у нас. Минут сорок.

Теперь слушайте, как мы составили уравнение.

Во-первых, что мы ищем? Мы ищем расстояние. Его-то и приняли за икс. А так как Пончик бежит со скоростью двенадцать километров в час, то на путь к вам он затратит $\frac{x}{12}$ часов, или $\frac{1}{12}$ х часов. Стало быть, на два конца уйдёт вдвое больше времени, то есть $\frac{2}{12}$ х часов.

Прибавим к этому 40 минут, которые Пончик пробудет в Аль-Джебре. Получится:

$$\frac{2}{12}$$
 x + 40.

Вог сколько часов займёт всё его путешествие.

— Ерунда какая-то, — сказал один Нулик. — Прежде считали в часах, а потом прибавили 40 минут. Так нельзя. Выбирайте что-нибудь одно: либо часы, либо минуты.

Пришлось поставить вопрос на голосование. Большинство было за то, чтобы превратить минуты в часы.

В часе 60 минут. Значит, 40 минут — это $\frac{2}{3}$ часа. Подставили дробь в наше выражение:

$$\frac{2}{12} x + \frac{2}{3}$$
.

Так мы записали, сколько времени путешествовал Пончик. А путешествовал он, как известно, 34 часа. Вот и получилось уравнение:

$$\frac{2}{12}x + \frac{2}{3} = 34.$$

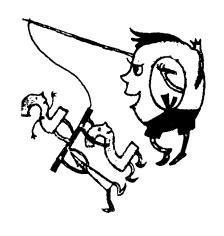
Теперь надо было его решить. Вроде дело нехитрое: бери карандаш, бумагу и решай на здоровье! Но нас это не устраивало. Мы непременно хотели решать, как в Аль-Джебре. Подъёмным краном. Для этого у нас было всё— и крановщики, и регулировщики. Не хватало только крана. Тут все приуныли. Но я всё-таки нашёл. Не кран, конечно, а большую удочку с леской и крючком. При желании она вполне сойдёт за подъёмный кран.

Ну, все опять повеселели и стали вырезать из картона цифры и букву икс. А потом сделали для этого картонного Икса маску из чёрной бумаги.

Когда всё было готово, Нулик-Регулировщик взмахнул флажком, а я взял удочку и скомандовал:

— Аль-джебр! Аль-мукабала!

Подцепил на крючок дробь $\frac{2}{3}$ и перенёс её вправо со знаком минус. Получилось:


$$\frac{2}{12} x = 34 - \frac{2}{3}$$
.

Привели правую часть к общему знаменателю. После вычитания получилось вот что:

$$\frac{2}{12} x = \frac{100}{3}$$

Потом я поддел на крючок коэффициент при иксе $\frac{2}{12}$, перенёс его в правую сторону и разделил на него $\frac{100}{3}$.

$$x = \frac{100}{3} : \frac{2}{12} = 200.$$

Ой-ой-ой! Неужели вы уже так далеко ушли от меня? На двести километров! Мне даже грустно стало.

В это самое время появился Пончик. Все бросились к нему, чтобы скорее прочитать ваше письмо. Но на этот раз письма не было. Сначала мы расстроились, а потом надумали снова решить уравнение, только не с бумажным, а с живым Иксом.

Роль Икса поручили Пончику. Надели на него чёрную маску, обвязали клетчатым шарфом и сделали бантик на спине. Пончик отчаянно

визжал и вырывался. Мне очень хотелось его выпустить, но наука прежде всего!

Я крикнул: «Аль-джебр! Аль-мукабала!» — зацепил крючком шарф и стал поднимать Пончика удочкой. Как раз в это время прибежала моя мама. Она сейчас же развязала собаку, отобрала удочку и посмотрела на меня сердитыми глазами.

— Вот когда я тебя снова узнаю́!— сказала она. А потом улыбнулась и прибавила: — A может, это к лучшему?

Так закончилось наше приключение с подъёмным краном.

