Проф. О. М. АНШЕЛЕС

ВЫЧИСЛИТЕЛЬНЫЕ И ГРАФИЧЕСКИЕ МЕТОДЫ КРИСТАЛЛОГРАФИИ

ИЗДАНИЕ ЛЕНИНГРАДСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ЛЕНИНГРАД 1939 проф. О. М. АНШЕЛЕС

ВЫЧИСЛИТЕЛЬНЫЕ И ГРАФИЧЕСКИЕ МЕТОДЫ КРИСТАЛЛОГРАФИИ

ИЗДАНИЕ ЛЕНИНГРАДСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ЛЕНИНГРАД 1939

 Ответств. редактор Г. М. Попов.
 Техн. ред. Н. А. Кобарская.

 Корректор В. И. Осилов.
 Поллисано к печати 8/V 1939 г.

 Леноблгорлит № 1894.
 Тираж 3000 экз.
 Уч.-авт. л. 28,3.
 Авт. л. 23,5.
 Печ. л. 18³/4.

 Колич. печатных знаков в 1 печ. листе 40000.
 Формат 72×105.
 Заквз № 706.

2-я типография ОГИЗа РСФСР треста "Полиграфкинга" "Печатный Двор" имени А. М. Горького. Ленинград. Гатчинская, 26.

Издание Ленинград. Государств. Университета.

ΟΤ ΑΒΤΟΡΑ

١.

Составление руководства по вычислительным и графическим методам кристаллографии вызвано двумя причинами. Первая причина — отсутствие удовлетворительных руководств как в русской, так и в иностранной литературе; вторая причина — острая нужда в них при преподавании гоннометрии и рентгенометрии кристаллов и при исследовательских работах в этих областях.

При составлении данного руководства я имел, главным образом, в виду ту вычислительную и графическую работу (если не считать краткие прибавления в конце книги), которая необходима при исследовании геометрических свойств кристаллов как многогранников, иначе говоря — при гониометрическом исследовании кристаллов. В руководстве не изложены специфические вычислительные методы, употребляемые при анализе структуры кристаллов рентгеновскими лучами, которые, конечно, более уместны при описании самих рентгеновских методов. К тому же гониометрическая методика является основной и при рентгеновских методах исследования кристаллов.

В данном руководстве не излагаются также два отдела, относящиеся целиком к гоннометрии кристаллов. Это, во-первых, описание гониометров и процесс измерения кристаллов и, во-вторых, учение о кристаллографических проекциях. Эти отделы достаточно полно изложены в вышедших в последние годы учебниках кристаллографии, и в новом их изложении пока нет необходимости. Гониометры и работа с ними описаны во всех основных учебниках, наиболее полно у Е. Е. Флинта, проекциях, необходимые для понимания изложенных в данной книге графических методов, даны в приложении 1.

Все методы, изложенные в руководстве, как графические, так и вычислительные, тесно связаны друг с другом, логически вытекают один из другого и из одного общего начала. Необходимые отступления представлены лишь единичными случаями. Каждый метод выводится в самом общем виде, и затем из общей его формы дается вывод для частных случаев. Все главнейшие методы и их выводы являются развитием монх прежних работ в данной области.¹

В данном руководстве автору принадлежит следующее: теоретические предпосылки (гл. I), за исключением общеизвестных выражений Аюи (§ 1—3); графические методы (гл. II—IV), за исключением методов, изложенных в § 7 гл. II, §§ 1—6 главы III и § 1 гл. IV. Методы "отрезков прямой" и неразрывно связанные с ними методы зонального вычисления (гл. VIII) представляют собой развитие и всестороннее обобщение соответствующего метода Е. С. Федорова, предложенного им лишь для одного частного случая² (вывод этих методов из одного общего начала также принадлежит автору). Автору же принадлежат и вычислительные

-1

¹ Зап. Всеросс. мнн. общ., 53, № 1, 1924. Тр. Лен. общ. естеств., 55, в. 4, 1925 и 56, в. 4, 1926. Зап. Всеросс. мнн. общ., 59, № 1, 1930 (последняя переведена в Испании).

Литературу см. в этих работах. В данной книге имеются отдельные ссылки, за исключением, главным образом, тех случаев, которые входят в учебники кристаллографии и являются общеизвестными.

² Зап. Гори. инст., т. III, в. 2, 1911, стр. 141.

Метод доложен автором в Федоровском институте в 1922—1923 г., и наиболее общая формула зопального вычисления приводится в Зап. Всеросс. мин. общ., 53, № 1, 1924.

методы (гл. IV-X), за исключением первоначальной обработки результатов измерения (§§ 4-6, гл. V), что заимствовано с некоторыми изменениями и дополнениями у В. В. Доливо-Добровольского,¹ а также общеизвестного перечисления сферических координат к новому полюсу (§§ 8-9 гл. V) и вычисления координат граней по элементам кристалла (гл. Х), заимствованного у В. В. Доливо-Добровольского.² Приложения 2—4 принадлежат также автору.

Предложенные мной в свое время вычислительные методы, так называемые "методы непосредственной подстановки", значительно расширенные в данном руководстве, приняты, повидимому, благодаря своей простоте большинством кристаллографов Союза, судя по ссылкам в печати. Чтобы по возможности упростить и механизировать вычисления, что особенно важно при большом их количестве, в руководстве приводятся формулы не только для общих случаев, но и для частных случаев, практически наиболее часто встречающихся. Для упрощения вычислений приложен также ряд таблиц, облегчающих (а часто даже заменяющих) вычисления.

Строгость выводов при изложении методов — первое требование, которое должно предъявляться к подобного рода руководствам. Позволяю себе надеяться, что отступлением от этой строгости страдают лишь §§ 4-6 гл. V о "Первоначальной обработке результатов измерения кристаллов". Причины этого отступления в своем месте указаны. Я стремился вместе с тем при составлении руководства к возможно большей его простоте и доступности. В этом отношении я имел в виду, главным образом, подготовку студентов геохимической специальности геолого-почвенного факультета ЛГУ, которым читаю курсы гониометрии и рентгенометрии кристаллов. Возможно, в некоторых местах руководства имеются даже перегибы в сторону, быть может, излишней элементарности изложения.

При первом опыте неизбежны многочисленные, как мелкие, так и крупные, недочеты, и я был бы очень признателен за указания этих недочетов.

Выражаю благодарность сотрудникам кафедры кристаллографии ЛГУ — Г. М. Попову, В. Б. Татарскому, В. А. Франк-Каменецкому, И. И. Шафрановскому и др. — за помощь, оказанную при составлении руководства.

Данный труд посвящается памяти великого русского кристаллографа — Евграфа Степановича Федорова, который является одним из основоположников теодолитного метода в гоннометрии кристаллов и двадцатая годовщина смерти которого исполняется в текущем году.

О. Аншелес.

¹ Зап. Всеросс. мин. общ., 58, № 1, 1929, и Тр. Всесоюзн.[/] геол.-разв. объед., в. 235, 1932. [°] Тр. Леп. общ. естеств., 58, в. 4.

ГЛАВА ПЕРВАЯ

ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ ГРАФИЧЕСКИХ И ВЫЧИСЛИТЕЛЬНЫХ МЕТОДОВ

§ 1. Закон Аюи и символы граней и ребер

Как графические, так и вычислительные методы определения символов граней и ребер по их сферическим координатам и обратно — определение координат по символам — будут выведены нами из одного общего начала, изложенного в конце

настоящей главы (§ 6) и представляющего собой одно из выражений закона Аюп. Оно выводится нами из обычного выражения закона Аюи путем последовательного перехода через другие выражения того же закона, которых, вообще говоря, может быть очень много.

Закон Аюи (иначе закон целых чисел, или закон рациональности двойных отношений) может быть выражен в самом общем виде следующим образом: двойные отношения отрезков, делаемых двумя любыми гранями кристалла на любых двух, трех или большем числе ребер равно отношению целых простых чисел.

Возьмем, например, три ребра кристалла — 1, 2 и 3 (фиг. 1), перенесенные параллельно самим себе в одну точку О. (От перенесения прямых и плоскостей параллельно самим себе соответствующие отношения не меняются.) Возьмем две (непа-

исталла на ьшем числе ых простых кристалла — 1, ллельно самим ения прямых и соответствуюмем две (непа-

В,

Л

раллельные друг другу) грани — $A_0B_0C_0$ и ABC, пересекающие эти ребра, и пусть отрезки, отсекаемые гранями на ребрах, равны соответственно a_0 , b_0 , c_0 для грани $A_0B_0C_0$ и A, B, C для грани ABC. Тогда двойные отношения этих отрезков обязательно будут равны целым простым числам, т. е.

$$\frac{A}{a_0}: \frac{B}{b_0}: \frac{C}{c_0} = P: Q: R \tag{1}$$

где P, Q, R--- целые числа.

Этим законом при помощи так называемых символов граней пользуются для нанболее простого определения положения граней кристаллического комплекса относительно кристаллических осей, элементов симметрии и относительно других граней. Им пользуются также для отличия граней разных форм. Для обозначения граней символами необходимо и достаточно трех ребер, на которых измеряются отрезки, отсекаемые гранями. (Только в кристаллах гексагональной сингонии в некоторых отношениях удобнее брать четыре ребра.) Эти ребра выбираются постоянными для всех граней комплекса и принимаются за координатные или кристаллографические оси. Эта системы координат, о которой будем гово-

2

рить ниже: Отрезки, отсекаемые гранью на кристаллографических осях, называются параметрами грани. Выбирается также постоянной грань, напр. $A_0B_0C_0$ с параметрами a_0, b_0, c_0 , пересекающая все три оси, на параметры которой делятся параметры всех других граней комплекса; эти отрезки a_0, b_0, c_0 принимаются, таким образом, за единицы измерения по каждой оси — за так называемые единичные отрезки.

В дальнейшем три грани (100), (010) и (001), ребра пересечения которых принимаются за кристаллографические оси, мы будем называть основными гранями кристаллического комплекса, а грань (111), параметры которой служат единицами измерения по каждой оси, будем называть единичной гранью, как это принято в последнее время.

При выборе основных и единичной граней — или, как говорят, при "установке кристалла" — пользуются определенными, известными правилами, преследуя ту цель, чтобы грани одной и той же формы были выражены одинаковыми символами, чтобы символы эти состояли из наиболее простых чисел или кроме того, — как при федоровских установках и при определении структуры рентгеновскими лучами, чтобы эта установка отвечала структуре кристалла и была "однозначной", не зависящей от произвола исследователя.

В зависимости от преследуемой цели этими правилами можно, конечно, и не пользоваться. При выборе основных и единичной граней, в целях упрощения вычислительных и графических методов, можно не считаться с этими правилами и придавать кристаллам такую установку — лишь временную, конечно, — которая ведет к наиболее простому и быстрому решению поставленной в данный момент задачи, возвращаясь затем к обычным установкам.

Со времени Миллера (1839) общепринятыми при определении символов граней являются не отношения параметров граней к параметрам единичной грани, а величины обратные им, именно:

$$\frac{a_0}{A}:\frac{b_0}{B}:\frac{c_0}{C}=p:q:r.$$
(2)

Целые числа p, q и r (одно или два из них могут равняться 0) и называются индексами (показателями) грани; совокупность же индексов, заключенных в круглые скобки (pqr), называется символом грани. Для обозначения символом целой простой формы — индексы какой-либо грани этой формы ставят в фигурные скобки {pqr}. С этими миллеровскими индексами, наиболее удобными — особенно для вычислительных целей, мы исключительно и будем иметь дело в дальнейшем.

По отношению к ребрам кристаллического комплекса закон Аюн выражается в том, что двойные отношения координат любых точек каких-либо двух ребер, взятых по трем другим ребрам как по осям координат, есть целые числа. Если взять три ребра постоянными для всего комплекса, принять их за кристаллографические оси, а составляющие четвертого ребра — за единицы измерения составляющих всех других ребер комплекса, то отношения частных от деления составляющих всех других ребер комплекса, то отношения частных от деления составляющих на указанные единицы измерения дадут индексы символов ребер. Первые три ребра — кристаллографические оси — могут быть тогда названы основными ребрами с символами [100], [010] и [001], а четвертое ребро, дающее на первых единицы измерения, — единичным ребром [111].

Ради упрощения и сохранения определенной зависимости между индексами ребер и индексами граней в данном комплексе — за кристаллографические оси при определении символов ребер принимаются те же три ребра, как и при определении индексов граней, т. е. ребра пересечения основных граней (100), (010) и (001), а за единицы измерения координат всех ребер принимаются параметры единичной грани (111), как и для граней. Для этого за единичное ребро принимается диагональ параллелепипеда, построенного на параметрах единичной грани, так как координаты этого возможного ребра будут равны или пропорциональны гараметрам единичной грани (фиг. 2). Таким образом, если A_1 , B_1 , C_1 — составляющие какой-либо точки искомого ребра OX, то

$$\frac{A_1}{a_0}: \frac{B_1}{b_0}: \frac{C_1}{c_0} = p_1: q_1: r_1, \tag{3}$$

где p_1 , q_1 , r_1 — индексы ребра, а a_0 , b_0 и c_0 те же величины, что и в равенстве (1) и (2). При получении индексов ребер не требуется брать величины обратные $\frac{A_i}{a_0}, \frac{B_1}{b_0}, \frac{C_1}{c_0}$, как это делается при нахождении индексов граней. Символы ребер для отличия от символов граней заключаются в квадратные скобки [pqr].

Фиг. 2.

§ 2. Двойные отношения косинусов

Пусть 1, 2 и 3 (фиг. 3) — координатные оси основной системы координат — ребра пересечения трех граней кристаллического комплекса; a_0 , b_0 , c_0 — параметры кекоторой грани U, и A, B, C — параметры другой грани, X. Тогда по закону рациональности двойных отношений параметров:

$$\frac{a_0}{A}: \frac{b_0}{B}: \frac{c_0}{C} = p: q: r, \tag{4}$$

где *p*, *q* и *r*—целые числа.

Из начала координат — точки O — опустим перпендикуляры OU и OX на грани U и X. Пусть перпендикуляр OU образует соответственно с 1, 2 и 3 координатными осями углы λ_0 , μ_0 , ν_0 , а перпендикуляр OX с теми же осями — углы λ , μ и ν .

Берем отрезок перпендикуляра OX — от начала координат до точки пересечения перпендикуляра с самой гранью. Так как углы AXO, BXO, CXO прямые, то имеем:

$$\cos \lambda = \frac{OX}{A};$$
$$\cos \mu = \frac{OX}{B};$$
$$\cos \nu = \frac{OX}{C}.$$

Отсюда найдем, что

$$\cos \lambda : \cos \mu : \cos \gamma = \frac{1}{A} : \frac{1}{B} : \frac{1}{C}.$$

Таким же образом найдем:

$$\cos \lambda_0 : \cos \mu_0 : \cos \nu_0 = \frac{1}{a_0} : \frac{1}{b_0} : \frac{1}{c_0}.$$

Разделив почленно первое равенство на второе, получим:

$$\frac{\cos\lambda}{\cos\lambda_0}:\frac{\cos\mu}{\cos\mu_0}:\frac{\cos\nu}{\cos\nu_0}=\frac{a_0}{A}:\frac{b_0}{B}:\frac{c_0}{C}.$$
(5)

Подставляя в (4) находим:

$$\frac{\cos\lambda}{\cos\lambda_0}:\frac{\cos\mu}{\cos\mu_0}:\frac{\cos\nu}{\cos\nu_0}=p:q:r.$$
(6)

Получается выражение рациональности двойных отношений косинусов углов, образуемых нормалями к любым двумграням с кристаллографическими осями.

Если три грани, ребра пересечения которых приняты нами за координатные оси, принять за основные (100), (010), (001), а грань Uпринять за единичную (111), то p, q и r индексы грани X.

На этом основан довольно простой, наполовину вычислительный, наполовину графический, метод определения индексов граней, введенный в практику проф. Г. В. Вульфом и широко применяемый в его школе.

Пусть даны гномостереографические проекции основных граней, единичной и грани X, символ которой надо определить (фиг. 4). Все операции проделываем на вульфовской сетке. Проводим три дуги большого круга через каждую пару граней (100), (010) и (001). Полюсы этих дуг будут соответственно стереогра-

фическими проекциями ребер пересечения каждой пары граней, т. е. проекциями кристаллографических осей [100], [010] и [001]. По вульфовской сетке отсчитываем углы между кристаллографическими осями и перпендикулярами к граням (111) и X(pqr), т. е. углы λ_0 , μ_0 , ν_0 и λ , μ , ν . Подставляя их в формулу (6) и произведя вычисления, найдем отношение индексов p, q и r грани X. Можно всю задачу решить вычислением. Для этого необходимо вычислить предварительно положение осей [100], [010] и [001] (стр. 179) и углы λ_0 , μ_0 , ν_0 и λ , μ , ν (стр. 181).

Останавливаться на этом методе не будем, так как в дальнейшем мы познакомимся с более простыми и более точными графическими и вычислительными методами.

§ 3. Двойные отношения координат граней в полярной системе координат

Пусть нам даны три ребра кристалла, которые примем за первую, вторую и третью координатные оси основной системы координат (фиг. 5). Из начала координат (точка O) опустим перпендикуляры OP, OQ и OR на координатные плоскости 203, 103 и 102 (возможные грани) и примем эти перпендикуляры за координатные оси так называемой полярной системы координат. Пусть эти оси образуют соответственно углы α , β и γ с осями основной системы координат. Опустим из точки O перпендикуляры OU и OX на любые две грани

кристалла (не изображенные на фиг. 5) и найдем координаты каких-либо точек и и х на прямых OU и OX в полярной системе координат.

Для этого из точек u и x проведем прямые сначала хотя бы параллельно оси R до пересечения с плоскостью осей P и Q, а затем из точек пересечения прямые, параллельные оси Q, до пересечения с осью P (как это указано на фиг. 5). Получим следующие координаты: для точки $u - OL_0 = a_1$, $L_0K_0 = b_1$, $uK_0 = c_1$ и для точки $x - OL = A_1$, $LK = B_1$, $xK = C_1$.

Спроектируем теперь ломаную OxKLO на первую ось основной системы координат. Принимая во внимание, с одной стороны, что проекция замыкающей (Ox)равна сумме проекций замыкаемых (отрезков A_1 , B_1 и C_1) и, с другой стороны, что xK и KL перпендикулярны к первой оси (так как они соответственно параллельны осям R и Q, которые перпендикулярны плоскостям IO2 и IO3), найдем:

 $Ox \cos \lambda = A_1 \cos \alpha (+ B_1 \cos 90^\circ + C_1 \cos 90^\circ).$

Проектируя ту же ломаную на вторую и третью оси, найдем:

$$Ox \cos \mu = B_1 \cos \beta,$$

$$Ox \cos \nu = C_1 \cos \gamma.$$

Отсюда:

 $A_1 \cos \alpha : B_1 \cos \beta : C_1 \cos \gamma = \cos \lambda : \cos \mu : \cos \nu.$

Совершенно таким же образом найдем:

 $a_1 \cos \alpha : b_1 \cos \beta : c_1 \cos \gamma = \cos \lambda_0 : \cos \mu_0 : \cos \nu_0$.

Разделив почленно первое равенство на второе, получим:

$$\frac{A_1}{a_1}:\frac{B_1}{b_1}:\frac{C_1}{c_1}=\frac{\cos\lambda}{\cos\lambda_0}:\frac{\cos\mu}{\cos\mu_0}:\frac{\cos\nu}{\cos\nu_0}$$

Сопоставляя это равенство с (5) и (6), получим:

$$\frac{A_{1}}{a_{1}}:\frac{B_{1}}{b_{1}}:\frac{C_{1}}{c_{1}}=\frac{a}{A}:\frac{b}{B}:\frac{c}{C}=p:q:r.$$
 (7)

Если три грани, нормали к которым приняты за координатные оси, основные — (100), (010) и (001), а грань U — единичная (111), то p, q и r — индексы грани X. В таком случае координаты a_1 , b_1 и c_1 нормали к грани U будут единицами измерения координат нормалей всех других граней данного кристаллического комплекса, взятых в той же системе. Выражение (7) формулируется тогда так: координаты каких-либо точек нормалей к граням кристалла, взятые по нормалям к основным граням и измеренные соответственными единицами измерения (только что указанными), пропорциональны индексам граней.