С нетерпением ждём ваших сообщений. Ни пуха ни пера!

Нулик - Крановщик.

ТАЙНА РАСКРЫТА!

(Таня — Нулику)

Исполнилось наше желание, Нулик! Мы пошли в парк, уселись на скамью и первый раз в жизни сами составили уравнение.

Конечно, это было нелегко. Пришлось-таки поломать голову. Начали с того, что внимательно перечитали задачу зелёного стручка. Не мещает вспомнить её и тебе:

«Сколько было у меня горошин, если Нулик сперва съел одну треть их, затем прихватил не то две, не то четыре горошины, половину остатка

я потерял, а Нулик вернул мне половину того, что он прихватил; потом две горошины я подарил, а последнюю унёс ветер? Стручок».

Сперва мне показалось, что задача очень трудная и нам её ни за что не решить. Ну да ведь рядом Олег! С таким не пропадёшь. Успокоит, подбодрит. Глядишь — всё и вышло.

- Что ж,— сказал он,— начнём рассуждать. Сперва выясним, что у нас неизвестное.
 - Число горошин в стручке.
 - Верно. Вот и обозначим это число через икс.

Олег вынул бумагу и приготовился записывать. Но его перебил Сева.

— Смотрите, смотрите!— закричал он вдруг.

Несносный мальчишка! Вечно глазеет по сторонам. Я повернулась, чтобы отчитать его хорошенько, и обомлела: по аллее чинно выступала дружная парочка — белый как снег Пончик и Чёрная Маска. Глядя на них, никто не сказал бы, что недавно они были совсем в других отношениях.

Икс подошёл и застенчиво поклонился. Он был такой смирный и воспитанный! Сева даже засомневался: а вдруг это опять не наш?

Но это был наш Икс. Икс из нашего уравнения. Вот он стоит и ждёт, когда его наконец расколдуют. И мы принялись расколдовывать.

Обозначили число горошин через икс. Одну треть их съел Нулик. Стало быть, он слопал $\frac{1}{3}$ х. Потом он прихватил ещё несколько горошин — не то две, не то четыре.

- Будем считать, что Нулик прихватил две горошины, сказал Сева.
 - A если четыре?
- Значит, придётся решать задачу два раза.
- Но тогда получатся два разных ответа, — не соглашалась я.

Как всегда, нас помирил Олег:

— К чему спорить? Лучше вспомним, как в таких случаях поступают в Аль-Джебре. Обозначим число прихваченных Нуликом горошин буквой a.

Отличная идея! Ведь под буквой можно подразумевать любое число,— значит, и два, и четыре.

- Итак,— продолжал Олег,— Нулику досталось $\frac{1}{3}x + a$ горошин. Поехали дальше. Здесь сказано: «Половину остатка я потерял».
 - Сколько же осталось, когда Нулик ушёл? спросил Сева.
- Ну, если всего горошин было x, то осталось $x \frac{1}{3} x a$ горошин,— сосчитала я.
 - Или $\frac{2}{3}$ x-a,— уточнил Сева.
- A так как стручок потерял половину этого остатка,— рассудил Олег,— выходит, что потеряно было

$$\frac{1}{2} \left(\frac{2}{3} x - a \right).$$

— Теперь уже из стручка исчезло

$$\frac{1}{3}x + a + \frac{1}{2}(\frac{2}{3}x - a)$$
 горошин.

- Смотрите-ка, заметил Сева, оказывается, Нулик вернул половину того, что прихватил. А это не то одна, не то две горошины.
- A раз он прихватил a горошин, то и вернул $\frac{1}{2}$ a,— сообразил Олег.
- Значит, число исчезнувщих горошин стало меньше на $\frac{1}{2}$ a,— сказала я.

$$\frac{1}{3}x + a + \frac{1}{2}\left(\frac{2}{3}x - a\right) - \frac{1}{2}a$$
.

— И наконец, две горошины стручок подарил, а последнюю унёс ветер,— сказал Сева.— Считайте, что исчезло ещё 3 горошины.

Тогда мы написали, сколько всего исчезло горошин из стручка:

$$\frac{1}{3}x + a + \frac{1}{2}(\frac{2}{3}x - a) - \frac{1}{2}a + 3.$$

- Всё это прекрасно, но уравнения я ещё не вижу,— вздохнул Сева.
- Отчего же?— удивился Олег.— Ведь ветер унёс последнюю горошину. Поэтому то, что мы написали, и есть число всех горошин, которые были в стручке.
 - Ага!— повеселел Сева.— Их-то мы обозначили через х.

Тогда

$$x = \frac{1}{3} x + a + \frac{1}{2} \left(\frac{2}{3} x - a \right) - \frac{1}{2} a + 3,$$

и уравнение составлено! - закончил Олег.

Мы смотрели друг на друга и глупо улыбались. Сева вдруг запел басом: «Ещё одно последнее сказанье, и летопись окончена моя». Сумасшедший!

Мы с Олегом опасливо оглянулись. Но что это? Отовсюду за нами наблюдали внимательные, сочувственные глаза. Ба! Да здесь целая толпа знакомых. Вот милые, улыбающиеся лица мамы-Двойки и её близнецов. Вот важный Дэ. Пришли сюда и наша недавняя провожатая Эф, и фокусник, и Главный Весовщик, и Составители уравнений, и директор кафе «Абракадабра». Даже скромная Мнимая Единичка покинула на время свою карусель.

- Что случилось? растерянно спросил Сева.
- Не удивляйтесь,— ответила мама-Двойка.— С тех самых пор, как вы появились в Аль-Джебре, мы следим за каждым вашим шагом. Нам так хочется, чтобы вы полюбили нашу страну и чтобы пребывание в ней сделало вас сильнее и богаче!
- Спасибо вам, дорогие друзья! растроганно сказал Олег. Без вас мы никогда не составили бы уравнения, никогда не раскрыли бы тайны Чёрной Маски...

Смирно стоявший в сторонке Икс осторожно потянул его за рукав.

-- Не забывайте, что тайна ещё не раскрыта,-- шепнул он, указывая на свою маску.

В самом деле! Составив уравнение, мы на радостях позабыли его решить.

— Ну, это уж пустяки,— отмахнулся Сева.— Сперва раскроем скобки...

Раскрыли. Получилось:

$$x = \frac{1}{3} x + a + \frac{1}{3} x - \frac{1}{2} a - \frac{1}{2} a + 3.$$

— A теперь, — скомандовала я, — подобные в правой части уравнения, приведитесь!

Подобные привелись. И вышло из этого вот что:

$$x = \frac{2}{3}x + 3$$
.

- Полюбуйтесь-ка, все *а* исчезли! Куда это они? Олег посмотрел на Севу укоризненно:
- А ты подумай! У нас было a с плюсом и две половинки a с минусами. Но это всё равно что целое a с минусом. Вот они и взаимоуничтожились. Понял? Тогда продолжаем. Что будем делать сейчас?

У Севы даже глаза заблестели.

— Сейчас я скажу, ладно? Аль-джебр! Аль-мукабала!

Мы перенесли неизвестное вместе с коэффициентом из правой части равенства в левую и поменяли у него знак. Получилось:

$$x - \frac{2}{3} x = 3.$$

А это не что иное, как

$$\frac{1}{3}$$
 $x = 3$.

- Стало быть, Икс в три раза больше трёх, сказала я.
- A раз так, значит, Икс равен девяти!— торжественно объявил Олег.

$$x = 9$$
.

И как только он это сказал, чёрная маска упала на землю.

- Ура!!- закричали мы.
- Ура! подхватили жители Аль-Джебры.

Пока мы решали уравнение, они стояли так тихо, словно их вовсе не было. Зато теперь шумели и радовались вовсю. Особенно Икс. Он чуть не задушил нас в объятиях, а потом сплясал какой-то диковинный танец.