Полученное выражение особенно важно для нас потому, что в дальнейшем мы будем иметь дело не с самими гранями кристаллов, а исключительно с нормалями к ним и с проекциями этих нормалей, главным образом — с линейными их проекциями (т. е. гномоническими проекциями граней). Равенство (7) явится также для нас исходным при выводе других выражений рациональности двойных отношений, графических методов и формул для вычислений.

Выражение (7) важно еще потому, что, как видим, оно вполне тождественно с выражением (3), связывающим координаты с индексами ребер (т. е. осей зон). Приняв, таким образом, в фиг. 5 нормали к основным граням — P, Q, R — за

Фиг. 5.

основные ребра [100], [010] и [001], нормаль к грани U — за единичное ребро [111]. а нормаль к грани X— за ребро с символом [pqr], мы— для определения индексов этого ребра — можем непосредственно воспользоваться равенством (7), выведенным для нормалей к граням. Поэтому при выводе из формулы (7) других выражений и формул нам не придется делать это отдельно для граней и ребер: мы будем лишь в полученных выражениях заменять понятие о нормали к грани понятием о ребре (или оси зоны).

§ 4. Двойные отношения перпендикуляров, опущенных из гномонических проекций граней на координатные плоскости

Для вывода графических методов и зависимости между индексами и сферическими координатами граней и ребер кристалла наиболее удобно перейти от пространственных соотношений, с которыми мы до сих пор имели дело, к соотношениям на плоскости, а именно — на плоскости проекций. Мы и сделаем это путем

Фиг. 6.

Тогда по формуле (7) будем иметь:

нескольких последовательных переходов.

Пусть S на фиг. 6 — центр пучка плоскостей и прямых и начало координат.

Пусть прямые SP, SQ, SR, SU и SX. перпендикулярны к каким-либо пяти граням.

Проведем плоскость PQR, которая пересекает эти прямые, и примем ее за плоскость проекций. Чтобы вывести наиболее общие формулы, мы берем плоскость проекций так, что она не параллельна и не перпендикулярна ни одной из этих прямых. Точки пересечения нормалей с плоскостью проекций — точки P, Q, R, U и X — будут линейными проекциями нормалей к соответствующим граням, или гномоническими проекциями этих граней.

Примем перпендикуляры к трем граням, например прямые SP, SQ и SR, за координатные оси и найдем по этим осям координаты точек X и U прямых SX и SU. Пусть эти координаты будут A_1 , B_1 и C_1 для точки X и a_1 , b_1 и c_1 — для точки U.

$$\frac{A_1}{a_1}:\frac{B_1}{b_1}:\frac{C_1}{c_1}=p:q:r.$$
(8)

Из каждой точки Х и U опустим перпендикуляры на три координатные плоскости, т. е. на плоскости QSR, PSR и PSQ. (Чтобы не усложнять чертежа, на фиг. 6 опущены перпендикуляры только на плоскость PSQ.) Пусть длина этих перпендикуляров от точки Х до указанных плоскостей равна соответственно Н., H_2 и H_3 , а от точки $U - h_1$, h_3 , h_3 . Треугольник XMN подобен треугольнику Umn, а потому

$$\frac{H_3}{h_3} = \frac{C_1}{c_1}$$

Подобным же образом мы нашли бы, что

$$\frac{H_1}{h_1} = \frac{A_2}{a_1}$$

 $\frac{H_2}{h_3} = \frac{B_1}{b_1}.$

и

Подставляя в равенство (8), находим:

$$\frac{H_1}{h_1}:\frac{H_2}{h_2}:\frac{H_3}{h_3}=p:q:r,$$
(9)

т. е. двойные отношения отрезков перпендикуляров, опущенных из гномонических проекций двух граней на плоскости нормалей к трем другим граням кристалла, рациональны.

По соображениям, высказанным на странице 9—10, мы имеем право в своем выводе заменить нормали к граням ребрами и сказать: двойные отношения отрезков перпендикуляров, опущенных из линейных проекций двух ребер на плоскости трех других ребер кристалла, рациональны.

§ 5. Двойные отношения объемов

Проведем теперь через прямую SX и каждую из прямых SP, SQ и SR три плоскости — SXP, SXQ и SXR (фиг. 6). Следы этих плоскостей на плоскости проекций будут прямые XP, XQ и XR. Эти плоскости образуют с координатными плоскостями три трехгранные пирамиды (три неправильные тетраэдра) с вершиной в точке X и основаниями — QSR, PSR и PSQ. Точно так же через прямую SUи каждую из тех же прямых SP, SQ и SR проведем три плоскости SUP, SUQ, SUR. Следы этих плоскостей на плоскости проекций будут прямые UP, UQи UR. Получаем опять три трехгранные пирамиды с вершиной U и с теми же основаниями QSR, PSR и PSQ.

Все полученные шесть пирамид мы можем разбить на три пары с вершинами X и U в каждой паре. Обозначим соответственно через V_1 и v_1 объемы пирамид, основанием которых служит площадь треугольника QSR, а высотами — H_1 и h_1 ; через V_2 и v_2 — объемы пирамид с основанием PSR и высотами — H_2 и h_2 , и, наконец, через V_3 и v_3 обозначим объемы пирамид с основанием PSQ и высотами H_3 и h_3 . (Высоты H_2 , h_2 , H_3 и h_3 на фиг. 6 не обозначены.)

Так как основание у каждой пары пирамид одно и то же, то объемы их относятся как высоты, т. е.

$$\frac{V_1}{v_1} = \frac{H_1}{h_1}; \quad \frac{V_2}{v_2} = \frac{H_2}{h_2} \quad \text{M} \quad \frac{V_3}{v_3} = \frac{H_3}{h_3}.$$

Подставляя в (9), найдем:

$$\frac{V_1}{v_1}: \frac{V_2}{v_2}: \frac{V_3}{v_3} = p: q: r.$$
 (10)

Таким образом, двойные отношения объемов трехгранных пирамид (тетраэдров), вершинами которых служат гномонические проекции двух граней, а основаниями — площади треугольников, отсекаемых плоскостью проекции на плоскостях нормалей к трем другим граням, рациональны.

Это положение сформулируем еще так: если нормали к пяти граням пересечь какой-либо плоскостью и затем провести плоскости через каждую пару трех нормалей и через каждую из этих трех и две остальные нормали, то получаются шесть тетраэдров, двойные отношения объемов которых рациональны.

Аналогично этому: двойные отношения объемов тетраэдров, вершинами которых служат линейные проекции двух ребер кристалла, а основаниями—площади треугольников, отсекаемых плоскостью проекций на плоскостях трех других ребер, рациональны.

Так как каждые два ребра комплекса определяют возможную грань того же комплекса, то этому выражению можно дать еще такую формулировку: если

пять ребер кристалла, проведенных из центра пучка, пересечь какой-либо плоскостью, то эта плоскость вместе с гранями кристалла, проходящими через каждую пару трех ребер и затем через каждое из этих трех и два остальных ребра, образуют шесть тетраэдров, двойные отношения объемов которых рациональны.

Если грани (или ребра) P, Q и R — основные, а грань (или ребро) U — единичная, то p, q и r — индексы грани (или ребра) X.

§ 6. Двойные отношения площадей треугольников на плоскости проекций

Все шесть описанных выше пирамид имеют одну общую точку — именно точку S (фиг. 6). Примем эту точку за вершину пирамид, а противолежащие грани, которые все находятся на одной плоскости, выбранной нами за плоскость проекций, т. е. треугольники QRX и QRU, PRX и PRU, PQX и PQU, примем за основания пирамид.

Таким образом, высота всех шести пирамид окажется одна и та же, а именно отрезок перпендикуляра, опущенного из точки S на плоскость проекций. (На фиг. 6 эта высота не проведена.) Поэтому объемы пирамид будут относиться как площади их оснований, т. е.

$$\frac{\Pi \pi. \bigtriangleup QRX}{\Pi \pi. \bigtriangleup QRU} = \frac{V_1}{v_1}$$
$$\frac{\Pi \pi. \bigtriangleup PRX}{\Pi \pi. \bigtriangleup PRU} = \frac{V_2}{v_2}$$
$$\frac{\Pi \pi. \bigtriangleup PQX}{\Pi \pi. \bigtriangleup PQU} = \frac{V_3}{v_3}.$$

Подставляя в (10), находим:

$$\frac{\Pi J. \bigtriangleup QRX}{\Pi J. \bigtriangleup QRU} : \frac{\Pi J. \bigtriangleup PRX}{\Pi J. \bigtriangleup PRU} : \frac{\Pi J. \bigtriangleup PQX}{\Pi J. \bigtriangleup PQU} = p : q : r,$$
(11)

т. е. двойные отношения площадей треугольников, получаемых после соединения прямыми гномонических проекций трех граней кристалла друг с другом и с гномоническими проекциями двух других граней, рациональны.

Аналогично этому: двойные отношения площадей треугольников, получаемых после соединсния прямыми линейных проекций трех ребер кристалла друг с другом и с линейными проекциями двух других ребер, рациональны.

Если *P*, *Q* и *R*—основные грани, а *U*—единичная, то *p*, *q* и *r*—индексы грани *X*. Если *P*, *Q* и *R*— основные ребра, а *U*— единичное, то *p*, *q* и *r*—индексы ребра *X*.

Таким образом мы перешли к соотношениям на плоскости проекций и в следующих параграфах воспользуемся формулой (11) для вывода наиболее простых и точных графических методов определения индексов по положению граней и определения положения грани по ее индексам. Этой же важной формулой мы в дальнейшем воспользуемся для вывода зависимости между индексами и сферическими координатами граней и ребер кристалла как в самом общем виде, так и в различных частных случаях и выведем таким образом формулы для вычисления кристаллов.

ГЛАВА ВТОРАЯ

ГРАФИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ СИМВОЛОВ ГРАНЕЙ

§ 1. Предварительные замечания

Так как нам наперед известно, что символы граней (и ребер) выражаются целыми простыми числами, для их определения нет нужды прибегать к громозд-

ким вычислительным методам. Только в кристаллах кубической сингонии графическим методам следует, быть может, предпочесть определение символов по таблицам (табл. V и VII).

При графических методах определения символов обычно пользуются либо гномостереографическими, либо гномоническими проекциями. (О гномонических проекциях см. прил. I, стр. 200.) Предпочтение, несомпенно, должно быть отдано, как правило, методам, в которых используются гномонические проекции. Преимуществом этих методов является, во-первых, минимальное количество построений и, во-вторых, то, что в них приходится иметь дело исключительно с отрезками прямых, а не с дугами, как при стереографических проекциях. Обе эти причины обусловливают наибольшую быстроту и вместе с тем наибольшую точность определений. В том виде, в каком эти методы здесь излагаются, они и по своей универсальности не уступают методам, использующим стереографические проекции (метод двойных отношений косинусов углов, метод развития поясов и пр.). Эти методы, оставаясь одинаково простыми, применимы для любой ориентировки кристалла, иначе говоря — для любого положения плоскости проекций относительно кристаллографических осей или осей полярной системы координат. Недостатком этих методов является общее неудобство пользования гномоническими проекциями. а именно — удаленность точек, отвечающих граням с большим полярным расстоянием (р). Но это неудобство устраняется употреблением уменьшенных масштабов при нанесснии гномонических проекций граней. Если при работе со стереографическими проекциями наиболее удобно пользоваться расстоянием плоскости проекций от центра кристаллического пучка (радиусом основного круга проекций) в 10 см, то при гномонических проекциях обычно это расстояние берется равным 5 см. При таком масштабе за пределы обыкновенного полулиста бумаги не выходят гномонические проекции граней с полярным расстоянием до 65-67° (расстояние от центра проекций 11—12 см). При больших полярных расстояниях либо берутся еще меньшие масштабы, либо при определении символов под чертеж подкладывается лист бумаги с выступающими краями из-под основного чертежа.

Чтобы получить четкие результаты, графическая работа, хотя она н очень проста, должна вестись аккуратно; особенно важно по возможности точное нанесение проекций. Расстояние гномонических проекций от центра проекций наиболее удобно брать по таблицам натуральных тангенсов (табл. II, стр. 215). При расстоянии плоскости проекций от центра пучка в 5 см — в величинах, отвечающих тангенсам углов р, переносится запятая на один знак вправо и полученное число "в уме" делят на два с точностью до первого знака. Очень удобно пользоваться также линейкой Гольдшмидта. Работать надо с хорошо отточенным карандашом. Гномонические проекции лучше первоначально отмечать накалыванием иглой.

Для кристаллов гексагональной сингонии (при четырехчленных символах граней и ребер) любым из изложенных ниже методов определяются лишь три индекса. При установке Браве определяются первый, второй и четвертый индексы; третий же индекс находится как сумма первых двух с обратным знаком. При установке Федорова определяются первый, второй и третий индексы; четвертый равен третьему минус второй.

Метод основного треугольника

§ 2. Общий случай

Пусть кристалл орнентирован произвольно относительно оси проекций. (Ось проекций, как известно, всегда перпендикулярна плоскости проекций.) Возьмем общий случай, когда ни одна из основных граней (100), (010), (001) не параллельна оси проекций и, следовательно, перпендикуляры к ним не параллельны плоскости проекций. Гномонические проекции этих граней находятся на плоскости проекций, а не в бесконечности. Так получается при измерении кристаллов при произвольной юстировке, а также при юстировке по любой грани в кристаллах триклинной сингонии. Пусть грань X, символ которой определяется, также занимает произвольное положение и ее проекция находится на плоскости проекций.

Фиг. 7.

Это и будет отвечать общему случаю излагаемого нами метода основного треугольника. К этому же надо прибавить, что здесь имеется в виду наиболее общий случай кристаллов, а именно кристаллы триклинной сингонии. Впрочем, и для других сингоний метод остается неизменным. В следующих параграфах будут изложены наиболее важные частные случан как положения основных граней относительно оси проекций, так и положения искомой грани X.

Для теоретического обоснования метода основного треугольника вернемся к выраже-

нию рациональности двойных отношений площадей треугольников, образованных соединением прямыми гномонических проекций граней кристалла (или линейных проекций ребер).

Пусть (фиг. 7) на плоскости проекции PQR, которой является плоскость чертежа, точки P; Q, R, U и X будут гномоническими проекциями граней (100), (010), (001), (111) и (pqr). Соединим прямыми точки P, Q и R. Получаем треугольник PQR, который в дальнейшем будем называть основным треугольником.

Соединим также прямыми вершины P, Q и R с точками X и U. Получаем

шесть треугольников: XQR, UQR, XPR, UPR, XPQ и UPQ. В § 6 главы I (стр. 12) было доказано, что двойные отношения площа-

дей этих треугольников равны отношению индексов грани Х, т. е.

$$p:q:r = \frac{\Pi\pi \bigtriangleup XQR}{\Pi\pi \bigtriangleup UQR} : \frac{\Pi\pi \bigtriangleup XPR}{\Pi\pi \bigtriangleup UPR} : \frac{\Pi\pi \bigtriangleup XPQ}{\Pi\pi \bigtriangleup UPQ} . \tag{1}$$

Из точек X и U (фиг. 8) опустим на стороны основного треугольника QR, PR, PQ перпендикуляры — XA и Ua, XB и Ub, XC и Uc.

Так как треугольники XQR и UQR имеют общее основание QR, то их площади относятся как высоты. Поэтому

$$\frac{\Pi \pi \cdot \bigtriangleup XQR}{\Pi \pi \cdot \bigtriangleup UQR} = \frac{XA}{Ua}.$$

Точно так же найдем:

$$\lim_{\Pi \to \Delta} \frac{\Delta XPR}{UPR} = \frac{XB}{Ub} \quad \text{if} \quad \frac{\Pi \pi \Delta XPQ}{\Pi \pi \Delta UPQ} = \frac{XC}{Uc}.$$

Подставляя в (1), получим:

$$p:q:r = \frac{XA}{Ua}: \frac{XB}{Ub}: \frac{XC}{Uc}.$$
(2)

Проведем прямую через точки X и U до пересечения со сторонами основного треугольника (или с продолжением этих сторон) в точках H, K, L (фиг. 9).

Эти важные точки — точки пересечения прямой XU со сторонами основного треугольника — будем всегда и в дальнейшем обозначать однозначно: через H —

точку на стороне QR основного треугольника, лежащую против вершины P, через-K — точку на стороне PR, против вершины Q, и через L — точку на стороне PQ, против вершины R.

Треугольники НХА и НUa подобны. Поэтому:

$$\frac{XA}{Ua} = \frac{HX}{HU}$$
.

Точно так же из подобия треугольников *КХВ* и *КUb* и треугольников *LXC* и *LUc*найдем:

$$\frac{XB}{Ub} = \frac{KX}{KU} + \frac{XC}{Uc} = \frac{LX}{LU}.$$

$$m:_{j}$$

$$p:q:r = \frac{HX}{HU}: \frac{KX}{KU}: \frac{LX}{EU}.$$
(3)

Подставляя во (2), получия

Полученная формула и является основной при графическом определении символов граней методом основного треугольника. Таким образом, чтобы определить символ

(*pqr*) любой грани X кристаллического комплекса, достаточно провести прямую через гномонические проекции искомой грани X и единичной грани U до пересечения со сторонами основного треугольника в точках H, K и L, измерить отрезки этой прямой от указанных точек до точек X и U и взять соответствующие двойные отношения полученных величин.

Двойные отношения отрезков прямой XU от точек (H, K и L) пересечения этой прямой со сторонами основного треугольника до точек X и U равны отношению индексов грани X.

При определении индексов необходимо учитывать не только длину, но и направление отрезков, а следовательно и их знак. Направления будем всегда брать

от точек H, K и L. В одну сторону от этих точек направления положительные, в другую отрицательные. В том случае, если отрезки HX и HU в формуле (3) направлены в одну сторону от точки H (если отрезки накладываются друг на друга), то они одного знака. Тогда отношение $\frac{HX}{HU}$ положительное. Если же отрезки HX и HU направлены в разные стороны от точки H (если они не накладываются друг на друга), то нх отношение отрицательное. То же самое относится и к отношениям $\frac{KX}{KU}$ и $\frac{LX}{LU}$. Если точки X и U расположены по одну сторону от точек K или L, отношение $\frac{KX}{KU}$ или $\frac{LX}{LU}$ положительно, в противном случае отрицательно. Таким образом, при том, например, положении точки, как оно изображено на фиг. 10, отношение $\frac{KX}{KU}$ — отрицательно, а следовательно второй индекс символа (*pgr*) — отрицательный.

$$p:q:r=\frac{HX}{HU}:-\frac{KX}{KU}:\frac{LX}{LU}.$$

Грани со всеми положительными индексами располагаются внутри основноготреугольника. Остальные грани также располагаются в определенных полях, чтоизображено на фиг. 11. Прямая UX может быть всегда заменена двумя параллельными прямыми, проведенными в произвольном направлении через точки U и X.

На фиг. 12 прямая H_0L_0 , проведенная через точку U, параллельна прямой H_1L_1 , проведенной через точку X. $\triangle H_0UH$ подобен $\triangle H_1XH$, $\triangle K_0UK$ подобен $\triangle K_1XK$ и $\triangle L_0UL$ подобен $\triangle L_1XL$. Поэтому:

Подставляя в (3), получаем:

$$p:q:r = \frac{H_1X}{H_0U}: \frac{K_1X}{K_0U}: \frac{L_1X}{L_0U}.$$
 (4)

Необходимо и здесь учитывать: в одну сторону направлены отрезки H_1X и H_0U , K_1X и K_0U , L_1X и L_0U или в разные стороны. В последнем случае соот-

ветствующие дроби получают знак минус.

Проведение двух прямых вместо одной (UX), хотя и незначительно, но все же осложняет графическое определение символов методом основного треугольника. Но при двух параллельных прямых можно все же использовать то обстоятельство, что прямые проводятся в произвольном направлении. Наиболее выгодно проводить одну из прямых через какуюнибудь вершину основного треугольника. В этом случае два отрезка оказываются равными и вычисления индексов при этом

упрощаются. Если, например, провести прямую через точку X и через одну из вершин основного треугольника, то в формуле (4), в зависимости от того, через какую вершину проведена эта прямая, $H_1X = K_1X$ (вершина R), либо $H_1X = L_1X$ (вершина Q), либо $K_1X = L_1X$ (вершина P). Еще лучше провести прямую через одну из вершин основного треугольника и через точку U (111), а затем — прямые, параллельные ей, через гномонические проекции каждой искомой грани. В этом случае не только окажутся равными знаменатели двух дробей формулы (4), но и в двойных отношениях, составленных для каждой грани, знаменатели будут одни и те же. При большом количестве искомых граней этот способ наиболее удобен.¹ При выборе вершины основного треугольника, с которой соединяется прямой точка U (111), следует руководствоваться расположением гномонических проекций искомых граней. Следует выбрать направление прямой, проходящей через точку U так, чтобы параллельные сй прямые не слишком далеко пересекали стороны основного треугольника.