Но больше всех веселился Пончик. Не переставая лаять, он перебегал от Севы к Олегу, от Олега — ко мне, прыгал, заглядывал в глаза и всё время норовил лизнуть в нос...

Только один участник нашей экспедиции вёл себя так тихо, что о нём чуть не позабыли: стручок.

Но о нём всё-таки вспомнили. Сева достал его из кармана. И как же мы удивились, когда вместо пустого стручка увидели целый! На плотной глянцевитой кожуре отчётливо обозначились бугорки. Там, внутри, как в уютном зелёном вагончике, прижавшись друг к другу, лежали девять горошин.

Удивительный день! Я могла бы написать о нём ещё десять писем, но зачем? Скоро вернёмся в Карликанию и всё тебе расскажем сами.

В ГЛУБЬ АЛЬ-ДЖЕБРЫ!

(Отряд РВТ — Нулику)

Дорогой Нулик! Первый раз пишем тебе втроём. И как ни странно, не ссоримся. Уж если мы вместе составили уравнение, написать сообща письмо для нас теперь сущие пустяки.

Как видишь, дни, проведённые в Аль-Джебре, многому нас научили. Особенно тот день, когда мы расколдовали Чёрную Маску.

Долго, до самого вечера, беседовали мы с альджебрийскими друзьями и поняли, что нам ещё пока хвастаться нечем. Мы ведь составили всего-навсего уравнение первой степени. А есть ещё и квадратные, и кубические, и уравнения четвёртой степени... И чем выше степень уравнения, тем труднее его решать. Альджебрийцы говорят, что даже учёные научились этому не сразу.

Правда, квадратные уравнения известны были давно. О них знали ещё в глубокой древности вавилоняне. Греческий математик Диофант умел уже решать некоторые уравнения более высоких степеней. Но он не нашёл единого способа решения. Это потому, что такие уравнения решаются с помощью отрицательных, иррациональных, мнимых чисел. Диофант же знал только об отрицательных, да и то не считал нужным ими пользоваться.

А ведь числа эти были известны задолго до Диофанта индийским учёным. От индийцев отрицательные числа перешли к арабам, которые завоевали Индию. Но арабским учёным они не понравились. Не нравились они и создателю алгебры Мухаммеду ибн Мусе аль-Хорезми. Потому-то он и восстанавливал отрицательные числа, превращал их в положительные. И признавал только такие уравнения, где в ответе получалось положительное число.

Через сто лет после Мухаммеда аль-Хорезми в том же Хорезме родился другой замечательный учёный. Имя у него ещё длиннее: Абу Рейха́н-Мухамме́д ибн Ахме́д аль-Бируни́. Бируни был учёный-энциклопедист. Это значит, что он занимался многими науками: математикой, физикой, астрономией. Он изучал также ботанику, географию, историю, минералогию — науку о камнях — и ещё много других. Но в Аль-Джебре, конечно, больше всего интересуются его работами по математике. Бируни удалось решить интересное уравнение третьей степени. Но только одно!

Прошло ещё сто лет. В Средней Азии появился новый замечательный математик. Но о том, что он математик, знают не все. Он больше известен как великий поэт Омар Хайям.

Оказывается, наука и искусство часто идут рука об руку. Таких случаев много.

Блез Паскаль был не только великим физиком и математиком, но и писателем, Михайло Ломоносов — поэтом. Первая русская женщина-математик Софья Ковалевская писала романы и пьесы. Композитор Бородин, автор оперы «Князь Игорь», был талантливым химиком, соратником великого русского учёного Менделеева.

Рассказали нам и ещё одну забавную историю.

Ты, может быть, читал удивительную сказку «Алиса в Стране Чудес». Написал её английский писатель прошлого века Лью́ис Кэ́ррол. Сказка очень понравилась английской королеве. Она потребовала, чтобы ей доставили все сочинения этого замечательного сказочника. Принесли целую кучу книг. Королева открыла одну и тотчас захлопнула.

— Что вы мне принесли?— воскликнула она.— Вместо сказок здесь какие-то цифры. К тому же на обложке совсем другая фамилия. Не Кэррол, а Чарлз До́джсон!

Выяснилось, что «Алису в Стране Чудес» написал известный математик Доджсон, который подписывал свои литературные произведения псевдонимом Кэррол. А королеве принесли его математические труды.

Математика не мешала Доджсону заниматься литературой. Не мешала она и Омару Хайяму заниматься поэзией. А может быть, и помогала. К сожалению, мы ещё не читали стихов Хайяма. Но говорят, что они отличаются удивительной точностью и краткостью. В стихотворение, состоящее всего из четырёх строк, поэт умудрялся вложить большое содержание. В его поэзии много метких наблюдений и глубоких мыслей. Потому так любят её люди всего мира. А математики почитают Хайяма ещё и за то, что он первый по-настоящему занялся общим решением уравнений третьей степени. Жаль только, что он пренебрегал отрицательными и мнимыми числами. Поэтому решение у него получилось неполное.

Много времени прошло, пока учёные поняли, что без этих чисел им не обойтись. Они стали применять их для решения алгебраических уравнений. И тогда дело пошло на лад.

В шестнадцатом веке итальянские учёные Тарталья и Кардано научились решать любые уравнения третьей степени. Другой итальянский математик, Феррари, придумал способ решения уравнений четвёртой степени.

В тот вечер мы узнали ещё много интересного. Всего не опишешь да и не запомнишь как следует с первого раза. Но одно мы поняли и запомнили навсегда.

Алгебра создавалась веками. Её строили сотни, тысячи людей. Сначала это была маленькая постройка. Но постепенно она превратилась в огромное, сложное здание со множеством пристроек, башенок, переходов. Строительство его не закончено и не закончится никогда. Никто не знает, сможет ли он заложить хоть один камешек в стены этого здания. Такое удаётся не каждому. Зато каждый может войти в него и изучить то, что уже построено.

Вот тут-то мы и подошли к самому главному. Не хочется тебя огор-

чать, но лучше уж сразу сказать правду: не жди нас, Нулик. Мы решили идти дальше. Обидно останавливаться в самом начале пути. Ведь впереди столько неизведанного и увлекательного!

Конечно, мы не раз ещё с тобой встретимся. Грустно было бы думать, что мы расстаёмся навсегда! Все мы тебя очень полюбили и при первой же возможности приедем к тебе в гости.

А сейчас, чтобы ты не слишком расстраивался, прими от нас подарок: стручок. И ещё маску. Это уже от Икса. Он очень тепло вспоминает о вашей встрече. Ведь ты тоже помог ему найти потерянное лицо!

И вот ещё что. Это письмо, как всегда, передаст тебе наш бессменный почтальон Пончик. Пусть он остаётся у тебя. С ним тебе будет веселее путешествовать по Аль-Джебре. Если, конечно, ты когда-нибудь вздумаешь туда отправиться. А пока хватит с тебя и того, что ты узнал из наших писем. Всякому овощу своё время.

Крепко тебя обнимаем. Горячий привет маме-Восьмёрке и всем карликанам.

Твои друзья из отряда РВТ: Таня, Сева и Олег.

Голицыно Лето 1964 г.

Эмилия Александрова

КАК Я БЫЛА НУЛИКОМ

Вы прочитали две повести о числах. Вернее, две сказки. А ещё вернее — две «сказки да не сказки». Там числа выступают в человеческом облике. Они запросто дружат с людьми, помогают им и охотно рассказывают о себе. Вот тут-то и выясняется, что у чисел не всё, как у людей. У них свои законы. Хотя законы эти, как и сами числа, всё-таки придумали люди.

Да, число — выдумка. И как всякая выдумка, оно бесплотно. Его не возьмёшь в руки, не потрогаешь пальцем. Но обойтись без него — не обойдёшься. Без чисел ничего не построишь, ничего не спланируешь. Ни одна наука в наши дни не обходится без математики. Математика нужна всем. Но все ли это понимают?