В формулах (3) и (4) грань U (111) может быть заменена любой другой гранью $V(p_vq_vr_v)$. Грань V, конечно, не должна находиться в основных зонах, т. е. в зонах [100], [010] и [001].

Пусть в фиг. 13 точки U, V и X — гномонические проекции граней с символами (111), $(p_v q_v r_v)$ и (pqr).

Проведем прямую через точки V и X, прямую через точки V и U и прямую K_1L_1 параллельную последней, через точку X.

По формуле (4) имеем:

$$p:q:r = \frac{H_1X}{H_0U}: \frac{K_1X}{K_0U}: \frac{L_1X}{L_0U}.$$

На основании формулы (3) можем также написать:

$$p_{\upsilon}: q_{\upsilon}: r_{\upsilon} = \frac{H_0 V}{H_0 U}: \frac{K_0 V}{K_0 U}: \frac{L_0 V}{L_0 U}.$$

Разделим почленно первое на второе. После со-кращения получим:

5

$$\frac{p}{p_v}: \frac{q}{q_v}: \frac{r}{r_v} = \frac{H_1 X}{H_0 V}: \frac{K_1 X}{K_0 V}: \frac{L_1 X}{L_0 V}.$$
(5a)

Из подобия треугольников H_1XH и H_0VH найдем:

$$\frac{H_1X}{H_0V} = \frac{HX}{HV}.$$

Точно так же из подобия треугольников K_1XK и K_0VK , а также треугольников L_1XL и L_0VL найдем:

$$\frac{K_1X}{K_0V} = \frac{KX}{KV} \text{ is } \frac{L_1X}{L_0V} = \frac{LX}{LV}.$$

Подставляя в формулу (5а), получаем:

$$\frac{p}{p_v}:\frac{q}{q_v}:\frac{q}{r_v}=\frac{HX}{HV}:\frac{KX}{KV}:\frac{LX}{LV}.$$
(6a)

Таким образом, двойные отношения индексов двух любых граней равны соответствующим двойным отношениям отрезков, которые делает прямая, проведенная через гномонические проекции этих граней при пересечении ее со сторонами основного треугольника.

Так же, как на стр. 16 доказано для граней X и U, можно доказать для граней X и V, что отрезки одной прямой XV могут быть заменены отрезками двух параллельных прямых, проведенных в произвольном направлении через точки X и V. Это выражено в формуле (5а).

Если индексы p_v , q_v и r_v известны и надо определить индексы p, q и r, то переписываем формулы (5а) и (6а) таким образом:

$$p:q:r = \frac{p_v \cdot H_1 X}{H_0 V} : \frac{q_v \cdot K_1 X}{K_0 V} : \frac{r_v \cdot L_1 X}{L_0 V}$$
(5b)
$$p:q:r = \frac{p_v \cdot H X}{H V} : \frac{q_v \cdot K X}{K V} : \frac{r_v \cdot L X}{L V}$$
(6b)

В следующих параграфах при рассмотрении частных случаев не будем, во избежание повторений, останавливаться на замене единичной грани U (111) гранью

¹ Способ предложен Г. М. Поповым.

² Аншелес — 706

 $V(p_v q_v r_v)$. Все частные случаи при грани V остаются теми же, что и при грани U. В формулах произойдет лишь замена отрезков HU, KU, LU отрезками HV, KV и LV, и индексы p, q и r заменяются соответственно отношениями:

$$\frac{q}{p_v}$$
, $\frac{q}{q_v}$, $\frac{r}{r_v}$.

Точно так же не будем рассматривать частные случаи при замене одной прямой UX двумя параллельными прямыми. Формулы получаются аналогичные.

§ 3. Частные случаи положения искомой грани при общем положении основных граней

1. Грань X (pqr) находится в зоне основных граней

Если какие-либо грани находятся в зоне граней Q (010) и R (001), или в зоне P (100) и R (001), или в зоне P (100) и Q (010), — иначе говоря

в одной из зон [100], [010] и [001], — то они соответственно параллельны первой, или второй, или третьей кристаллографической оси. Поэтому первый, или второй, или третий индекс символов этих граней равен нулю. Это непосредственно вытекает также из формулы (3).

Пусть грань X(pqr) (фиг. 14) находится в зоне граней Q и R, т. е. в зоне [100]. Отсюда следует, что гномоническая проекция ее будет находиться на стороне QRосновного треугольника. Проводим прямую UX. Она пересекает QR в точке H, совпадающей с точкой X. Следовательно, HX = 0. Подставляя в формулу (3), получаем:

$$p:q:r=0:\frac{KX}{KU}:\frac{LX}{LU}.$$
(7a)

Таким же образом для грани X в зоне PR [010] и в зоне PQ [001] найдем:

$$p:q:r = \frac{HX}{HU}:0:\frac{LX}{LU},$$
(7b)

$$p:q:r = \frac{HX}{HU}: \frac{KX}{KU}:0.$$
(7c)

2. Грань X (pqr) параллельна оси проекции

Пусть O (фиг. 15) — центр проекций и X'— гномостереографическая проекция грани X (pqr), параллельной оси проекций ("вертикальная" грань). Гномоническая проекция такой грани будет находиться в бесконечности на раднусе OX'. Чтобы провести прямую UX, надо провести через точку U прямую, параллельную OX'.

На этой прямой и измеряем отрезки. Отрезки *HX*, *KX* и *LX* равны бесконечности. Выражаем их так:

$$HX = HU + UX$$
$$KX = KU + UX$$
$$LX = LU + UX.$$

Подставляем в формулу (3):

$$p:q:r = \left(1 + \frac{UX}{HU}\right): \left(1 + \frac{UX}{KU}\right): \left(1 + \frac{UX}{LU}\right) = \left(\frac{1}{UX} + \frac{1}{HU}\right): \left(\frac{1}{UX} + \frac{1}{KU}\right): \left(\frac{1}{UX} + \frac{1}{LU}\right).$$

Так как $UX = \infty$, то дроби с знаменателем UX равны нулю. Получаем окончательно:

$$p:q:r = \frac{1}{HU}:\frac{1}{KU}:\frac{1}{LU}.$$
 (8)

3. Точки X и U лежат на прямой, параллельной одной из сторон основного треугольника

Пусть, например, UX (фиг. 16) параллельна стороне основного треугольника QR. В таком случае точка пересечения этих прямых H находится в бесконечности. HX - HII + IIX.

$$\frac{HX}{HU} = 1 + \frac{UX}{HU} = 1 + \frac{UX}{\infty} = 1$$

Фиг. 16.

Подставляя в формулу (3), получим:

$$p:q:r=1:\frac{KX}{KU}:\frac{LX}{LU}.$$
(9a)

Если прямая UX параллельна PR (К— в бесконечности) или PQ (L— в бесконечности), то подобным же образом найдем:

$$p:q:r = \frac{HX}{HU}:1:\frac{LX}{LU},$$
(9b)

$$p:q:r = \frac{HX}{HU}: \frac{KX}{KU}: 1.$$
(9c)

4. Прямая UX параллельна одной из сторон основного треугольника и точка X в бесконечности

Пусть X (pqr) — "вертикальная" грань, т. е. пусть она параллельна оси проекций. На фиг. 17 гномостереографическая проекция ее — в точке X', на внешнем круге проекций, а гномоническая проекция — на том же радиусе ОХ в бесконсуности (О — центр проекций). Чтобы соединить прямой точку U с точкой X, мы должны провести прямую через точку U параллельно прямой OX'.

Пусть радиус OX', а следовательно и прямая UX параллельны стороне основного треугольника QR. Тогда точка пересечения UX с QR, точка H, будет также находиться в бесконечности. Подставляя в формулу (8) HU = ∞, найдем:

$$p:q:r=0:\frac{1}{KU}:\frac{1}{LU}$$
 (10a)

Точно так же при X в бесконечности и при параллельности UX стороне PR (К-в бесконечности) или стороне PQ (L-в бесконечности) найдем:

граней P (100), Q (010), R (001), U (111), X, Y, Z (Z — в бесконечности) и V. Определить символы граней Х, Ү, Z и V.

(10b)

(10c)

Х. По формуле (3) имеем: $p_x: q_x: r_x = \frac{H_x X}{H_x U}: \frac{K_x X}{K_x U}: \frac{L_x X}{L_x U} =$ $=\frac{20,5}{39}:\frac{75,5}{94}:\frac{75}{56}=0,41:0,60:1$ $p_x: q_x: r_x = \frac{2}{5}: \frac{3}{5}: 1 = 2:3:5$ (235).

$$p_{y}: q_{y}: r_{y} = -\frac{H_{y}Y}{H_{y}U}: -\frac{K_{y}Y}{K_{y}U}: \frac{L_{y}Y}{L_{y}U} = -\frac{53}{53}: -\frac{53}{53}: \frac{159}{53} = -1: -1: 3 (\bar{1}\bar{1}3).$$

Z. По формуле (10с) или правилам 1 и 3 (стр. 25) имеем:

$$p_z: q_z: r_z = -\frac{1}{43,5}: \frac{1}{43,5}: 0 = -1:1:0$$
 (110).

V. По формуле (7с) или правилу 3 имеем:

$$p_v: q_v: r_v = \frac{148,5}{92,5}: \frac{95}{39}: 0 = 0,66: 1: 0 = \frac{2}{3}: 1: 0 = 2: 3: 0$$
 (230).

§ 4. Одна из основных граней параллельна оси проекций

Если одна из основных граней — Р (100), Q (010) или R (001) — параллельна оси проекций, ее гномоническая проекция находится в бесконечности; следовательно, находится в бесконечности и соответствующая вершина основного треугольника. Чтобы построить треугольник, мы должны из двух других вершин провести прямые параллельно тому радиусу основного круга проекций, на котором находится проекция вышеуказанной грани. Две стороны такого "треуголышка" оказываются параллельными друг другу.

Основной треугольник принимает вид, изображенный на фнг. 19, для случая, когда вершина Р (100) находится в бесконечности. Подобные же основные 20

треугольники (будем продолжать их так называть) получаются, конечно, и тогда, когда Q (010) или R (001) находятся в бесконечности. Ниже, в примере на фиг. 21, изображен основной треугольник, когда Q (010) — в бесконечности.

Формулы для графического определения символов остаются те же — как для общего случая положения искомой грани X (фиг. 19), так и для частных случаев. Необходимо лишь помнить при пользовании этими формулами, что буквы H, K и L расставляются здесь так же, как и раньше, т. е. H— на стороне QR, K— на стороне PQ.

Имеется все же особый случай, не рассмотренный выше.

5. Прямая UX параллельна двум параллельным сторонам основного "треугольника"

Пусть P (100) в бесконечности (фиг. 20), а точки X(pqr) н U (111) находятся на прямой, параллельной сторонам PR и PQ. В таком случае точки пересечения прямой UX со сторонами основного треугольника PQ и PR, а именно

Фиг. 19.

Фиг. 20.

точки К и L, будут находиться в бесконечности. Аналогично тому, как это сделано в § 3 (стр. 19), найдем из формулы (3):

$$p:q:r = \frac{HX}{HU}:1:1.$$
(11a)

Точно так же, если Q в бесконечности и прямая $UX \| PQ \| RQ$, т. е. точки H и L в бесконечности, получим:

$$p: q: r = 1: \frac{KX}{KU}: 1$$
 (11b)

(см. ниже пример).

Если R в бесконечности и прямая $UX \parallel PR \parallel QR$, т. е. точки H и K в бесконечности, получим:

$$p:q:r=1:1:\frac{LX}{LU}.$$
 (11c)

Пример (фиг. 21).

Даны гномонические проекции граней P(100), Q(010) (в бесконечности), R(001), U(111), X, Y и Z (последняя в бесконечности).

Определить символы граней Х, У и Z.

Для построения основного треугольника соединяем точки R и P и через каждую из этих точек проводим прямые, параллельные радиусу OQ, на котором в бесконечности лежит проекция грани Q (010).

Х. По формуле (7а) или по правилу 3 (стр. 25) получаем:

$$p_x: q_x: r_x = 0: \frac{K_x X}{K_x U}: \frac{L_x X}{L_x U} = 0: \frac{147}{73,5}: \frac{147}{73,5} = 0: 1: 1$$
 (011).

Y. По формулс (11b) или по правилу 2 (стр. 25) имеем:

$$p_y: q_y: r_y = 1: \frac{K_v Y}{K_y U}: 1 = 1: \frac{66,5}{34}: 1 = 1: 1,95: 1$$
 (121).

Z. Через точку *U* проводим прямую *UZ*, параллельную радиусу *OZ*, на котором в бесконечности лежит проекция грани *Z*. По формуле (8) (стр. 19) и по правилу 1 (стр. 25) имеем:

$$p_z \quad q_z : r_z = -\frac{1}{H_z U} : -\frac{1}{K_z U} : \frac{1}{L_z U} = -\frac{1}{84} : -\frac{1}{41,5} : \frac{1}{83,5} (\bar{1}\bar{2}1).$$

Фиг. 21.

§ 5. Две из основных граней параллельны оси проекций

Особенно распространен — или даже обычен — тот случай, когда параллельны оси проекций грани P (100) и Q (010), иначе говоря, когда осью проекций служит ось зоны [001]. Это обычная окончательная ориентировка кристалла на проекции. Чаще всего и при измерении кристаллов они юстируются по зоне [001], которая при последующем проектировании принимается за ось проекций.

Более прост и нагляден в этом частном случае метод основного параллелограма, изложенный ниже, в § 7. Но для полноты изложения метода основного треугольника рассмотрим здесь и этот случай.

6. Грани P (100) и Q (010) параллельны оси проекций

Гномонические проекции этих граней находятся в бесконечности. Следовательно, две вершины основного треугольника P и Q и вся сторона PQ находятся в бесконечности. Для построения основного треугольника (продолжаем так сго называть) необходимо через гномоническую проекцию грани R (001) провести две прямые, параллельные тем радиусам основного круга проекций, на которых находятся гномостереографические проекции граней P (100) п Q (010) (фиг. 22). Этим мы соединяем точку R с точками P и Q, которые находятся в бесконечности. В том случае, когда гномоническая проекция грани R (001) находится в центре 22 проекций, т. е. точка *R* совпадает с точкой *O*, сами указанные радиусы являются сторонами *PR* и *QP* основного треугольника. Это имеет место для кристаллов ромбической, тетрагональной, кубической и гексагональной сингоний при обычной их ориентировке.

Так как сторона PQ основного треугольника — в бесконечности, то и точка пересечения прямой UX с этой стороной, точка L, находится всегда в бесконечности (фиг. 22). Получаем случай, изложенный в § 3 (стр. 19). Формула (3) принимает следующий вид:

$$p:q:r = \frac{HX}{HU}:\frac{KX}{KU}:1.$$
(12)

7. Прямая UX параллельна PR или QR (см. UY на фиг. 24 ниже в примере)

Если $UX \parallel PR$, то, очевидно, не только L, но и K в бесконечности. Формула (3) принимает вид:

$$p:q:r = \frac{HX}{HU}:1:1.$$
(13a)

Если UX || QR, то, кроме точки L, в бесконечности также точка H. Получаем формулу:

$$p:q:r=1:\frac{KX}{KU}:1.$$
(13b)

8. Грань Х параллельна оси проекций

В этом случае, кроме точки L, в бесконечности находится также и точка X. Для соединения прямой линией точки U и точки X проводим через точку U пря-

мую, параллельную тому радиусу основного круга проекций, на котором находится гномостереографическая проекция грани X (фиг. 23). Формула для этого случая выводится из формулы (8). Подставляя в нее $LU = \infty$, получаем:

$$p:q:r = \frac{1}{HU}: \frac{1}{KU}: 0.$$
 (14)

Что третий индекс символа грани X в этом случае должен быть равен нулю, ясно и без вывода формулы, так как грань X находится в зоне граней P (100) и Q (010), т. е. в зоне [001].

Не будем рассматривать случаи, когда грани P и Q или Q и R параллельны оси проекций и когда, следовательно, сторона основного треугольника PR или QR — в бесконечности. Формулы в этих случаях получаются аналогичные формулам (12), (13) и (14). Соответственно лишь меняются в формулах места единиц и нуля. Рассматривать эти случаи тем более нет нужды, что в следующем параграфе все возможные частные случаи в методе основного треугольника сведены к трем случаям, перекрывающим и данные.

Пример (фиг. 24, уменьшена в 3 раза). Аксинит (Гольдшмидт, Winkeltabellen, стр. 58).

Даны: гномонические проекции граней P (100) (в бесконечности), Q (010) (в бесконечности), R (001), U (111), X, Y и Z (последняя в бесконечности). О предслить символы граней X, Y и Z.

Для построения основного треугольника через точку *R* проводим прямые *RP* и *RQ*, параллельные радиусам *OP* и *OQ*, на которых в бесконечности лежат проскции граней *P* и *Q*.

Х. По формуле (12) или по правилу 2 (стр. 25) получаем:

$$p_x: q_x: r_x = -\frac{46,3}{94}: -\frac{84,5}{56}: 1 = -0,49: -1,51: 1;$$

$$p_x: q_x: r_x = -\frac{1}{2}: -\frac{3}{2}: 1 = -1: -3: 2 \quad (\bar{1}\bar{3}2).$$

Фиг. 24.

У. По формуле (13b) или по правилу 2 (стр. 25) получаем:

 $p_y: q_y: z_y = 1: \frac{100}{50}: 1 = 1:2:1$ (121).

Z. Через точку *U* проводим прямую *UZ*, параллельную радиусу *OZ*, на котором в бесконечности лежит проекция грани *Z*.

По формуле (14) или по правилам 1 и 3 (стр. 25) получаем:

$$p_z: q_z: r_z = \frac{1}{116}: -\frac{1}{69,8}: 0 = 0,60: -1: 0 = \frac{3}{5}: -1: 0 = 3: -5: 0$$
 (350).

§ 6. Сводка всех частных случаев метода основного треугольника

При рассмотренни перечисленных в предыдущих параграфах частных случаев метода основного треугольника и соответствующих им формул нетрудно заметить, что все частные случаи, перечисленные в пунктах 1—8 и выраженные в формулах (7)—(14), могут быть сведены к трем случаям. По приведенным формулам мы видим, что все частные случаи вытекают лишь из частных положений гномонической проекции грани X и точек H, K и L. Возможны лишь с некоторыми вариациями

три такие частные положения указанных точек: 1) точка X — в бесконечности (пункты 2, 4 и 8, фиг. 15, 17, 23); 2) одна или две из точек H, K и L — в бесконечности (пункты 3, 5, 6 и 7, фиг. 16, 20, 22 и 23) и 3) точка X совпадает с одной из точек H, K и L, или, иначе говоря, грань X находится в одной из зон основных граней, т. е. в одной из зон [100], [010] или [001] (пункт 1, фиг. 14). Точка X может совпадать с одной из точек H, K и и 8, фиг. 17 и 23).

В связи с этим общая формула (3)

$$p:q:r = \frac{HX}{HU}: \frac{KX}{KU}: \frac{LX}{LU}$$

изменяется следующим образом:

1. Если точка X в бесконечности, то числитель каждой дроби указанной общей формулы превращается в единицу.

2. Если одна или две из трех точек *H*, *K* и *L* в бесконечности, то соответствующие дроби общей формулы превращаются в единицу.

3. Если точка X совпадает с одной из точек H, K или L, то соответствующая дробь общей формулы превращается в нуль.

Правила эти запомнить нетрудно. Но, быть может, даже удобнее пользоваться всегда общей формулой, каждый раз заменяя ее частными формулами.

1. Если точка X в бесконечности, то числители дробей в общей формуле уравниваются и могут быть сокращены. Числители превращаются в единицу.