Я, например, довольно долго думала, что мне-то математика ни к чему. Потому что с самого начала решила стать литератором. Мне и в голову не приходило, что между литературой и математикой может быть что-нибудь общее. Но нашёлся-таки человек, который доказал, что я ошибаюсь.

Одарённейший математик, он многие годы читал лекции студентам, делал сложные математические расчёты, писал учебники. Но это ничуть не мешало ему сочинять пьесы, остроумные, иногда едкие сатирические стихи, забавные сценки для клоунов, детские сказки...

До сих пор не пойму, как это он сразу не додумался написать детскую сказку о числах! Но дельные мысли, как известно, приходят потом: первую «сказку да не сказку» о числах — «Три дня в Карликании» — Владимир Лёвшин сочинил на исходе своего шестого десятка. И тогда-то я окончательно убедилась, чем может стать математика для литератора.

С тех пор прошло четверть века. За это время юные читатели успели познакомиться с многими математическими сказками Лёвшина. Но эта

была первой. И даже не первой, а нулевой. Потому что именно на её страницах впервые появился Нулик — маленький озорной житель Арабеллы, который надолго стал любимым героем Лёвшина и перекочевал в другие сказки: «Чёрная маска из Аль-Джебры», «Нулик-мореход», «Магистр рассеянных наук»...

Не знаю, как вы, а я тоже очень полюбила Нулика. Наверное, оттого, что и он вроде меня, не больно силён в математике, вечно чего-то не понимает и задаёт кучу вопросов. Скажу по секрету: многие из этих вопросов принадлежат вовсе не ему, а мне. Это я за спиной у Нулика донимала Владимира Артуровича своими «отчего и почему», когда читала рукопись его очередной сказки. А уж когда мы писали вместе, становилаєь и того дотошнее.

Вы спросите: зачем писателю-математику соавтор-нематематик? На это я отвечу также вопросом: а зачем ему соавтор-математик? Ведь в своём деле он и без того знаток! Ему и так всё ясно!

Но в том-то и загвоздка, что знатоку трудно иной раз представить себе ход мыслей незнатока. Он не всегда предвидит, что именно может поставить в тупик незнайку. А когда пишешь для детей, предвидеть это необходимо.

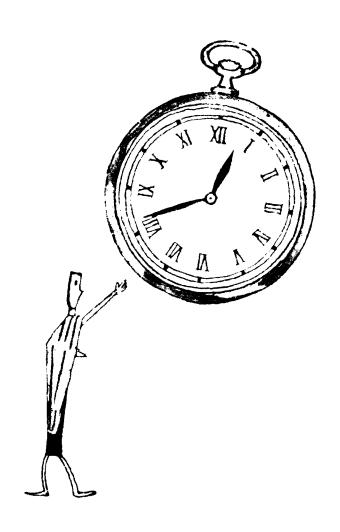
Неудивительно, что на этой почве между нами вечно возникали стычки. Одному было всё ясно, другому — не всё. Оба кипятились. А в спорах между тем рождалась истина. И на свои вопросы Нулик получал наконец простые и ясные ответы.