2. Если какая-либо из точек *H*, *K* или *L* в бесконечности, то числитель и знаменатель соответствующей дроби уравниваются и могут быть сокращены. Дробь превращается в единицу.

3. Если точка X совпадает с одной из точек H, K или L, то числитель соответствующей дроби оказывается равным нулю; следовательно и дробь превращается в нуль.

Все изложенное в полной мере может быть перенесено на тот случай, когда грань U (111) заменяется какой-либо гранью $V(p_v q_v r_v)$ (стр. 17). Пользуемся при этом общей формулой (6) (стр. 17) и для частных случаев изменяем ее, как только что указано.

§ 7. Метод основного параллелограма

Метод основного параллелограма для графического определения символов граней, как указывалось выше (стр. 22), применим только в том частном случае, когда две из основных граней параллельны оси проекций. Обычно такими гранями являются (100) и (010), и тогда, следовательно, ось данной зоны, или кристаллографическая ось [001], совмещена с осью проекций. Две полярные оси, т. е. перпендикуляры к двум основным граням, обычно к граням (100) и (010), будут при этом параллельны плоскости проекций. Следовательно, линейные проекции` этих полярных осей, или, что то же, гномонические проекции соответствующих основных граней, находятся в бесконечности.

В § 5 (стр. 22) указывалось, как в этом частном случае пользоваться для определения символов методом основного треугольника. Но в виду простоты и наглядности метода основного параллелограма, быть может, предпочтительнее пользоваться этим последним, хотя при нем графических построений несколько больше, чем при методе основного треугольника. Пусть R (фиг. 25) — гномоническая проекция грани (001). Гномонические проекции граней P(100) и Q(010) — в бесконечности. Строим сначала основной треугольник, как это указывалось в § 5 (стр. 22—23). Соединяем прямыми гномоническую проекцию грани (001) с гномоническими проекциями граней (100) и (010). Для этого через точку (001) проводим прямые, параллельные тем радиусам основного круга проекций, на которых находятся гномостереографические проекции этих граней (ср. фиг. 22). Получаем основной

"треугольник", у которого сторона PQ находится в бесконечности. Проводим, как и раньше, прямую UX через гномоническую проекцию единичной грани U (111) и грани X, символ которой (*pqr*) отыскиваем. Эта прямая пересекает стороны основного треугольника в точках H, K и L. Последняя находится в бесконечности. По формуле (12) (стр. 23) пишем:

$$p:q:r = \frac{HX}{HU}: \frac{KX}{KU}: 1.$$

Проведем теперь (фиг. 25) через точки U и X прямые UH_0 , XH_1 и UK_0 , XK_1 , параллельные RP и RQ (т. е. прямые, параллельные осям P и Q полярной системы координат).

Из подобия треугольников *HXH*₁ и *HUH*₀, с одной стороны, и треугольников *KXK*₁ и *KUK*₀, с другой, найдем:

$$\frac{HX}{HU} = \frac{H_1X}{H_0U} \quad \text{if} \quad \frac{KX}{KU} = \frac{K_1X}{K_0U}.$$

Подставляя в предыдущую формулу, получаем:

$$p:q:r = \frac{H_1X}{H_0U}: \frac{K_1X}{K_0U}: 1.$$
 (15a)

Формула (15а) и является основной формулой метода основного параллелограма.¹ Параллелограм RH_0UK_0 , построенный проведением из гномонической проекции единичной грани U (111) прямых, параллельных RP и RQ (т. е. параллельных полярным осям P и Q), называется основным параллелограмом.

Так как $H_1X = RK_1$, $H_0U = RK_0$, $K_1X = RH_1$ и $K_0U = RH_0$, то формулу (15а) можно переписать так:

$$p:q:r = \frac{RK_1}{RK_0}: \frac{RH_1}{RH_0}: 1.$$
 (15b)

Таким образом, чтобы найти символ какой-либо грани X, надо лостроить для нее параллелограм подобно основному параллелограму, проводя из гномонической проекции этой грани прямые, параллельные RP и RQ; отношение первых двух индексов грани X равно отношению сторон этого параллелограма, измеренных соответственными сторонами основного параллелограма, третий же индекс равен единице. Если после сокращения дробных членов отношения дроби не уничтожаются, два индекса будут соответственно равны числителям дробей по приведении их к общему знаменателю, а третий — их общему знаменателю.

Если гномоническая проекция грани X находится в бесконечности (фиг. 26), третий индекс символа грани X равен нулю, так как грань будет находиться

¹ Метод основного нараллелограма может быть выведен непосредственно из теоремы, доказанной в § 3 гл. I и выраженной там же формулой (7). Для вывода из этой теоремы метода основного параллелограма и формулы (15а) необходимо лишь при получении координат точек на нормалях к граням брать эти точки всегда на плоскости проекции, т. е. брать гномонические проекции граней. При этом плоскость проекции должна быть перпендикулярна оси [001], или, что то же, параллельна полярным осям $P \parallel Q$, т. е. параллельна перпендикулярна оси [001], или, что то же, параллельна полярным осям $P \parallel Q$, т. е. параллельна перпендикулярам к граням (100) н (010). Тогда, сделав соответствующее построение, совсем просто от формулы (7) (стр. 9) перейти к соотношениям, выраженным здесь в формулах (15а) и (15b). Координаты по полярной оси R [перпендикуляр к (001)] для всех граней будут равны друг другу и равны координате для грани U (111). Поэтому третий индекс получается равным единице.

в зоне [001]. Чтобы найти для такой грани отношение первого и второго индексов, надо провести через точку R прямую RX, параллельную тому радиусу основного круга проекции, на котором лежит гномостереографическая проекция грани Х (pqo), взять на этой прямой любую точку X1, X2... (кроме точки R) и построить параллелограм, как это делалось в предыдущих случаях, проведя через эту точку прямые, параллельные RP и RQ. Отношение сторон этого параллелограма, измеренных сторонами основного параллелограма, и будет равно отношению первого и второго индексов символа грани Х, т. с.

$$p:q:r = \frac{H_1 X_1}{H_0 U}: \frac{K_1 X_1}{K_0 U}: 0 = \frac{RK_1}{RK_0}: \frac{RH_1}{RH_0}: 0.$$
(16)

Данная формула может быть выведена из формулы (14) (стр. 23; ср. фиг. 23):

$$p:q:r=\frac{1}{HU}:\frac{1}{KU}:0.$$

Пусть прямая UX (фиг. 27) параллельна тому радиусу основного круга проекций, на котором находится гномостереографическая проекция грани X(pqo), как и на фнг. 23. Проведем (фиг. 27) параллельно UX прямую RX1 через точку R и возь-

Фиг. 26.

мем на этой прямой любую точку X₁. Через точки U и X₁ проводим прямые параллельные RP и RQ. Тогда:

$$\frac{H_0U}{HU} = \frac{H_1X_1}{RX_1}.$$

Отсюда:

$$\frac{1}{HU} = \frac{H_1 X_1}{R X_1 \cdot H_0 U}$$
или
$$\frac{1}{HU} = \frac{R K_1}{R X_1 \cdot H_0 U}.$$

Таким же образом найдем:

$$\frac{1}{KU} = \frac{K_1 X_1}{R X_1 \cdot K_0 U}$$
 или $\frac{1}{KU} = \frac{R H_1}{R X_1 \cdot K_0 U}$.

Подставляем в предыдущую формулу и получаем после сокращения на RX, формулу (16).

Так как точка X₁ на прямой RX выбирается произвольно, очень удобно брать ее на одной из сторон основного параллелограма или на продолжении стороны (точки X2 и X3 на фиг. 26). В таком случае одна из дробей формулы (16) обращается в единицу.

Правило знаков при методе основного параллелограма аналогично таковому при методе основного треугольника. Если в формуле (15b) и (16) отрезки в числителе и знаменателе дроби направлены в одну сторону от точки R, данная дробь положительна, а следовательно и соответствующий индекс положителен; в разные стороны — отрицателен.

При большом количестве граней очень удобно определять символы, построив предварительно целую сеть из основных параллелограмов. Построив основной параллелограм, откладываем несколько раз на прямых *RP* и *RQ* при помощи линейки или циркуля длину сторон параллелограма и через полученные деления проводим прямые, параллельные *RP* и *RQ*. Обычно при этом гномонические проекции большинства граней приходятся в вершинах полученных параллелограмов, но мно-

гие — также на сторонах и внутри параллелограмов. Подобная сетка для кристалла моноклинной сингонии (диопсид) представлена на фиг. 28. Предлагается учащемуся для упражнения проверить правильность символов, поставленных при каждой точке. Особенно предлагаю обратить внимание на символы граней, проектирующихся на сторонах и внутри отдельных параллелограмов, а также — граней, гномонические проекции которых находятся в бесконечности.

В кристаллах моноклинной и ромбической сингонии прямая *RP* перпендикулярна *RQ* и параллелограмы превращаются в прямоугольники (фиг. 28). В кристаллах тетрагональной и кубической сингоний основной параллелограм является квадратом, причем в кубической сингонии стороны основного параллелограма равны радиусу основного круга проекций. Для кристаллов гексагональной сингонии основной параллелограм представлен ромбом с углом 60°.

Для кристаллов ромбической, тетрагональной, кубической и гексагональной сингоний вершина основного параллелограма *R* (001) совпадает с центром основного круга проекций, для кристаллов же триклинной и моноклинной сингоний не совпадает. Следует, быть может, напомнить, что при определении символов граней кристаллов гексагональной сингонии любым из графических методов, как и при вычислении, определяются лишь первый, второй и четвертый индексы. (Третий равен сумме первых двух с обратным знаком.)

Метод основного параллелограма применим не только в том случае, если осью проекций является ось [001]. Аналогично тому, как мы делали выше, можно доказать, что при оси проекций [100] (фиг. 29) формулы (15а и b) и (16) принимают следующий вид:

$$p:q:r=1:\frac{K_{1}X}{K_{0}U}:\frac{L_{1}X}{L_{0}U}=1:\frac{PL_{1}}{PL_{0}}:\frac{PK_{1}}{PK_{0}},$$
(17)

$$p:q:r=0:\frac{K_{1}X_{1}}{K_{0}U}:\frac{L_{1}X_{1}}{L_{0}U}=0:\frac{PK_{1}}{PK_{0}}:\frac{PL_{1}}{PL_{0}}.$$
(18)

Фиг. 29.

Фиг. 30.

Если ось проекций [010] (фиг. 30), то те же формулы принимают вид:

$$p:q:r = \frac{H_1 X}{K_0 U}:1: \frac{L_1 X}{L_0 U} = \frac{Q L_1}{Q L_0}:1: \frac{Q H_1}{Q H_0},$$
(19)

$$p:q:r = \frac{H_1X}{H_0U}: 0: \frac{L_1X}{L_0U} = \frac{QL_1}{QL_0}: 0: \frac{QH_1}{QH_0}.$$
 (20)

Если нам дана произвольная ориентировка кристалла относительно оси и плоскости проекций, то методом основного параллелограма можно пользоваться лишь после соответствующего поворота, при котором одна из указанных выше осей (лучше всего ось [001]) оказалась бы совмещенной с осью проекций.

Пример (фиг. 31, уменьшена в 3 раза). (Ср. предыдущий пример, стр. 24.) Даны гномонические проекции граней *P* (100) (в бесконечности), *Q* (010) (в бесконечности), *R* (001) *U* (111), *X*, *Y* и *Z* (*Z* в бесконечности).

Определить символы граней Х, Уи Z.

Для построения основного параллелограма — через точки R и U проводим прямые, параллельные радиусам OP и OQ, на которых в бесконечности лежат проекции граней P и Q.

X. По формуле (15b) имеем:

$$p_{x}:q_{x}:r_{x} = -\frac{RK_{x}}{RK_{0}}: -\frac{RH_{x}}{RH_{0}}:1 = -\frac{32}{64,5}: -\frac{74}{50}:1 = -0,49: -1,48:1.$$

$$p_{x}:q_{x}:r_{x} = -\frac{1}{2}: -\frac{3}{2}:1 = -1: -3:2 \quad (\bar{1}\bar{3}2).$$

29

Фиг. 31.

Z. Через точку R проводим прямую RZ, параллельную радиусу OZ, на котором в бесконечности лежит проекция грани Z. На прямой RZ берем любую точку K_{s} . По формуле (16) имеем:

$$p_{z}:q_{z}:r_{z} = \frac{RK_{0}}{RK_{0}}: -\frac{RH_{z}}{RH_{0}}: 0 = 1: -\frac{83}{50}: 0 = 1: -1,66:0,$$

$$p_{z}:q_{z}:r_{z} = 1: -\frac{5}{3}: 0 \quad (3\overline{5}0).$$

ГЛАВА ТРЕТЬЯ

ЗОНАЛЬНЫЕ ГРАФИЧЕСКИЕ МЕТОДЫ

§ 1. Зависимость между индексами зоны и индексами грани данной зоны

Под символом зоны подразумевается обычно символ оси данной зоны. Так как ось зоны параллельна ребрам пересечения граней данной зоны и так как все параллельные направления имеют один и тот же символ, то и ось зоны, и сама данная зона, и данные ребра имеют один и тот же символ. Грань, проходящая или параллельная какому-нибудь ребру (или ребрам), находится в зоне, ось которой параллельна этому ребру.

Между индексами зоны $[r_1r_2r_3]$ и индексами грани $(p_1p_2p_3)$ данной зоны существует следующая весьма важная зависимость:

$$p_1r_1 + p_2r_2 + p_3r_3 = 0$$
,

т. е. сумма произведений индексов зоны на соответствующие индексы грани данной зоны равна нулю; или иначе: сумма произведений индексов ребра на соответствующие индексы грани, проходящей через данное ребро (или параллельной ему); равна нулю.

Докажем это.¹

Υ.

¹Доказательство заимствовано.

31

Пусть грань ($p_1p_2p_3$) отсекает на кристаллографических осях отрезки *a*, *b* н *c*. Уравнение плоскости, параллельной данной грани и вместе с тем проходящей через начало координат, имест следующий вид:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0. \tag{1}$$

Пусть координаты какой-либо точки ребра $[r_1r_2r_3]$; находящегося на данной грани, будут x_0 , y_0 и z_0 . Уравнение прямой, параллельной данному ребру и проходящей через начало координат, имеет вид:

$$\frac{x}{x_0} = \frac{y}{y_0} = \frac{z}{z_0}.$$
 (2)

Отсюда:

$$x = kx_0, \quad y = ky_0, \quad z = kz_0,$$

где k — некоторая постоянная величина для данной прямой.

Так как ребро лежит на нашей грани, то координаты точек прямой (2) удовлетворяют уравнению (1). Полставим только что выведенные значения x, y и z для ребра в уравнение (1). Получаем:

$$\frac{x_0}{a} + \frac{y_0}{b} + \frac{z_0}{c} = 0.$$
 (3)

Выразим координаты x_0 , y_0 и z_0 через индексы ребра $[r_1r_2r_3]$, а отрезки a, b и c — через индексы грани $(p_1p_2p_3)$. Пусть единичные отрезки на кристаллографических осях равны соответственно: a_0, b_0 и c_0 . Тогда для ребра имеем (ср. § 1, стр. 7):

$$\frac{x_0}{a_0}:\frac{y_0}{b_0}:\frac{z_0}{c_0}=r_1:r_2:r_3.$$

Отсюда:

$$x_0 = mr_1a_0, y_0 = mr_2b_0, z_0 = mr_3c_0,$$

где *т*— коэфициент пропорциональности.

Для грани имеем (ср. § 1, стр. 6):

$$\frac{a_0}{a}:\frac{b_0}{b}:\frac{c_0}{c}=p_1:p_2:p_3.$$

Отсюда:

$$a = n \frac{a_0}{p_1}, \quad b = n \frac{b_0}{p_2}, \quad c = n \frac{c_0}{p_3},$$

где *п* — также коэфициент пропорциональности.

Подставляем найденные значения в (3). Получаем:

$$\frac{mp_1r_1a_0}{na_0} + \frac{mp_2r_2b_0}{nb_0} + \frac{mp_3r_3c_0}{nc_0} = 0.$$

Произведя сокращение дробей и отброснв общий знаменатель, получим:

$$p_1r_1 + p_2r_2 + p_3r_3 = 0, (4)$$

что и требовалось доказать.

Из доказательства вытекает также следующий вывод: если сумма произведений индексов грани на соответствующие индексы зоны равна нулю, как это выражено в формуле (4), то грань принадлежит данной зоне.

В гексагональной сингонии (в установке Браве, при которой 1-я, 2-я и 3-я кристаллографические оси проводятся через 120°, а 4-я перпендикулярна им и совмещается с шестерной или тройной осью симметрии) имеет место следующее соотношение между четырехчлепными индексами грани ($p_1p_2p_3p_4$) и четырехчлепными индексами зопы, к которой эта грань принадлежит (или индексами ребра, лежащего в этой грани [r₁r₂r₃r₄]):

$$(p_1 - p_3) \cdot r_1 + (p_2 - p_3) r_2 + p_4 r_4 = 0.$$
⁽⁵⁾

Числа, полученные вычитанием третьего индекса грани из первого и второго, т. е. $(p_1 - p_3)$ и $(p_2 - p_3)$, называются "субъиндексами".¹

При помощи формулы (4) и (5) мы имеем возможность вычислить: 1) символ зоны (оси зоны) по символам двух граней этой зоны (конечно, непараллельных граней, так как две параллельные грани не определяют зоны), 2) символ грани, находящейся на пересечении двух зон с известными символами, или, что то же, символ грани, параллельной или проходящей через два непараллельных ребра с известными символами, и 3) символ грани, находящейся на пересечении двух зон, в каждой из которых известны символы двух граней.

§ 2. Определение символа зоны по символам двух граней этой зоны

Пусть даны две грани с символами $(p_1p_2p_3)$ и $(q_1q_2q_3)$. Пусть искомый символ зоны, в которой находятся эти грани, будет $[r_1r_2r_3]$.

На основании формулы (4) предыдущего параграфа составляем два уравнения:

$$p_1r_1 + p_2r_2 + p_3r_3 = 0, q_1r_1 + q_2r_2 + q_3r_3 = 0.$$

В этих двух уравнениях три неизвестных: r_1 , r_2 и r_3 ; но нам необходимо определить не абсолютные значения этих величин, а лишь их отношения. Поэтому перепишем эти уравнения следующим образом, разделив обе части уравнения на r_3

$$p_1 \frac{r_1}{r_3} + p_2 \frac{r_2}{r_3} + p_3 = 0,$$

$$q_1 \frac{r_1}{r_3} + q_2 \frac{r_2}{r_3} + q_3 = 0.$$

Решим теперь совместно эти два уравнения относительно неизвестных

$$\frac{r_1}{r_3}$$
 $\operatorname{H} \frac{r_2}{r_3}$.

Получим следующий результат:

$$\frac{r_1}{r_3} = \frac{p_2 q_3 - p_3 q_2}{p_1 q_2 - p_2 q_1}; \qquad \frac{r_2}{r_3} = \frac{p_3 q_1 - p_1 q_3}{p_1 q_2 - p_2 q_1}$$

Взяв отношение левых и правых частей полученных равенств и разделив их на единицу, будем иметь:

$$\frac{r_1}{r_3}:\frac{r_2}{r_3}:1=\frac{p_2q_3-p_3q_2}{p_1q_2-p_2q_1}:\frac{p_3q_1-p_1q_3}{p_1q_2-p_2q_1}:1$$

или

$$r_1:r_2:r_3 = (p_2q_3 - p_3q_2):(p_3q_1 - p_1q_3):(p_1q_2 - p_2q_1).$$
(6)

Таким образом находим символ зоны [r₁r₂r₃].

Гораздо быстрее решение уравнений и отношение индексов находится при помощи так называемого "перекрестного умножения".

Пишем два раза рядом индексы одной грани. Под ними также два раза пишем индексы другой грани. Отделяем первые и последние индексы и произво-

¹ См. об этом в Кристаллографии В. В. Доливо-Добровольского, 1937.

дим перекрестное умножение, как это указано ниже. Отношение разностей получаемых произведений и равняется отношению индексов зоны.

$$\frac{p_1 | p_2 p_3 p_1 p_2 | p_3}{q_1 | q_2 q_3 q_1 q_2 | q_3}}{r_1 : r_2 : r_3 = (p_2 q_3 - p_3 q_2) : (p_3 q_1 - p_1 q_3) : (p_1 q_2 - p_2 q_1)}.$$

Как видим, получается то же, что и при решении уравнений [см. формулу (6)].