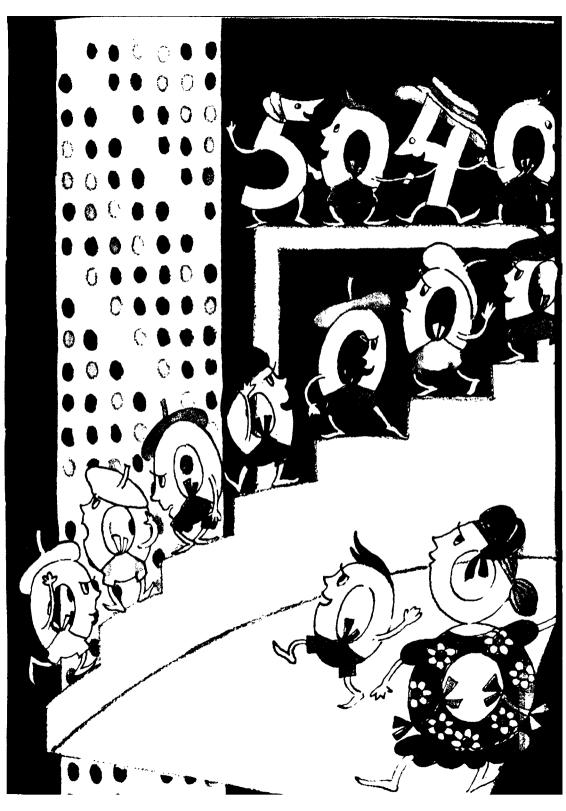
Получать-то получал, да не сразу. Простота непросто даётся. Но не так уж оно плохо, как кажется. Недаром сказано у поэта: «Чем более препятствий на пути, тем ярче радость их преодоленья». И как ни горько мне сознавать, что долгое наше содружество позади, я всё-таки радуюсь, что побывала в Нуликах при таком необыкновенном сказочнике, как Владимир Лёвшин. Радуюсь, что вместе с ним написала «Чёрную маску из Аль-Джебры». Да и другие книги, где Нулик вроде бы не участвует. Но именно «вроде бы»! Потому что на самом деле он и в роли невидимки по-прежнему одолевал своего соавтора вопросами, вызывал его на горячие споры. И надо думать, нулём это всё же не кончилось, если книги, даже так давно написанные, как эта, до сих пор читают дети. Стало быть, они им нужны. А быть нужным — счастье великое!

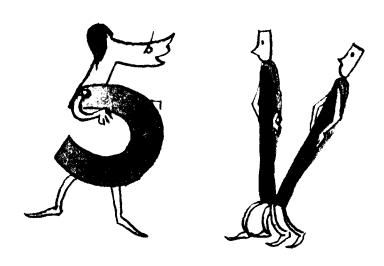
Лёвшин В. ТРИ ДНЯ В КАРЛИКАНИИ: Сказка да не сказка	
День первый 5	\mathbb{P}
В путь!	5 T 27
Арабелла	7
Самое древнее государство	9
Яблоневый сад	12
Таинственные знаки	15
Площадь Добрых Напутствий	19
Балет на льду	25
Первое знакомство	
Чудесные признаки	33
Неожиданное огорчение	38 B
День второй 41	עבוג
Простота	41
…И совершенство	47
Развалины Рима	
Интересные находки	54
Музей Пушкина	63 P
Любители поспорить	
Смертельный аттракцион	70
Нашёлся!	76
День третий 79	
Спичечный коробок	79 🔣
Нулики снова шалят	82
Зеркальная улица	84
Подземная дробилка	88 H
H.P.B.B	92
Космос в комнате	95
Дорога Светлого Разума	99

Лёвшин В., Александрова Эм. ЧЁРНАЯ МАСКА ИЗ АЛЬ-ДЖЕБРЫ:		H
Путешествие в письмах с прологом		Ë
Пролог 111		P
Снова в Карликании!	111	H
Тайна зелёного стручка	117	
Погоня	120	A
Письма 123		R
Переход (Олег - Нулику)	123	
Обжоры (Сева ~ Нулику)	125	
Воздушная монорельсовая дорога (Таня - Нулику)	130	\mathbb{M}
Школа на числовой площади (Нулик ~ отряду PBT)	136	A
Правила движения (Олег - Нулику)	138	\mathbb{C}
Центральный парк Науки и Отдыха (Сева — Нулику)	142	\mathbb{K}
Нулики подрались (Нулик ~ отряду РВТ)	146	A
В тесноте, да не в обиде (Таня ~ Нулику)	147	
Молотобойцы (Сева ~ Нулику)	152	M
Нулик-пограничник (Нулик ~ отряду РВТ)	157	
Карнавал (Олег — Нулику)	158	3
Круг почёта (Таня ~ Нулику)	162	
Разноцветные береты (Нулик ~ отряду РВТ)	165	A
Репортаж со стадиона (Сева ~ Нулику)	167	Л
Пекари-жонглёры (Снова Сева - Нулику)	172	Ь
Лично Севе от Нулика	177	-
"Абракадабра" (Олег ~ Нулику)	179	Д
Горячо - холодно (Сева - Нулику)	185	ZK
Старый знакомый (Таня - Нулику)	189	E
Последняя калитка (Нулик ~ отряду РВТ)	195	
Простота и невероятность (Олег ~ Нулику)	198	Б
Новые открытия Нулика (Нулик ~ отряду РВТ)	204	\mathbb{P}
		Ы