Пример. Даны символы граней ($\overline{3}01$) и (121). Определить символ зоны $[r_1r_2r_3]$, к которой принадлежат обе эти грани (символ оси зоны, символ ребра пересечения этих граней).

$$\frac{\begin{vmatrix} 3 & 0 & 1 & 3 & 0 & | 1 \\ 1 & 2 & 1 & 1 & 2 & | 1 \\ \hline r_1 : r_2 : r_3 = (0-2) : (1-\overline{3}) : (\overline{6}-0) = -2 : 4 : -6 = -1 : 2 : -3 \end{vmatrix}}$$

Итак, символ зоны: [123].

Необходимо иметь в виду, что знаки у индексов получаются обратные если при перекрестном умножении символ второй грани мы поставим наверху, а символ первой — внизу. Тогда, например, вместо [123] получим [123]. В первом случае у нас получается символ для одного направления оси данной зоны, во втором — для противоположного направления той же оси.

Понятно, что какую бы пару граней данной зоны мы ни взяли для определения символа зоны, мы получим один и тот же символ. В частности, подобным образом мы найдем символ первой кристаллографической оси или символ зоны первой оси — [100] — по двум основным граням (010) и (001), а также по двум любым граням с первым индексом, равным нулю и принадлежащим, следовательно, к этой зоне. По основным граням (100) и (001) или по двум другим граням со вторым индексом, равным нулю и принадлежащим зоне второй кристаллографической оси, найдем символ этой оси — [010]. Наконец, по основным граням (100) и (010) или по двум граням с третьим индексом, равным нулю и принадлежащим зоне третьей оси, найдем символ третьей оси [001].

В кристаллах гексагональной сингонии при пользовании четырехчленными индексами необходимо для определения символа зоны по символам двух граней предварительно определить субъиндексы. Необходимость этого вытекает из формулы (5) (стр. 32).

Пример. По символам граней (3121) и (1101) найти символ зоны, в которой эти грани находятся.

Находим субъиндексы граней:

для первой грани: $3-\bar{2}=5;\ \bar{1}-\bar{2}=1;1;$

для второй грани: 1 - 0 = 1; 1 - 0 = 1; 1.

Перекрестным умножением по субъиндексам находим первый, второй и четвертый индексы зоны:

$$\frac{5|1 \ 1 \ 5 \ 1|1}{1|1 \ 1 \ 1 \ 1|1}$$
$$\frac{5|1 \ 1 \ 5 \ 1|1}{0:-6:6=0:-1:1}$$

Третий индекс равен сумме первых двух с обратным знаком.

Таким образом, символ зоны — [0111].

Подобным же образом найдем символ первой кристаллографической оси по основным граням (0001) и (0110) или по двум другим граням с первым индексом, равным нулю и принадлежащим, следовательно, зоне первой кристаллографической оси. Этот символ будет [2110].

3 Аншелес — 706

Для второй кристаллографической оси по основным граням (0001) и (1010) или по паре других граней со вторым индексом, равным нулю, получим символ [1210].

Для третьей кристаллографической оси по символам двух граней с третьим индексом, равным нулю, получим символ [1120].

Для четвертой кристаллографической оси по символам граней с четвертым индексом, равным нулю, получим символ [0001].

§ 3. Определение символа грани по символам двух зон

Если грань находится на пересечении двух зон с известными символами. или, что то же, грань проходит через два ребра с известными символами (или параллельна им), ее символ может быть вычислен так же при помощи формул (4) и (5), как и символ зоны по двум граням.

Пусть даны символы двух зон $[p_1p_2p_3]$ и $[q_1q_2q_3]$. Пусть грань $(r_1r_2r_3)$ находится на пересечении этих зон. Эта грань, следовательно, принадлежит той и другой зонам, а потому на основании формулы (4) мы можем написать:

$$p_1r_1 + p_2r_2 + p_3r_3 = 0, q_1r_1 + q_2r_2 + q_3r_3 = 0.$$

По этим двум уравнениям мы, так же как и при вычислении символа ребра стр. 32), найдем:

$$r_1: r_2: r_3 = (p_2q_3 - p_3q_2): (p_3q_1 - p_1q_3): (p_1q_2 - p_2q_1).$$

Вычисление производится также перекрестным умножением (стр. 33). Необходимо иметь в виду, что таким путем может получиться символ либо данной искомой грани, либо грани ей параллельной с обратным знаком у индексов. По положению грани относительно кристаллографических осей (или относительно основных граней, или относительно других граней с известными символами) нетрудно каждый раз сообразить, необходимо ли оставить те знаки у индексов, которые получились, или все знаки должны быть изменены на обратные.

Чтобы определить четырехчленные символы в кристаллах гексагональной сингонии по четырехчленным символам двух зон, необходимо найти предварительно субъиндексы зон так же, как это делается для граней (стр. 32). Перекрестным умножением этих субъиндексов (стр. 33) находим первый, второй и четвертый индексы грани, третий — равен сумме первых двух с обратным знаком (при установке Браве).

§ 4. Метод развития зон

Умея определять символ зоны по символам двух граней данной зоны (§ 2) и символ грани, принадлежащий двум зонам с известными символами (§ 3), мы

имеем возможность решить следующую задачу: найти символ грани, находящейся на пересечении двух зон, символы которых неизвестны, но в каждой из которых имеются по две грани с известными символами (фиг. 32).

Чтобы вычислить символ такой грани, сначала по § 2 вычисляем символы каждой зоны по известным символам граней. А так как искомая грань находится на пересечении данных зон (принадлежит той и другой зоне), вычисляем ее символ по символам этих зон.

Пример. Даны (фиг. 32) две зоны, в каждой из которых даны по две грани: в одной зоне — грани (312) и (021) и в другой — (211) и (112). Определить символ грани X, находящейся на пересечении этих зон. Находим символ первой зоны по символам граней (312) и (021) (стр. 33):

Символ первой зоны [112]

Фиг. 33.

Находим символ второй зоны по символам граней (211) и (112):

$$\frac{\frac{\overline{2}|\overline{1}1\overline{2}\overline{1}|}{\overline{1}|12\overline{1}1|2}}{-3:3:-3=-1:1:-1}$$

Символ второй зоны [111].

По символам зон [112] и [111] находим символ грани Х (стр. 34):

По положению грани X между гранями (312) и (021) с положительными индексами ясно, что индексы грани X должны иметь знаки, обратные тем, которые

1
получились (стр. 34.). К тому же выводу мы придем, если примем во внимание, что у всех четырех данных граней третий индекс положительный. Отсюда следует, что и у грани X, символ которой найден по символам этих граней, третий индекс должен быть положительный. Знак у третьего индекса необходимо изменить на обратный. Следовательно, и у первых двух индексов знаки должны быть изменены на обратные, так как при излагаемом методе мы можем получить только либо символ искомой грани, либо символ параллельной ей грани с обратными знаками у всех индексов.

Итак, искомый символ грани Х (132).

Фиг. 34.

В гексагональной сингонии вычисление символа грани, находящейся на пересечении двух зон, в каждой из которых известны символы двух граней, делается совсем так же, как описано выше для других сингоний. В предварительном нахождении субъиндексов граней и ребер в этом случае нет необходимости. При вычислении отбрасывается лишь третий индекс (при установке Браве). Третий индекс находится, когда уже определены первый, второй и четвертый индексы искомой грани. Он равен сумме первых двух с обратным знаком. (При установке Федорова отбрасывается при вычислении четвертый индекс и затем определяется как разность третьего и второго.)

Грань, символ которой мы отыскиваем, далеко не всегда находится на пересечении таких зон, в каждой из которых находятся по две грани с известными символами. Если даны хотя бы четыре грани с известными символами, причем трп из них не лежат в одной зоне, мы можем определить символ любой пятой грани независимо от ее положения. Через четыре грани можно провести шесть зон. Пятая грань с искомым символом может не оказаться ни в одном из трех пересечений этих зон и вообще ни на одной из этих зон. Через четыре дашных грани проводим не две зоны, а три, четыре, пять или даже все шесть зон, в зависимости от положения искомой грани. На пересечении этих зон друг с другом получаем возможные грани (закон Всйса). Определяем символы этнх возможных граней, как указано выше в данном параграфе. Через вновь полученные грани проводим зоны, которые на пересечении с прежними зонами дадут новые

Фиг. 35.

возможные грани. Определяем их символы. Продолжаем развитие зон до тех пор, пока искомая грань не окажется на пересечении двух зон, в каждой из которых расположены по две грани с известными символами. Это и даст нам возможность определить символ искомой грани данным методом (см. ниже пример). При каждой подобной задаче мы должны стремиться избрать такой путь развития зон, при котором получается наиболее быстрое решение задачи — определение символа искомой грани. В этом отношении, да и вообще при определении символов и другими методами, большую помощь оказывают прилагаемые стереограммы кристаллов кубической (фиг. 33), гексагональной, при установке Браве (фиг. 34) и при установке Федорова (фиг. 35), и тригональной сингоний (фиг. 36). При обычной орнентировке кристаллов тетрагональной, ромбической, моноклинной и триклинной сингоний пользуемся также стереограммой для кубической сингонии (фиг. 33). При произвольной ориентировке кристаллов этих сингоний, как и кристаллов кубической сингонии, часто удобнее пользоваться стереограммой для тригональной сингонии (фиг. 36).

Фиг. 36.

§ 5. Зональные индексы граней

Пусть в какой-либо зоне даны грани $P(p_1p_2p_3)$ и $Q(q_1q_2q_3)$. Если мы индексы одной грани умножим на любое целое число *m*, а индексы другой — на любое целое же число *n*, а затем сложим почленно полученные произведения, то отношение полученных величин будет равно отношению индексов какой-либо третьсй грани данной зоны, т. е.:

$$(mp_1 + nq_1): (mp_2 + nq_2): (mp_3 + nq_3) = x_1: x_2: x_3,$$
 (1a)

где x_1x_2 и x_3 — индексы третьей грани $X(x_1x_2x_3)$ той же зоны. Докажем это следующим образом.

Пусть символ зоны, в которой находятся грани P и Q, будет $[r_1r_2r_3]$. По § 1 можем написать: $p_1r_1 + p_2r_2 + p_3r_3 = 0$ и $q_1r_2 + q_2r_2 + q_3r_3 = 0$. Умножим обе части первого равенства на m и обе части второго равенства на n. Затем почленно сложим полученные произведения. Получим:

$$\frac{m(p_1r_1 + p_2r_2 + p_3r_3) = 0}{n(q_1r_1 + q_2r_2 + q_3r_3) = 0}$$

$$r_1(mp_1 + nq_1) + r_2(mp_2 + nq_2) + r_3(mp_3 + nq_3) = 0$$

Так как *m* и *n* целые числа и индексы граней *P* и *Q* также целые числа, то и суммы произведений их, стоящие в скобках, также целые числа. Пусть отношение этих

целых чисел равно отношению взаимно простых целых чисел x_1 , x_2 и x_3 , полученных после сокращения на общего множителя, если он имеется, т. е.:

$$(mp_1 + nq_1): (mp_2 + nq_2): (mp_3 + nq_3) = x_1: x_2: x_3.$$

В таком случае ($x_1x_2x_3$) есть символ какой-либо возможной грани кристалла X, так как индексами граней могут быть любые целые взаимно простые числа.

Из предыдущего отношения можем написать:

$$mp_1 + nq_1 = kx_1, \quad mp_2 + nq_2 = kx_2$$
 и $mp_3 + nq_3 = kx_3,$

где k — коэфициент пропорциональности. Подставив в полученную выше сумму произведений и сократив на общего множителя k, получим:

$$r_1x_1 + r_2x_2 + r_3x_3 = 0.$$

Так как $[r_1r_2r_3]$ символ зоны, в которой находятся грани P и Q, то на основании § 1 (стр. 30) следует, что грань X, отношение индексов которой равно отношению суммы соответствующих индексов граней P и Q, умноженных на целые числа m и n находится в той же зоне, что и указанные грани. Это и требовалось доказать.

Например, помножим на 2 индексы грани (123) и на 7 индексы грани (110). Полученные произведения почленно сложим и возьмем их отношения. Получаем:

$$(2 \cdot 1 + 7 \cdot 1) : (2 \cdot - 2 + 7 \cdot 1) : (2 \cdot 3 + 7 \cdot 0) = 9 : 3 : 6 = 3 : 1 : 2$$

Грань с символом (312) находится в одной зоне с гранями (123) и (110). (Проверьте по стереограмме фиг. 33 и фиг. 36.)

Формулу (1а) можно для простоты символически написать еще так:

$$m(p_1p_2p_3) + n(q_1q_2q_3) = (x_1x_2x_3).$$
 (1b)

При пользовании этой формулой необходимо иметь в виду, что соответствующие суммы произведений не всегда будут непосредственно равны индексам x_1, x_2 и x_3 . Они лишь пропорциональны индексам. Необходимо еще взять отношения этих сумм и сократить на общего множителя, если таковой имеется.

Предыдущий пример напишем так:

$$2(123) + 7(110) = (936) = (312).$$

Целые взаимно простые числа *т*н*n*, на которые надо умножить индексы каких-либо граней (*P* и *Q*), чтобы соответствующим сложением произведений получить числа, пропорциональные индексам третьей грани (*X*) той же зоны, называются зональными индексами этой грани (*X*) относительно первых двух граней (*P* и *Q*).

Зональные индексы могут быть как положительными, так и отрицательными. Совокупность зональных индексов данной грани, поставленных в круглые скобки (mn) без каких-либо знаков между ними, называется зональным символом данной грани. Будем называть основными гранями данной зоны такие две грани $P(p_1p_2p_3)$ и $Q(q_1q_2q_3)$ этой зоны, относительно которых находятся зональные символы других граней той же зоны. Иначе говоря, основными гранями данной зоны будем называть такие две грани, на индексы которых множатся зональные индексы других граней этой зоны, чтобы после последующего сложения произведений получить числа, пропорциональные обычным индексам других граней зоны.

Одна из основных граней зоны, например $P(p_1p_2p_3)$, получает зональный символ (10), так как по формуле (1b):

$$1 \cdot (p_1 p_2 p_3) + 0 \cdot (q_1 q_2 q_3) = (p_1 p_2 p_3),$$

тогда другая основная грань зоны, например $Q(q_1q_2q_3)$, получает зональный символ (01), так как:

$$0 \cdot (p_1 p_2 p_3) + 1 \cdot (q_1 q_2 q_3) = (q_1 q_2 q_3).$$

Ту грань, которой мы приписываем зональный символ (10), будем называть первой осповной гранью зоны и будем в дальнейшем обозначать ее через букву P. Грань, которой мы приписываем зональный символ (01), будем называть в торой основной гранью зоны и обозначать буквой Q. Среди всех возможных граней данной зоны имеется такая грань $L(l_1l_2l_3)$, зональный символ которой относительно основных граней $P(p_1p_2p_3)$ и $Q(q_1q_2q_3)$ будет (11), т. с. индексы которой или величины им пропорциональные получаются простым сложением индексов основных граней зоны, т. е.

$$1 \cdot (p_1 p_2 p_3) + 1 \cdot (q_1 q_2 q_3) = (l_1 l_2 l_3).$$

Грань (L) с зональным символом (11) будем называть е диничной гранью относительно основных граней зоны (P и Q). Выбор основных граней зоны, вообще говоря, совсем произволен, по для некоторого упрощения работы с зональными индексами практически выгоднее руководствоваться следующими замечаниями.

Как увидим в дальнейшем, для определения символов граней путем зональных символов в зоне должны быть известны положение и символы трех граней. Из этих трех граней любую пару мы имеем право принять за основные грани зоны. Если из трех граней индексы одной находятся путем простого суммирования индексов двух других, то наиболее выгодно эти последние принять за основные грани зоны. Тогда третья известная грань будет единичной относительно двух других.

Если в зоне больше трех граней с известными символами, за основные грани зоны удобно принять такие грани, чтобы какая-либо из других оказалась единичной относительно них. Если же таковой нет, выбор основных граней зоны выгоднее произвести так, чтобы возможно большее число граней с неизвестными символами оказалось расположенным между основными. Тогда их зональные индексы будут положительными величинами.

Если среди граней зоны имеются одна или две из основных граней всего кристаллического комплекса (100), (010) или (001), за основные грани зоны иногда выгодно принять именно эти грани.

Зональные индексы тех граней, обычные индексы которых известны, определяются следующим образом.

Пусть за основные грани зоны мы приняли грани $P(p_1p_2p_3)$ и $Q(q_1q_2q_3)$. Определим зональный символ грани $V(v_1v_2v_3)$. Припишем грани P зональный символ (10) и грани Q (01) и пусть зональный символ грани V будет (m_nn_n) .

Задача заключается в том, чтобы выразить отношение неизвестных зональных индексов $m_v: n_v$ через известные обычные индексы граней *P*, *Q* и *V*. По формуле (1а) (стр. 38) имеем:

$$\frac{v_1}{v_2} = \frac{m_v p_1 + n_v q_1}{m_v p_2 + n_v q_2} = \frac{m_v p_1 + n_v q_2}{m_v p_2 + n_v q_3}.$$

Берем отношение $v_1: v_2:$

$$\frac{v_1}{v_2} = \frac{m_v p_1 + n_v q_1}{m_v p_2 + n_v q_2} \, \cdot \,$$

Отсюда

$$m_v v_1 p_2 + n_v v_1 q_2 = m_v v_2 p_1 + n_v v_2 q_1,$$

$$m_v(v_1p_2-v_2p_1) = n_v(v_2q_1-v_1q_2);$$

откуда

$$m_v: n_v = (v_2q_1 - v_1q_2): (v_1p_2 - v_2p_1).$$

40

Таким же образом из отношения v₁: v₃ найдем:

$$m_v: n_v = (v_3q_1 - v_1q_3): (v_1p_3 - v_3p_1)$$

и из отношения $v_2:v_3$ получим:

Следовательно

$$m_{v}: n_{v} = (v_{3}q_{2} - v_{2}q_{3}): (v_{2}p_{3} - v_{3}p_{2}).$$

$$\frac{m_{v}}{n_{v}} = \frac{v_{2}q_{1} - v_{1}q_{2}}{v_{1}p_{2} - v_{2}p_{1}} = \frac{v_{3}q_{1} - v_{1}q_{3}}{v_{1}p_{3} - v_{3}p_{1}} = \frac{v_{3}q_{2} - v_{2}q_{3}}{v_{2}p_{3} - v_{3}p_{2}}.$$
(2a)

Нет нужды, конечно, три раза отыскивать одно и то же отношение $m_m: n_m, -$ разве только для проверки. Но необходимо иметь в виду, что часто одно или даже два из этих трех отношений могут дать неопределенное решение, т. е. может получиться $m_{\eta}: n_{\eta} = 0:0.$

Пример 1. Пусть за основные грани зопы мы приняли грань $P(1\overline{23})$ и грань Q(110). Требустся определить зональный символ $(m_n n_n)$ грани V(312) той же зоны. Припншем грани Р зональный символ (10) и грани Q — (01). Подставляя значения первого и второго индексов грани Р, Q и V в формулу (2а), получим:

$$m_v : n_v = (1 \cdot 1 - 3! \cdot 1) : (3 \cdot -2 - 1 \cdot 1) = -2 : -7 = 2 : 7.$$

То же самое получим, подставляя в формулу (2a) значения первого и третьего индексов данных граней, а также второго и третьего индексов.

Итак, зональный символ грани V относительно граней P и Q будет (27). Проверим правильность определения зональных индексов. Для этого умножим на 2 индексы грани Р, на 7 — индексы грани Q и почленно сложим полученные произведения. Должны получиться индексы грани V.

$$2 \cdot (123) + 7 \cdot (110) = (936) = (312).$$

Пример 2. P(011) и Q(021) — основные грани зоны с зональными символами P (10) и Q (01). Определим зональный символ $(m_n n_n)$ грани V (012) той. же зоны.

Подставляем первый и второй индексы граней Р, Q и V в формулу (2а):

$$\frac{m_v}{n_v} = \frac{1 \cdot 0 - 0 \cdot 2}{0 \cdot 1 - 1 \cdot 0} = \frac{0}{0}.$$

Получается неопределенность. Подставляем первые и третьи индексы тех же граней. в формулу (2а):

$$\frac{m_v}{n_v} = \frac{2 \cdot 0 - 0 \cdot 1}{0 \cdot 1 - 2 \cdot 0} = \frac{0}{0}.$$

Опять — неопределенность. Подставляем вторые и третьи индексы:

$$\frac{m_v}{n_v} = \frac{2 \cdot 2 - 1 \cdot 1}{1 \cdot 1 - 2 \cdot 1} = \frac{3}{-1}.$$

Итак, зональный символ грани (012) относительно граней (011) и (021) будет. (31). Проверим полученный результат:

$$3 \cdot (011) - 1 \cdot (021) = (012).$$

Зональный символ найден правильно.

Значительно быстрее и удобнее отыскивать отношение зональных индексов при помощи детерминантов. Для определения зональных индексов (*m_nn_n*) грани $V(v_1v_2v_3)$ относительно первой основной грани зоны $P(p_1p_2p_3)$ и второй — $Q(q_1q_2q_3)$ кпоступаем следующим образом.

Пишем первый и второй индексы второй основной грани (Q) и под ними — первый и второй индексы грани (V), зональные индексы которой отыскиваем. Производим перекрестное умножение и из первого произведения вычитаем второе:

$$\begin{vmatrix} q_1 q_2 \\ \times \\ v_1 v_2 \end{vmatrix} = q_1 v_2 - q_2 v_1.$$

. Далее, пишем опять первый и второй индексы грани V, а под ними — те же индексы первой основной грани P. Проделываем то же самое:

$$\begin{vmatrix} v_1 v_2 \\ \times \\ p_1 p_2 \end{vmatrix} = v_1 p_2 - v_2 p_1.$$

Отношение полученных разпостей и равняется отношению зональных индексов эграни V, т. е.

$$m_{v}: n_{v} = \begin{vmatrix} q_{1}q_{2} \\ p_{1}v_{2} \end{vmatrix} : \begin{vmatrix} v_{1}v_{2} \\ |p_{1}p_{2} \end{vmatrix} = (q_{1}v_{2} - q_{2}v_{1}): (v_{1}p_{2} - v_{2}p_{1}).$$

Таким путем определяются зопальные индексы грани V по первому и второму индексам граней P, Q и V.

Таким же путем определяем отношение $m_v: n_v$ по первому и третьему или то второму и третьему индексам тех же граней:

$$\begin{split} m_v &: n_v = \begin{vmatrix} q_1 q_3 \\ p_1 v_3 \end{vmatrix} : \begin{vmatrix} v_1 v_3 \\ p_1 p_3 \end{vmatrix} = (q_1 v_3 - q_3 v_1) : (v_1 p_3 - v_3 p_1), \\ m_v &: n_v = \begin{vmatrix} q_2 q_3 \\ v_2 v_3 \end{vmatrix} : \begin{vmatrix} v_2 v_3 \\ p_2 p_3 \end{vmatrix} = (q_2 v_3 - q_3 v_2) : (v_2 p_3 - v_3 p_2). \end{split}$$

Необходимо здесь лишь запомнить, что в первой колонке, которая представляет собой делимое, пишутся в верхней строке индексы второй основной грани (Q), а в нижней строке — индексы искомой грани (V); во второй колонке — в делителе — в верхией строке пишутся опять индексы искомой грани (V), а в нижней — индексы лервой основной грани зоны (P).

Таким образом, формулу (2а) (стр. 41) можем переписать так:

$$\frac{m_{v}}{n_{\tau}} = \frac{\begin{vmatrix} q_{1}q_{2} \\ v_{1}v_{2} \end{vmatrix}}{\begin{vmatrix} v_{1}v_{2} \\ p_{1}p_{2} \end{vmatrix}} = \frac{\begin{vmatrix} q_{1}q_{3} \\ v_{1}v_{3} \\ p_{1}p_{3} \end{vmatrix}}{\begin{vmatrix} v_{1}v_{3} \\ p_{2}v^{3} \end{vmatrix}} = \frac{\begin{vmatrix} q_{2}q_{3} \\ v_{2}v^{3} \\ p_{2}v_{3} \end{vmatrix}}{\begin{vmatrix} v_{2}v_{3} \\ p_{2}v_{3} \end{vmatrix}}$$
(2b)

Решим при помощи детерминантов примеры 1 и 2 (стр. 41).

Пример 1. Определить зональные индексы грани V(312) при первой эсновной грани зоны $P(1\overline{2}3)$ и второй — Q(110).

$$m_v: n_v = \begin{vmatrix} 11 \\ 31 \end{vmatrix} : \begin{vmatrix} 31 \\ 1\overline{2} \end{vmatrix} = (1-3): (-6-1) = -2: -7 = 2:7,$$

или

$$m_v: n_v = \begin{vmatrix} 10\\ 32 \end{vmatrix} : \begin{vmatrix} 32\\ 13 \end{vmatrix} = (2-0): (9-2) = 2:7,$$

илн

$$m_v: n_v = \begin{vmatrix} 10\\12 \end{vmatrix}: \begin{vmatrix} 12\\23 \end{vmatrix} = (2-0): (3+4) = 2:7.$$

Зональный символ грани V-(27).

12

Пример 2. Основные грани зоны P(011) и Q(021). Определить зональные индексы грани V(012)

$$m_{v}: n_{v} = \begin{vmatrix} 02\\01 \end{vmatrix} : \begin{vmatrix} 01\\01 \end{vmatrix} = 0:0,$$

$$m_{v}: n_{v} = \begin{vmatrix} 01\\02 \end{vmatrix} : \begin{vmatrix} 02\\01 \end{vmatrix} = 0:0,$$

$$m_{v}: n_{v} = \begin{vmatrix} 21\\12 \end{vmatrix} : \begin{vmatrix} 12\\11 \end{vmatrix} = 3:-1$$

Зональный символ грани V-(31).

Знаки у индексов m_v и n_v могут получиться обратные действительным. Но, зная абсолютные значения индексов, нетрудно сообразить, нужно ли ставить те знаки, которые получились, или изменить их на обратные. Отношение индексов грани V должно равняться отношению суммы индексов граней P и Q после умножения первых на m_{π} и вторых на n_{π} , т. с.:

$$(v_1v_2v_3) = m_v(p_1p_2p_3) + n_v(q_1q_2q_3)$$

Во многих случаях наиболее простой, быстрый и вместе с тем наиболее верный способ определения зональных индексов — это решение задачи "в уме", так как зональные индексы в большинстве случаев совсем простые целые числа. Просто прикидывается в уме, на какие числа надо умножить индексы граней P и Q, чтобы после сложения полученных произведений получились индексы грани V или величины им пропорциональные. Эти числа или числа, сокращенные на общего множителя, и будут зональные индексы грани V. Например, пусть P(121), Q(101), а V(323). Легко сообразить, что индексы (121) надо умножить на единицу, а индексы (101) — на два, чтобы после сложения получить (323):

$$(323) = 1 \cdot (121) + 2 \cdot (101)$$

Значит, зональный символ грани V относительно P и Q будет (12).

Или, например, в предыдущем примере 2 легко сообразить, что индексы грани P(011) надо утроить и затем вычесть индексы грани Q(021), чтобы получить индексы грани V(012). Значит, зональный символ грани (012) относительно граней (011) и (021) будет (31).

§ 6. Зональные индексы при определении символов граней на пересечении двух зон

Определение символа грани, находящейся на пересечении двух зон, в каждой из которых находятся по две грани с известными символами, делается обычно методом, изложенным в § 4 (стр. 34). Но очень часто, тем более в простейших случаях, при определении символа такой грани еще проще использовать зональные индексы. Покажем это на примере.

Пусть (фиг. 33) требуется определить символ грани U, находящейся на пересечении двух зон. В одной зоне дапы символы граней (101) и (121), в другой зоне (011) и (211). Предположим, что грань U, единичная относительно первых двух граней, т. е. ее зональный символ относительно этих граней, будет (11), и, следовательно, ее индексы либо будут равны соответственным суммам индексов этих граней, либо им пропорциональны:

(101) + (121) = (222) = (111).

Таким образом, в зоне граней (101) и (121) имеется возможная грань с символом (111). Но грань (111) — не обязательно еще грань U. (111) может занимать и какос-либо другос положение в зоне указанных граней. Грань U будет иметь

символ (111) только в том случае, если (111) можно получить из символов граней (011) и ($\overline{2}11$) путем умножения индексов этих граней на какие-либо целые числа и почленного сложения полученных произведений. Нетрудно найти "в уме", что при умножении индексов первой грани на 3 и индексов второй на —1 и почленного сложения, мы получим числа, пропорциональные индексам грани (111)

$$3 \cdot (011) - 1 \cdot (211) = (222) = (111).$$

Теперь уже категорически утверждаем, что грань U имеет символ (111).

При определении зональных индексов ($\overline{31}$) грани (111) относительно граней (011) и ($\overline{211}$) можно, конечно, пользоваться формулами (2а) или (2b) предыдущего параграфа. Необходимо лишь иметь в виду, что отношение m:n должно быть определено по всем трем парам индексов граней — по первым и вторым, по первым и третьим и по вторым и третьим. Каждый раз должно получаться одно и то же отношение. Если отношения получаются не равными, это служит указанием, что грань, зональные ийдексы которой относительно двух других граней мы хотим определить, не находится в зоне этих двух граней.

§ 7. Метод отрезков прямой зоны

Прямой зоны называется прямая, в которой находятся гномонические проекции граней одной зоны.

Метод отрезков прямой зоны выведем из общего основания графических и вычислительных методов. В § 6 главы I (стр. 12) доказано, что двойные отно-

Фиг. 37.

шения площадей треугольников, получаемых через соединение прямыми гномонических проекций основных граней — P(100), Q(010) и R(001) — друг с другом, а также с гномоническими проекциями единичной грани U(111) и какой-либо грани X(pqr) равно отношению индексов грани X [формула (11), фиг. 6 и 7].

$$\frac{\Pi\pi \bigtriangleup \bigtriangleup QRX}{\Pi\pi \bigtriangleup QRU} : \frac{\Pi\pi \bigtriangleup PRX}{\Pi\pi \bigtriangleup PRU} : \frac{\Pi\pi \bigtriangleup PQX}{\Pi\pi \bigtriangleup PRU} : \frac{\Pi\pi \bigtriangleup PQX}{\Pi\pi \bigtriangleup PQU} = p : q : r.$$
(1)

Возьмем грань X в зоне граней P(100) и Q(010) (в зоне [001]). Гномоническая проекция се будет находиться на прямой PQ (фиг. 37). Третий индекс грани X, как известно, в этом случае будет равен нулю, а она будет иметь символ (*pqo*). Последнее вытекает также из того, что пл. $\triangle PQX$ в фиг. 7 в этом случае обра-

тится в нуль и, следовательно, вся третья дробь в отношении (1) окажется равной нулю, а следовательно *т = о*. Получаем отношение:

$$p: q = \frac{\Pi \pi \triangle QRX}{\Pi \pi \triangle QRU} : \frac{\Pi \pi \triangle PRX}{\Pi \pi \triangle PRU}$$
$$p: q = \frac{\Pi \pi \triangle QRX}{\Pi \pi \triangle PRX} : \frac{\Pi \pi \triangle QRU}{\Pi \pi \triangle PRU}.$$
(2)

или:

$$(110) = (100) + (010),$$

 $(110) = (111) - (001).$

Примем точку Q за вершину треугольников QRU и QRL, а точку P— за вершину треугольников PRL и PRU. Основания этих четырех треугольников лежат на одной прямой RL. Пусть высота двух первых треугольников будет h_q , а высота двух вторых h_p . (Высоты на фиг. 37 не проведены.) Треугольники QRU и PRU имеют общее основание RU. Поэтому их площади относятся как высоты, т. е.:

$$\frac{\Pi \pi. \bigtriangleup QRU}{\Pi \pi. \bigtriangleup PRU} = \frac{h_q}{h_p}$$

 $\frac{\Pi \pi. \bigtriangleup QRL}{\Pi \pi. \bigtriangleup PRL} = \frac{h_q}{h_p}.$

Треугольники QRL и PRL имеют общее основание RL. Поэтому имеем также

Отсюда

$$\frac{\Pi \Pi . \bigtriangleup QRU}{\Pi \Pi . \bigtriangleup PRU} = \frac{\Pi \Pi . \bigtriangleup QRL}{\Pi \Pi . \bigtriangleup PRL}.$$

Подставляя в формулу (2), получаем:

$$p: q = \frac{\Pi \pi \cdot \triangle QRX}{\Pi \pi \cdot \triangle PRX} : \frac{\Pi \pi \cdot \triangle QRL}{\Pi \pi \cdot \triangle PRL}.$$
(3)

Все четыре треугольника имеют общую вершину R и общее основание PQ, а следовательно и одну и ту же высоту. Поэтому их площади относятся как основания, т. с.

$$\frac{\Pi \pi \triangle QRX}{\Pi \pi \triangle PRX} = \frac{QX}{PX} \text{ is } \frac{\Pi \pi \triangle QRL}{\Pi \pi \triangle PRL} = \frac{QL}{PL}.$$

Подставив в формулу (3), получим:

$$p: q = \frac{QX}{PX} : \frac{QL}{PL}.$$
(4)

Примем тсперь грани P и Q за основные грани данной зоны (§ 5, стр. 39) и припишем грани P зональный символ (10), а грани Q— зональный символ (01). Зональный символ грани L будет (11). Эта грань единичная относительно граней Pи Q, так как ее индексы (110) находятся путем простого сложения индексов грани P (100) и Q (010):

$$(110) = (100) + (010).$$

Первый и второй индексы грани X (pqo) оказываются вместе с тем и зональными индексами этой грани относительно граней P и Q, так как

$$(pqo) = p(100) + q(010).$$

45

Таким образом, зональный символ грани X будет (pq) и, следовательно, формула (4) выражает отношение зональных индексов данной грани. Это дает нам право применить формулу (4) к любым граням любой зоны.

Пусть в какой-либо зоне даны гномонические проекции граней Р (p, p, p), Q (q₁ q₂ q₃) и L (l₁ l₂ l₃), причем грань L единичная относительно граней P н Q, т. е.

$$(l_1 l_2 l_3) = (p_1 p_2 p_3) + (q_1 q_2 q_3).$$

Пусть в этой зоне дана также гномоническая проекция четвертой грани $X(x_1x_2x_3)$. Примем грани Р и Q за основные грани зоны и припишем грани Р зональный символ (10) и грани Q — зональный символ (01). Грань L будет иметь зональный символ (11). Пусть зональный символ грани Х относительно граней Р и Q будет (т.п.). По только что указанному, мы можем переписать формулу (4) в следующем более общем виде: $m \cdot n = QX \cdot QL$

или

$$m_x : n_x = \frac{PX}{PL} \cdot \frac{PL}{PL}$$
$$m_x : n_x = \frac{QX}{OL} \cdot \frac{PX}{PL}.$$

(5)

Таким образом, отношение зональных индексов какой-либо грани (X) равно двойному отношению отрезков прямой зоны от гномонических проекций граней, принятых нами за основные грани зоны (*P* и *Q*) до гномонических проекций данной (*X*) и единичной (L) граней.

Формулу (5) можно несколько обобщить, заменив в ней грань L — сдиничную относительно граней P и Q — любой другой гранью $V(v_1 v_2 v_3)$ той же зоны. Пусть зональный символ грани V относительно тех же граней P и Q будет $(m_{\pi}n_{\pi})$. Тогда по формуле (5) имеем:

$$m_v: n_v = \frac{QV}{PV}: \frac{QL}{PL}.$$

Разделив почленно выражение (5) на данное, получим:

$$\frac{m_x}{m_y} : \frac{n_x}{n_y} = \frac{QX}{PX} : \frac{QV}{PV} .$$
(6a)

Таким образом, двойное отношение зональных индексов какихлибо двух граней (Х и V) равно двойному отношению отрезков прямой зоны от гномонических проекций граней, принятых нами за основные грани зоны (P и Q), до гномонических проскций данных граней (X и V).

Формулы (5) и (6а) несколько упрощаются в тех случаях, когда гномоническая проекция какой-либо из граней оказывается в бесконечности, т. е. если для нее $p = 90^{\circ}$.

1. Гномоническая проекция грани Р (10) в бесконечности $(\rho_{p} = 90^{\circ}).$

Формулу (5) перепишем так:

$$m_x: n_x = \frac{QX}{PL - XL}: \frac{QL}{PL}.$$

Разделим знаменатели дробей на РІ:

$$m_x: n_x = \frac{QX}{1 - \frac{XL}{PL}}: QL.$$

Так как P в бесконечности, $PL = \infty$ и $\frac{XL}{DL} = 0$. Отсюда

$$m_x: n_x = QX: QL. \tag{7}$$

Подобным же образом из формулы (ба) получаем:

$$\frac{m_x}{m_v}: \frac{n_x}{n_v} = QX: QV. \tag{8a}$$

2. Гномоничсская проекция гранн Q (01) в бесконечности $(\rho_{a} = 90^{\circ}).$

Формулу (5) переписываем таким образом:

$$m_x: n_x = \frac{QL - XL}{PX} : \frac{QL}{PL}.$$

Делим числителей дробей на QL:

$$m_x: n_x = \frac{1 - \frac{LX}{QL}}{PX} : \frac{1}{PL}.$$

. .

Так как $QL = \infty$, формула принимает вид:

$$m_{\mathbf{x}} : n_{\mathbf{x}} = \frac{1}{PX} : \frac{1}{PL}$$
$$m_{\mathbf{x}} : n_{\mathbf{x}} = PL : PX. \tag{9}$$

нли

Так же найдем из формулы (6а):

$$\frac{m_x}{m_v}:\frac{n_x}{n_v} = PV:PX. \tag{10a}$$

3. Гномоническая проекция грани L (11) или $V(m_v n_v)$ в бесконсчности ($\rho_l = 90^\circ$ или $\rho_v = 90^\circ$). В формуле (5) вместо QL подставим QP - LP:

$$m_x: n_x = \frac{QX}{PX}: \frac{QP - LP}{PL} = \frac{QX}{PX}: \left(\frac{PQ}{PL} + 1\right).$$

(у отрезков LP и PL знаки обратные. Поэтому $\frac{-LP}{PI} = 1.$)

Отсюда:

$$m_x: n_x = QX: PX. \tag{11}$$

Таким же способом найдем, если V в бесконечности:

$$\frac{m_x}{m_v}:\frac{n_x}{n_v} = QX:PX \tag{12a}$$

4. Гномоническая проекция грани X (m_xn_x) в бесконечности. $(\rho_r = 90^{\circ}).$

В формуле (5) вместо QX подставим QP - XP:

$$m_x: n_x = \frac{QP - XP}{PX} : \frac{QL}{PL} = \left(\frac{QP}{PX} + 1\right) : \frac{QL}{PL}$$

X в бесконечности: поэтому $\frac{QP}{PX} = 0$.

47.-

$$\frac{QP}{PL}=0.$$

•Отсюда

. ч. тн

$$m_x : n_x = 1 : \frac{QL}{PL}$$

$$m_x : n_x = PL : QL.$$
(13)

Из формулы (ба) подобным же образом получим:

$$\frac{m_x}{m_v} : \frac{n_x}{n_v} = PV : QV. \tag{14a}$$

Во всех этих случаях, как нетрудно убедиться, мы имеем право пользоваться формулами (5) и (6), сократив в них те отрезки, которые уравниваются, превращаясь в бесконечно большие, когда одна из точек P, Q, V (или L) и X находится в бесконечности.

Если символы граней $P(p_1 p_2 p_3)$, $Q(q_1 q_2 q_3)$ и $V(v_1 v_2 v_3)$ известны и надо определить символ грани $X(x_1 x_2 x_3)$, определяем сначала зональные индексы грани V по формулам (2а) или (2b) (стр. 41 и 42) или пользуемся указаниями на стр. 43. Затем определяем зональные индексы грани $X(m_x n_x)$, переписав формулы (6a), (8a), (10a), (12a) и (14a) следующим образом:

$$m_x: n_x = \frac{m_v QX}{QV}: -\frac{n_v PX}{PV}, \qquad (6b)$$

$$m_x: n_x = m_v QX: n_v QV, \tag{8b}$$

$$p_q = 90^\circ: \qquad \qquad m_x: n_x = m_v PV: n_v PX, \qquad (10b)$$

$$\rho_v = 90^\circ: \qquad \qquad m_x : n_x = m_v QX : n_v PX, \qquad (12b)$$

$$p_x = 90^\circ: \qquad \qquad m_x: n_x = m_v PV: n_v QV. \tag{14b}$$

Если третья данная грань в зоне не $V(m_v n_v)$, а L(11), то для определения индексов $(m_v n_v)$ непосредственно пользуемся формулами (5, 7, 9, 11 и 13).