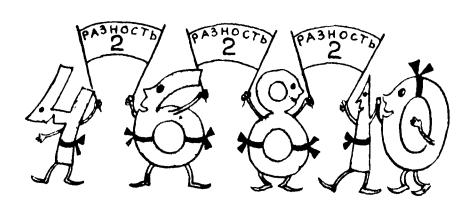
Волшебная практика (Сева ~ Нулику)	207
Весовая (Таня - Нулику)	208
Аль-джебр! (Сева — Нулику)	215
Вверх-вниз! (Олег ~ Нулику)	219
Мнимая карусель (Таня ~ Нулику)	223
Аль-мукабала! (Сева - Нулику)	228
У цели (Олег ~ Нулику)	234
Пончик на крючке (Нулик ~ отряду РВТ)	240
Тайна раскрыта! (Таня ~ Нулику)	242
В глубь Аль-джебры! (Отряд РВТ — Нулику)	248
Александрова Эм. Как я была Нуликом 252	

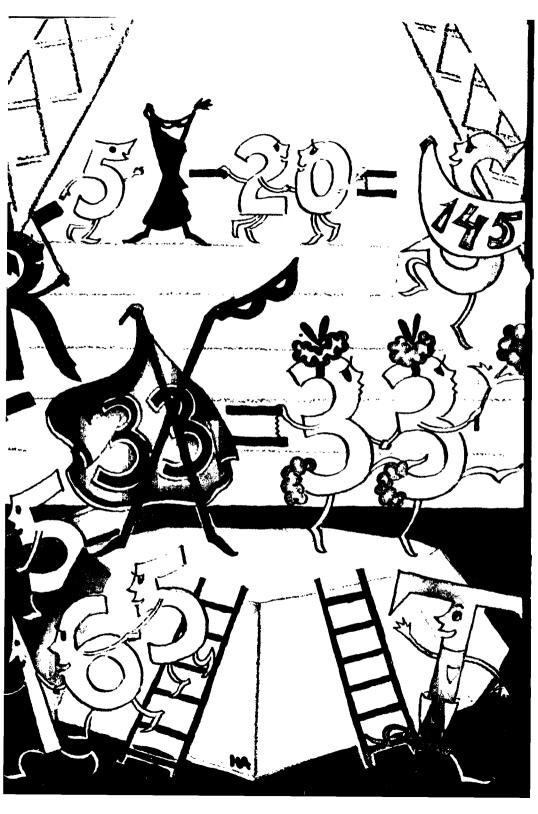


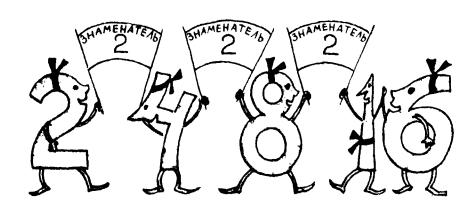

H M Ë 3 P \mathbb{H} Α A Л \mathbb{R} Ь Д M Ж \mathbb{E} Б


 \mathbb{K} P A

Ы







В. ЛЁВШИН и ЭМ. АЛЕКСАНДРОВА