Правило знаков следующее: если точки X и V лежат по одну сторону от точки Q или от точки P, то соответственно первый или второй члены равенств положительны, сразных сторон отрицательны.

После того как определены зональные индексы $(m_x n_x)$ грани X, определяем обычные се индексы $(x_1 x_2 x_3)$ по формуле (1a) (стр. 38):

$$\frac{x_1}{x_2} = \frac{m_x p_1 + n_x q_1}{m_x p_2 + n_x q_2} = \frac{m_x p_1 + n_x q_2}{m_x p_2 + n_x q_3}$$

или по формуле (1b): $(x_1 x_2 x_3) = m_x (p_1 p_2 p_3) + n_x (q_1 q_2 q_3)$.

Методом отрезков прямой зоны удобно пользоваться как вспомогательным методом при методах основного треугольника и основного параллелограма — особенно для зон с большим количеством граней.

Метод применим для "косых" зон и для "горизонтальных" (проходящих через центр проекций). Прямая "вертикальной" зоны (грани которой параллельны оси проекций) находится в бесконечности. Для нее применим излагаемый в следующем параграфе мстод отрезков произвольной прямой.

Пример (фиг. 38).

Даны гномонические проекции граней одной зоны:

(Z-в бесконечности).

Определить символы граней X, Y и Z. Припишем грани P зональный символ (10) и грани Q = (01). По формуле (2a) (стр. 41) или (2b) (стр. 42) определяем зональные индексы грани V относительно граней P и Q:

$$m_v: n_v = \begin{vmatrix} 12 \\ 14 \end{vmatrix} : \begin{vmatrix} 14 \\ 14 \end{vmatrix} = 2:8 = 1:4.$$

(При определении по первым и вторым индексам получается неопределенность.) Определяем зональные индексы грани X и Y по формуле (6b) и грани Z

по формуле (14b) (стр. 48), применяя правила знаков (стр. 48):

$$m_x: n_x = \frac{1 \cdot QX}{QV}: -\frac{4 \cdot PX}{PV} = 5: -1.$$

Зональный символ грани Х-(51).

$$m_{v}: n_{v} = \frac{1 \cdot QY}{QV}: \frac{4 \cdot PY}{PV} = 1:1.$$

Зональный символ грани У — (11).

$$m_z: n_z = -PV: 4 \cdot QV = -1:2.$$

Зональный символ грани Z—(12). По формуле (1b) (стр. 39) определяем символы граней X, Y и Z:

$$(x_1x_2x_3) = 5 \cdot (\bar{1}\bar{2}4) - 1 \cdot (122) = (\bar{6}; \ \bar{1}\bar{2}; \ 18) = (\bar{1}\bar{2}3)$$

$$(y_1y_2y_3) = (\bar{1}\bar{2}4) + (122) = (006) = (001),$$

$$(z_1z_2z_3) = -1 \cdot (\bar{1}\bar{2}4) + 2 \cdot (122) = (360) = (120).$$

§ 8. Метод отрезков произвольной прямой

Метод отрезков произвольной прямой по простоте построений и по точности превосходит все остальные методы графического определения символов граней. Зная символы трех любых граней любой зоны, мы можем по этому методу определить символ любой четвертой грани данной зоны. Для этого, как сейчас увидим, достаточно провести прямую в любом направлении и в любом расстоянии от центра проекций. Радиусы основного круга проекций, на которых лежат гномостереографические и гномонические проекции граней, отсекают на этой прямой отрезки, двойные отношения которых и служат для определения символов граней. Вся работа ведется на стереограмме кристалла, но данный метод проще и точнее тех методов, в которых пользуются исключительно стереографическими проекциями (например, метод двойных отношений косинусов), так как здесь требуется предельный минимум построений и так как здесь мы имеем дело с прямой и ее отрезками, а не с дугами. Он точнее и удобнее методов, в которых употребляются гномонические проекции, так как опять-таки построений здесь меньше и исключается то неудобство, что многие точки оказываются либо сильно удаленными от центра, либо в бесконечности. Точность метода почти исключительно зависит от точности проведения тех радиусов основного круга проекций, на которых находятся проекции граней: В этом методе играют роль только углы φ .

Метод обладает полной общностью, так как совсем не зависит ни от сингонии, ни от ориентировки относительно оси и плоскости проекций.

Имеется, впрочем, в этом методе и некоторое осложнение. При данном графическом методе определяются не непосредственно искомые индексы, а сначала лишь зональные индексы, как и при методе отрезков прямой зоны. Но для пере-

4 Аншелес — 706

хода от зональных к обычным индексам требуются лишь действия умножения и сложения над целыми, почти всегда однозначными числами.

Путем перехода от зоны к зоне данным методом от начала до конца могут быть определены последовательно символы всех граней кристаллического комплекса по четырем, как обычно, известным граням. Но такой путь определения символов едва ли можно рекомендовать, так как при этом приходится часто непроизводительно затрачивать время на определение символов отсутствующих возможных граней. Проще комбинировать метод отрезков произвольной прямой с другими методами, прибегая к первому, главным образом, для зон, содержащих большое количество граней.

Методом отрезков произвольной прямой можно пользоваться для определения символов граней в любой косой зоне и в вертикальной зоне (в которой грани параллельны оси проекций). Для горизонтальных зон, в которых проекции граней лежат на одном диаметре, проходящем через центр проскций, необходимо поль-

Фиг. 39.

зоваться аналогичным методом отрезков прямой зоны, изложенным в предыдущем нараграфе.

Пусть даны гиомонические проекции четырех граней одной зоны P (100), Q (010), L (110) и X(pqo) (фиг. 39). Если зональный символ грани $X - (m_x n_y)$, то по формуле (5) (стр. 46) имеем:

$$m_x: n_x = \frac{QX}{PX}: \frac{QL}{PL}.$$

На фиг. 39 гномонические проекции граней Р, Q, L и X соединены прямыми с гномонической проекцией грани R (001), как и на фиг. 37. Совершенно ясно, что отношение отрезков прямой PQ, а следовательно и отношение индексов (т.п.), не изменится, проведем ли мы эти прямые или нет, а также — соединим ли мы точки Р, Q, L и X прямыми с точкой R (001) или с любой другой точкой.

Исходя из этого, мы будем ниже проводить соответствующие прямые из точки О, центра проекций, — иначе говоря, будем брать раднусы или диаметры, на которых находятся гномостереографические и гномонические проекции граней.

Пусть даны гномонические проекции — P₁, Q₁, X₁ и V₁ четырех граней одной зоны (фиг. 40) с символами $(p_1p_2p_3)$, $(q_1q_2q_3)$, $(x_1x_2x_3)$ и $(v_1v_2v_3)$. Грани P_1 и Q_1

примем за основные и припишем грани P_1 зональный символ (10), а грани Q_1 —(01). Пусть зональный символ грани V_1 будет $(m_v n_v)$, а грани $X_1 - (m_x n_x)$. По формулс (6а) имеем:

$$\frac{m_x}{m_v}:\frac{n_x}{n_v}=\frac{Q_1X_1}{P_1X_1}:\frac{Q_1V_1}{P_1V_1}.$$

Из центра проекций — точки O — проведем радиусы, на которых лежат проекции данных граней. Площади полученных треугольников Q_1OX_1 и P_1OX_1 , имеющие общую вершину O и одну высоту, относятся между собой как основания, т. с.

$$\frac{\amalg \therefore \bigtriangleup Q_1 O X_1}{\amalg \therefore \bigtriangleup P_1 O X_1} = \frac{Q_1 X_1}{P_1 X_1}.$$

На том же основании имеем:

$$\frac{\lim \Delta Q_1 O V_1}{\lim \Delta P_1 O V_1} = \frac{Q_1 V_1}{P_1 V_1}.$$

Подставляя в предыдущую формулу, получим:

Выразим площади треугольников через произведения сторон¹ OQ₁, OP₁, OV₁ и OX₁ на синусы углов между ними, подставим в данную формулу и сократим на общих множителей. Получим:

$$\frac{m_x}{m_y} : \frac{n_x}{n_y} = \frac{\sin Q_1 O X_1}{\sin P_1 O X_1} : \frac{\sin Q_1 O V_1}{\sin P_1 O V_1}.$$
 (1)

Двойные отношения зональных индексов двух граней (ХнV) какой-либо зоны равны двойным отношениям синусов углов между днаметрами основного круга проекций, накоторых лежат проекции данных граней и проекции граней (Р и Q), принятых нами за основные грани зоны.

Очень важную формулу (1) мы используем в дальнейшем для зональных вычислений (гл. VIII). Теперь воспользуемся ею для вывода метода отрезков произвольной прямой.

Проведем прямую MN (фиг. 40) в произвольном направлении и в произвольном расстоянии от центра проекций. Пусть раднусы, на которых лежат проекции граней P_1 , Q_1 , X_1 и V_1 пересекают эту прямую в точках P, Q, X и V. Выразим площади вновь полученных треугольников QOX, POX, QOV и POV через произведение сторон на синусы углов между ними и возьмем их двойные: отношения. Получаем:

$$\frac{n\pi}{n\pi} \stackrel{\Delta}{\underline{\bigcirc}} \frac{QOX}{POX} : \frac{n\pi}{n\pi} \stackrel{\Delta}{\underline{\frown}} \frac{QOV}{POV} = \frac{OQ \cdot OX \cdot \sin Q_1 OX_1}{OP \cdot OX \cdot \sin P_1 OX_1} : \frac{OQ \cdot OV \cdot \sin Q_1 OV_1}{OP \cdot OV \cdot \sin P_1 OV_1} = \\ = \frac{\sin Q_1 OX_1}{\sin P_1 OX_1} : \frac{\sin Q_1 OV_1}{\sin P_1 OV_1}.$$

Подставляя в формулу (1), получаем:

$$\frac{m_x}{m_y}:\frac{n_x}{n_y}=\frac{\ln \Delta QOX}{\ln \Delta POX}:\frac{\ln \Delta QOV}{\ln \Delta POV}.$$

Но площади данных треугольников имеют общую вершину О и основания, лежащие на одной прямой MN. Поэтому они относятся как их основания. Следовательно, мы можем написать:

$$\frac{m_x}{m_y}: \frac{n_x}{n_y} = \frac{QX}{PX}: \frac{QV}{PV}.$$
(2a)

Как видим, получается то же выражение, как и для прямой зоны, т. е. формула (6а).

Таким образом, дво йное отношение зональных индексов двух граней зопы (X и V) равно двойному отношению отрезков, отсекаемых на произвольно проведенной прямой диаметрами основного круга проекций, на которых лежат проекции этих двух граней и проскции граней (P и Q), принятых за основные грани зоны.

Формулой (2а) мы и можем воспользоваться для определения символа какойлибо грани X, лежащей в зоне, в которой известны символы трех граней P, Q и V, две из которых (P и Q) мы приняли за основные грани зоны. Для большего удобства практического использования формулы (2а) перепишем ее таким образом:

$$m_x : n_x = m_v \cdot \frac{QX}{QV} : n_v \cdot \frac{PX}{PV}.$$
(2b)

Зональные индексы грани $V - (m_v n_v)$ определяются по формуле (2a) (стр. 41) или (2b) (стр. 42). Обычные индексы грани $X - (x_1 x_2 x_3)$ определяются по формулам (1a) (стр. 38), или (1b) (стр. 39). Если третья грань зоны с известным символом $V(v_1 v_2 v_3)$ единична относительно других двух граней ($P \ u \ Q$) и имеет зональный символ (11), то вместо формулы (2b) получаем формулу:

$$m_x : n_x = \frac{QX}{QV} : \frac{PX}{PV}.$$
(3)

Так как положение прямой *MN* произвольно, ес следует проводить так, чтобы, во-первых, точки пересечения ес с радиусами были не слишком удалены, и, во-вторых, чтобы радиусы не пересекали ее под слишком острыми углами. Острое пересечение уменьшает точность измерения отрезков. При этом можно пользоваться не только самими радиусами, на которых лежат проекции граней, но и их продолжением по другую сторону центра проекций (см. ниже пример). Желательно проводить прямую по возможности дальше от центра, чтобы получать более длинные отрезки прямой, что увеличивает точность.

Будем во всех случаях пользоваться следующим правилом знаков, независимо от того, будут ли отрезки на прямой зоны направлены в одну сторону от точек P и Q на этой прямой или в разные стороны. Если гномостереографические проекции искомой грани $X(m_x n_x)$ и грани $V(m_v n_v)$ находятся по одну сторону от гномостереографической проекции грани Q(01) или P(10), то первая или соответственно вторая дробь формулы (2а) положительны, по разные стороны — отрицательны. Так же поступаем и при пользовании формулой (3).

Если дробн при постановке длины отрезков произвольной прямой в формулах (2b) и (3) просто не сокращаются, следует привести одну из дробей к единице, разделив на нее другую дробь, и затем пользоваться таблицей десятичных эквивалентов (табл. 1). Предлагается учащемуся просмотреть нижеследующий пример и затем для полного усвоения метода провести прямую MN в любом другом направлении и убедиться, что символы искомых граней получаются те же.

Пример (фиг. 41). Аксинит (Гольдшмидт, Winkeltabellen, стр. 58).

Даны символы и сферические координаты трех граней зоны:

(211) $\varphi = 79^{\circ}33$, $\rho = 67^{\circ}35$ (011) $\varphi = -172^{\circ}02$, $\rho = 45^{\circ}21$ (132) $\varphi = -150^{\circ}30$, $\rho = 57^{\circ}26$. Определнть пидексы граней Х, У, Z со следующими координатами:

X $\varphi = -140^{\circ}52$, $\rho = 65^{\circ}46$ Y $\varphi = 104^{\circ}04$, $\rho = 49^{\circ}10$ Z $\varphi = 60^{\circ}16$, $\rho = 90^{\circ}00$.

Грань (211) обозначаем через P и приписываем ей зональный символ (10), грань ($\overline{132}$) — через Q с зональным символом (01). Третью известную грань зоны (01) обозначаем через V. Найдем зональный символ ($m_n n_n$) грани V.

Нетрудно сообразить "в уме", что индексы грани V (011) получаются суммированием индексов грани P (211) и Q(132), если предварительно помножить вторые на 2. Иначе говоря:

$$1 \cdot (211) + 2 \cdot (\overline{132}) = (0\overline{5}5) = (0\overline{1}1).$$

Значит $m_v: n_v = 1:2$, и зональный символ V будет (12). Определяя отношение $m_v \kappa n_v$ по (2b) (стр. 42), получим, конечно, то же самое:

$$m_{v}:n_{v} = \begin{vmatrix} \overline{13} \\ 0\overline{1} \end{vmatrix} : \begin{vmatrix} 01 \\ 21 \end{vmatrix} = \begin{vmatrix} 12 \\ 01 \end{vmatrix} : \begin{vmatrix} 01 \\ 21 \end{vmatrix} = \\ = \begin{vmatrix} \overline{32} \\ \overline{11} \end{vmatrix} : \begin{vmatrix} \overline{11} \\ 11 \end{vmatrix} = 1:2.$$

Проводим прямую МN, следуя ука-

заниям на стр. 52. Продолжаем радиусы, на которых лежат проекции всех наших граней, до пересечения с прямой *MN*. Измеряем полученные отрезки и подставляем в формулу (2b), считаясь с правилом знаков (стр. 52). Получаем:

$$m_x : n_x = \frac{QX}{QV} : \frac{2PX}{PV} = -1 : 3,$$

$$m_y : n_y = \frac{QY}{QV} : \frac{2PY}{PV} = 3 : 1,$$

$$m_z : n_z = \frac{QZ}{QV} : \frac{2PZ}{PV} = 2 : -1.$$

Итак, зональный символ грани $X - (\overline{13})$, Y - (31) и Z - (21). Чтобы определить окончательные индексы граней, множим (211) на первый зональный индекс искомой грани, ($\overline{132}$) — на второй и складываем полученные произведения.

$$\begin{array}{l} X - 1 \cdot (211) + 3 \cdot (\overline{132}) = (\overline{5}; \ \overline{10}; \ 5) = (\overline{121}) \\ Y \quad 3 \cdot (211) + 1 \cdot (\overline{132}) = (505) \qquad = (101) \\ Z \quad 2 \cdot (211) - 1 \cdot (\overline{132}) = (550) \qquad = (110) \end{array}$$

В виду близости углов φ для двух исходных граней (011) и (132) результаты при определении зональных индексов получаются менее точными, чем обычно. Предлагается взять за исходные грани (011), (110) и (101), обозначив первую через P (10) и вторую через Q(01) и определить символы остальных. Задача — болсе простая, чем предыдущая.

Фиг. 41.

§ 9. Прямая параллельна радиусу одной из граней зоны

Если прямую *MN* проводить не в произвольном направлении, а параллельно радиусу, на котором лежит проекция какой-либо грани зоны, то формулы (2b) и (3) предыдущего параграфа упрощаются. В этом случае, как сейчас докажем, приходится иметь дело не с четырьмя отрезками прямой, а только с двумя. Это, конечно,

выгоднее. Но имсются и неудобства пользования этим методом, если даже не считаться с тем, что кроме линейки, как в предыдущем методе, здесь часто необходим еще треугольник для проведения параллельных прямых. Главное неудобство заключается в том, что прямая, параллельная ОР, или OQ, или OV, или OX, может оказаться в невыгодном положении относительно радиусов, на которых лежат проекции других граней. Может оказаться, что она пересекает те или другие радиусы за пределами чертежа, либо наклонена к ним под очень острыми углами. Впрочем, это неудобство может быть устранено, если символы одних граней зоны определять, пользуясь прямой, параллельной, скажем, ОР, а символы других - прямой, параллельной ОО или ОV.

В зависимости от того, проведем ли мы прямую зоны параллельно радиусу с гранью, принятой нами за P (10), или с гранью, принятой за Q (01), или с гранью $V(m_v n_v)$, или с гранью $X(m_x n_x)$, формулы будут несколько отличаться друг от друга. Правило знаков во всех случаях остается тем же самым, что и приведенное на стр. 52.

Фиг. 42.,

Формулы для этих случаев выводим по формуле (2b) (стр. 52) совсем так же, как делали

это для аналогичных случаев при методе отрезков прямой зоны (стр. 46—48). В формуле (2b) мы сокращаем те отрезки прямой *MN*, которые в каждом случае становятся равными бесконечности.

1. Прямая MN параллельна OP:

$$m_x: n_x = m_v Q X: n_v Q V. \tag{1}$$

2. Прямая *MN* параллельна *OQ*:

$$m_x : n_x = m_v P V : n_v P \lambda. \tag{2}$$

3. Прямая MN параллельна OV:

$$m_x : n_x = m_y QX : n_y PX. \tag{3}$$

4. Прямая MN параллельна OX:

$$m_x : n_x = m_v PV : n_v QV. \tag{4}$$

Пример (фиг. 42).

Даны гномостереографические проекции граней $P(211), Q(\overline{011}), V(101), X$ и Y.

Определить символы граней X и Y. Припишем грани P(211) зональный символ (10) и грани $Q(0\overline{11})$ —(01). Грань V(101) единичная относительно граней P и Q

$$1 \cdot (211) + 1 \cdot (0\overline{1}1) = (202) = (101).$$

Проводим прямую *MN* параллельно *OP*. Продолжаем радиусы, на которых лежат гномостереографические проекции граней до пересечения с прямой *MN*. Измеряем отрезки *QV*, *QX* и *QY* и подставляем в формулу (1), применяя правило знаков:

$$m_x : n_x = -QX : QV = -1 : 3$$

$$m_y : n_y = QY : -QV = 1 : -1$$

$$-1 \cdot (211) + 3 \cdot (0\overline{11}) = (\overline{242}) = (\overline{121})$$

$$1 \cdot (211) - 1 \cdot (0\overline{11}) = (220) = (110)$$

Символ грани $X - 1\overline{21}$ и Y - 110.

ГЛАВА ЧЕТВЕРТАЯ

ГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ГРАНЕЙ ПО ИХ СИМВОЛАМ

§ 1. Определение положения граней методом развития зон

Если нам дано положение и символы четырех граней, три из которых не лежат в одной зоне, мы можем определить методом развития зон положение любой пятой грани с известным символом. Задача эта обратная той, которая изложена в § 4 (стр. 34), гдс указывается, как определить символ грани, положение которой известно. Для решения данной обратной задачи поступаем следующим образом. Развиваем зоны и на их пересечении определяем символы возможных граней, как указано в § 4. Поступаем так до тех пор, пока на пересечении каких-либо двух зон не окажется как раз та грань, символ которой нам дан. Точка пересечения данных двух зон и определяет положение гномостереографической проекции искомой грани. Для решения каждой конкретной задачи необходимо искать путь наиболее быстрого се решения. В этом отношении большую помощь оказывают стереограммы, изображенные на фигурах 33—36.

Наиболее часто приходится отыскивать на стереограммах положение возможных основных и единичной грани — (100), (010) (001) и (111) — при их отсутствии. Для быстрого определения положения этих граней полезно пользоваться следующими теоремами.

1. В каждой зоне, проходящей через грань (100), все грани имеют символы, в которых отношение второго и третьего индексов постоянны, за исключением самой грани (100), для которой это отношение равно $\frac{0}{0}$. Например, в зоне, проходящей через (100) и (231), отношение второго и третьего индексов любой грани равно 3:1.

Докажем эту теорему следующим образом. Пусть в какой-либо зоне, проходящей через грань (100), находится еще грань $(p_1p_2p_3)$. Чтобы доказать, что отношение второго и третьего индексов всех граней данной зоны постоянно, докажем, что отношение второго и третьего индексов любой третьей грани $(x_1x_2x_3)$ этой зоны равно отношению второго и третьего индексов грани $(p_1p_2p_3)$, т. е. докажем, что

$$x_2: x_3 = p_2: p_3$$

По формуле (1а) (стр. 38) пишем:

$$x_1: x_2: x_3 = (m \cdot 1 + n \cdot p_1): (m \cdot 0 + n \cdot p_2): (m \cdot 0 + np_3) = (m + np_1): np_2: np_3,$$

где *т* и *п* любые целые взаимно простые числа. Отсюда:

$$x_2: x_3 = np_2: np_3 = p_2: p_3,$$

что и требовалось доказать.

В частности, в зоне, проходящей через грани (100) и (010) (в зоне третьей кристаллографической оси [001]), отношение второго и третьего индексов каждой грани равно бесконечности. В зоне, проходящей через (100) и (001) (ось [010]), это отношение равно нулю.

2. В зоне, проходящей через (100) и (111), отношение второго и третьего индексов равно единице [кроме самой грани (100)]. Иначе говоря, второй и третий индексы граней в зоне, проходящей через (100) и (111), равны друг другу. Таким же образом можем доказать и следующие теоремы:

3. В каждой зоне, проходящей через грань (010), все грани имеют символы, в которых отношение первого и третьего ин-

Фиг. 43.

дексов постоянны.

4. В частности, в зоне (010):(111) у всех граней первый и третий индексы равны друг другу.

5. В каждой зоне, проходящей через грань (001), все грани имеют символы, в которых отношение первого и второго индексов постоянны.

6. В частности, в зоне (001):(111) у всех граней первый и второй индексы равны друг другу.

На прилагаемом примере видно, как в некоторых случаях упрощается решение задачи при использовании этих теорем.

Пример (фиг. 43).

Даны гномостереографические проекции граней (010), (110), (111) и (211).

Определить гномостереографические проекции граней (100), (001) и (111). Отношение второго и третьего инде-

ксов как грани (111), так и грани (211) одно и то же (равно -1). Отсюда следует на основании теоремы 1, что искомая грань (100) находится в зоне этих граней. Проводим 1-ю зону. Отношение второго и третьего индексов граней (010) и (110) также одно и то же (оно равно ∞). Следовательно, (100) находится и в этой зоне. Проводим 2-ю зону (внешний круг проекций) и на пересечении ее с 1-й находим гномостерсографическую проекцию грани (100).

На основании теоремы 6 решаем, что остальные искомые грани -- (001) и (111) — находятся в зоне граней (111) и (110), так как у той и другой из данных граней первый и второй индексы равны. Проводим 3-ю зопу через эти грани. Необходимо найти еще две зоны, которые в пересечении с 3-й зоной дали бы гномостерсографические проекции искомых граней (001) и (111). Проводим 4-ю зону через грани (110) и (211) и 5-ю зону — через (010) и (111). На нересечении этих зон находится возможная грань с символом (101), что легко найти либо перекрестным умножением (§ 4, стр. 34), либо, проще, путем подбора зональных индексов этой грани относительно данных граней в той и другой зонах (§ 6, стр. 43). Отношение т: п этой грани в той и другой зонах оказывается равным 1:1, т. е.

$$(110) + (\overline{211}) = (\overline{101}),$$

 $(010) + (\overline{111}) = (\overline{101}).$

Искомая грань (001) находится в зоне (100): (101), так как отношение первого и второго индексов символов той и другой граней одинаково. Проводим 56

зону 6 и на пересечении се с зоной 3, в которой, как указано выше, также лежит грань (001), находим положение последней.

Для определения положения грани (111) проводим сначала зону 7 через грани (010) и (001) и на пересечении ее с зоной 4 находим гномостереографическую проекцию возможной грани (011). На основании теоремы 2 решаем, что грань (111) лежит в зоне граней (100) и (011). Проводим зону 8 и на пересечении ее с зоной 3 находим гномостереографическую проекцию грани (111).

Если в той или другой зонах известно уже положение трех граней и надо определить положение четвертой [например, грань (011) в зоне 4], то это часто удобнее сделать не методом развития зон, а методом отрезков прямой. Об этом см. в следующем параграфе, в частности пример 3 (стр. 59).

§ 2. Определение положения граней методом отрезков прямой

Пусть (фиг. 44) нам даны гномостерсографические проекции и символы трех граней $P(p_1p_2p_3)$, $Q(q_1q_2q_3)$ и $V(v_1v_2v_3)$ одной зоны и требуется найти гномостереографическую проекцию четвертой грани $X(x_1x_2x_3)$ той же зоны, если символ ее известен.

Через грани *P*, *Q* и *V* проводим зону. Грани *P* приписываем зональный символ (10) и грани *Q*—(01). По формулс (2а) (стр. 41) или (2b) (стр. 42) определяем зональные символы граней

 $V(m_v n_v)$ и $X(m_x n_x)$ относительно граней P и Q.

Проводим произвольную прямую MN, и пусть точки P, Q и Vбудут точками пересечения этой прямой с днаметрами основного круга проекций, на которых лежат проекции соответствующих граней. По формуле (6а) (стр. 46) имеем:

$$\frac{m_x}{m_y}:\frac{n_x}{n_y}=\frac{XQ}{PX}:\frac{VQ}{PV}.$$

Подставив сюда PQ - PX вместо XQн PQ - PV вместо VQ, получим:

$$\frac{m_x}{m_v}: \frac{n_x}{n_v} = \frac{PQ - PX}{PX}: \frac{PQ - PV}{PV}$$

Фиг. 44.

Решая уравнения относительно неизвестного РХ, окончательно получим:

$$PX = \frac{PQ \cdot PV}{\frac{m_x n_v}{m_v n_x} \cdot PQ + \left(1 - \frac{m_x n_v}{m_v n_x}\right)PV}$$
(1a)

Измеряем на прямой MN (фнг. 44) отрезки PQ п PV, подставляем в формулу их длину, а также зональные индексы граней V и X п вычисляем длину отрезка PX, т. е. расстояние точки X от точки P. Соединяем найденную на прямой MN точку X с центром основного круга проекций. Точка пересечения этой прямой с дугой данной зоны и является гномостереографической проекцией грани $X(x_1x_2x_3)$.

Отрезки на прямой *MN* от точки *P* в сторону точки *Q* будем считать положительными, в обратную сторону — отрицательными.

Если третья даиная грань в зоне, т. е. грань V, единичная относительно граней P и Q и ее зональный символ (11), то формула (1а) принимает вид:

$$PX = \frac{PQ \cdot PV}{\frac{m_x}{m_y}PQ + \left(1 - \frac{m_x}{m_y}\right)PV}$$
(1b)

Пример 1 (фиг. 45; уменьшена в 2 раза).

Даны гномостереографические проекции граней P(201), $Q(\overline{221})$ и $V(\overline{212})$. Найти положение граней $X(\overline{011})$ и Y(210).

Проводим через данные три грани зону. Приписываем грани *P* зональный символ (10) и грани *Q*—(01). Определяем по формуле (2а) или (2b) зональные *N* символы граней *V*, *X* и *Y* относительно

Фиг. 45.

граней *Р* и *Q*:

$$\begin{split} m_v : n_v &= \begin{vmatrix} 2\bar{2} \\ 2\bar{1} \end{vmatrix} : \begin{vmatrix} 2\bar{1} \\ 20 \end{vmatrix} = 6 : 2 = 3 : 1; \\ m_x : n_x &= \begin{vmatrix} 2\bar{2} \\ 0\bar{1} \end{vmatrix} : \begin{vmatrix} 0\bar{1} \\ 20 \end{vmatrix} = 2 : 2 = 1 : 1; \\ m_y : n_y &= \begin{vmatrix} 2\bar{2} \\ 21 \end{vmatrix} : \begin{vmatrix} 2\bar{1} \\ 20 \end{vmatrix} = 2 : -2 = 1 : -1. \end{split}$$

Итак, зональные символы граней V—(31), X—(11) и Y—(11).

Проводим произвольную прямую MN. Через гномостсреографические проекции граней P, Q и V проводим диаметры до пересечения с прямой MN. Измеряем отрезки: PQ = 33 мм, PV = -8,7 мм. Подставляем в формулу (1а):

$$PX = \frac{-33 \cdot 8,7}{\frac{1 \cdot 1}{1 \cdot 3} \cdot 33 - \left(1 - \frac{1 \cdot 1}{1 \cdot 3}\right) \cdot 8,7} = -55,2;$$

$$PY = \frac{-33 \cdot 8,7}{-\frac{1 \cdot 1}{1 \cdot 3} \cdot 33 - \left(1 + \frac{1 \cdot 1}{1 \cdot 3}\right) \cdot 8,7} = 12,7.$$

От точки P откладываем на прямой MN отрезок 55,2 мм в сторэну, обратную точке Q, и 12,7 мм в сторону точки Q. От полученных на прямой MN точек X и Y проводим прямые через центр основного круга проекций (O) до дуги зоны. На пересечении получаем гномостереографические проекции искомых граней $X(0\overline{1}1)$ и Y(210).

Значительно выгоднее проводить прямую MN параллельно днаметрам, на козгорых лежат проекции граней P(10), или Q(01), или $V(m_{\pi}n_{\pi})$.

1. Прямая MN параллельна OP.

По формуле (1) (§ 9, стр. 54) найдем:

$$QX = \frac{m_x n_v}{m_v n_x} \cdot QV.$$
⁽²⁾

Если отрезок QX положительный, то его надо откладывать на прямой MN от точки Q в сторону точки V. Если QX отрицательный — в обратную сторону.

Пример 2 (см. выше пример 1). Даны гномостереографические проекции граней P(201), Q(221) и $V(2\overline{1}2)$ (фиг. 45). Определить положение граней $X(0\overline{1}1)$ и Y(210). Проводим прямую M_1N_1 параллельно радиусу OP. Продолжаем радиусы OQ и OV до пересечения с прямой M_1N_1 в точках Q_1 и V_1 . Подставляем в формулу (2) полученный на прямой M_1N_1 отрезок $Q_1V_1 = 75$ мм, а также зональные индексы грани X(11) и грани V(31) (см. выше пример 1). Получаем:

$$Q_1 X_1 = \frac{1 \cdot 1}{+1 \cdot 3} \cdot 75 = +25.$$

Подставляя в ту же формулу зональные индексы грани Y(11), получим:

$$Q_1 Y_1 = \frac{1 \cdot 1}{-1 \cdot 3} \cdot 75 = -25.$$

Откладываем 25 мм в сторону точки V_1 и получаем на прямой M_1N_1 точку X_1 . Откладывая в обратную сторону 25 мм, получаем точку Y_1 . Проводим радиусы OX_1 и OY_1 и продолжаем их до пересечения в точках

Проводим радиусы OX_1 и OY_1 и продолжаем их до пересечения в точках Х и Y с дугой зоны. Точки пересечения и являются гномостереографическими проекциями этих граней.

Пример 3. На фиг. 43 (уменьшена в 2 раза) (стр. 56) в зоне 4 известно положение граней (110), (211) и (101). Требуется определить положение грани (011).

Грани (110) припишем зональный символ (10) и грани ($\overline{211}$) — (01). Зональный символ грани ($\overline{101}$) относительно этих граней будет (11) и грани (011) — (21). Проводим прямую *MN* параллельно радиусу с проекцией грани (110). Радиусы, на которых лежат проекции ($\overline{211}$) и ($\overline{101}$) пересекают данную прямую в точках *Q* и *V* · *QV* = 50 мм.

По формулс (2) имеем:

$$QX = 2 \cdot 50 = 100$$
 MM.

Откладываем на прямой MN от точки Q в сторону V отрезок, равный 100 мм. Гномостереографическая проекция искомой грани (011) находится на пересечении радиуса OX с дугой данной зоны.

2. Прямая *MN* параллельна *OQ*. По формуле (2) (стр. 54) имеем:

$$PX = \frac{m_v n_x}{m_x n_v} \cdot PV.$$
(3)

3. Прямая *MN* параллельна *OV*.

Подставляя в формулу (3) (стр. 54) QP + PX вместо QX и решая уравнение относительно PX, получим:

$$PX = \frac{QP}{\frac{m_x n_v}{m_v n_x} - 1}$$
(4)

§ 3. Определение положения граней методом основного треугольника

Рассмотрим два способа применения метода основного треугольника для определения положения граней по их символам.

1-й способ.

Пусть даны (фиг. 46) гномонические проекции граней P(100), Q(010), R(001) и U(111) и дан символ грани X(pqr), положение гномонической проекции которой требуется определить.

Точка X лежит на прямой, проходящей через точку U и через точки H, K и L (§ 2, стр. 15) — точки пересечения прямой UX со сторонами основного треугольника. Рассмотрим сначала, как найти направление этой прямой UX, на которой пока известно лишь положение точки U. Направление прямой UX мы найдем, если определим положение хотя бы одной из точек — H, K или L.

Точки H, K и L являются гномоническими проекциями возможных граней, так как каждая из них находится на пересечении двух зон. Определим прежде всего символы этих возможных граней. Грань H находится на пересечении прямых зон QR и UX. В каждой из этих зон известны символы двух граней. По § 4 (стр. 34) найдем символ возможной грани H (0; p-q; p-r). Таким же образом найдем символ грани K (q-p; 0; q-r), находящейся на пересечении зон *PR* и *UX*, и символ грани *L* (r - p; r - q; 0), находящейся на пересечении зон *PQ* и *UX*.

Проведем теперь прямые PU, QU и RU. На пересечении этих прямых со сторонами основного треугольника находим гномонические проекции возможных граней A(011), B(101) и C(110).

На прямой QR нам известны теперь положение и символы трех граней — Q(010), R(001) и A(011) и известен символ четвертой грани H(0; p - q; p - r). По § 2 (стр. 57) определяем положение этой грани. Таким же образом мы можем определить положение возможной грани K(q - p; 0; q - r) на прямой PR по граням P(100), R(001) и B(101) и грани L(r - p; r - q; 0) на прямой PQ по граням P(100), Q(010) и C(110).

Проводим теперь прямую через точку U и через точки H, K и L. На этой прямой зоны и находится гномоническая проекция грани X(pqr).

Направление прямой UX определено. Выбрав теперь на прямой UX три любых грани из четырех граней — U, H, K и L с известными символами и положением, по § 2 определяем положение гномонической проекции грани X.

Фиг. 47.

Для определения положения грани X(pqr) нет необходимости определять символы и положение всех трех возможных граней — H, K и L. Для определения направления UX достаточно знать положение одной из этих граней, а для определения положения точки X на прямой UX достаточно знать символы и положение двух из этих граней.

Если бы вместо грани U(111) была дана какая-либо грань $V(p_vq_vr_v)$, способ определения положения грани X не изменился бы: изменились бы лишь символы возможных граней A, B, C II H, K, L.

2-й способ. Проведем прямые PU, QU и RU (фиг. 47) и продолжим их до пересечения со сторонами основного треугольника PQR. Получим гномонические проекции возможных граней A(011), B(101) и C(110). На сторонах основного треугольника должны также находиться проекции граней H(oqr), K(por) и L(pqo). Это пока неизвестные точки пересечения сторон треугольника с прямыми зон PX, QX и RX. Найдем положение этих точек.

В зоне QR припишем грани Q(010) зональный символ (10) и грани R(001) зональный символ (01). Зональный символ грани A(011) относительно Q и Rбудет (11) и грани H(oqr) относительно тех же граней — (qr). Положение точки H найдем теперь, пользуясь формулой (1b) (стр. 57), которая принимает следующий вид:

$$QH = \frac{QR \cdot QA}{\frac{q}{r} QR + \left(1 - \frac{q}{r}\right)QA}.$$
 (1a)

Для определения положения точки К на прямой PR припишем грани P (100) п R(001) зональные символы (10) и (01). Зональные символы граней В и К относительно P и R будут (11) и (pr). Положение точки К найдем по формуле

$$PK = \frac{PR \cdot PB}{\frac{p}{r} PR + \left(1 - \frac{p}{r}\right)PB}.$$
 (2a)

Таким же образом выведем формулу для определения положения точки L на прямой PQ:

$$PL = \frac{PQ \cdot PC}{\frac{p}{q}PQ + \left(1 - \frac{p}{q}\right)PC} \quad (3a)$$

Определив положение точек H, K и L, проводим прямые PH, QK и RL и на их пересечении находим гномоническую проекцию грани X(pqr).

Для определения положения грани Х достаточно, конечно, двух из трех прямых РН, QK и RL, а следовательно — двух из трех точек Н, К и L и соответственно — двух из трех точек A, В и С.

Фиг. 48.

Если вместо грани U(111) дана грань $V(p_v q_v r_v)$, то возможные грани A, В и С соответственно получат символы $(0q_v r_v)$, $(p_v 0r_v)$ и $(p_v q_v 0)$. Положения возможных граней H(0qr), K(p0r) и L(pq0) определяются по

следующим формулам, которые выводятся из формулы (1а) (стр. 57):

$$QH = \frac{QR \cdot QA}{\frac{q \cdot r_v}{q_v \cdot r} \cdot QR + \left(1 - \frac{q \cdot r_v}{q_v \cdot r}\right) \cdot QA},$$
 (1b)

$$PK = \frac{PR \cdot PB}{\frac{p \cdot r_v}{p_v \cdot r} \cdot PR + \left(1 - \frac{p \cdot r_v}{p_v \cdot r}\right) \cdot PB},$$
(2b)

$$PL = \frac{PQ \cdot PC}{\frac{p \cdot q_v}{p_v \cdot q} \cdot PQ + \left(1 - \frac{p \cdot q_v}{p_v \cdot q}\right) \cdot PC}$$
(3b)

Пример (фиг. 48; уменьшена в 2 раза).

Даны гномонические проекции граней P (100), Q (010), R (001) и U (111). Требуется нанести проекции граней $X(\overline{131})$, $Y(10\overline{1})$ и Z(112).

Проводим прямые PU, QU и RU и на пересечении со сторонами треугольника PQR находим проекции граней A (011), B (101) и C (110). На прямой QR находим точку H, подставляя в формулу (1а) отрезки QR и QA и индексы грани $X(\bar{1}31)$

$$QH_{x} = \frac{QR - 2 \cdot QA}{3 \cdot QR - 2 \cdot QA} = 21,25 \text{ MM}.$$

Проводим прямую *PH_x*. На прямой *PR* находим точку *K_x*, пользуясь формулой (2a)

$$PK_x = \frac{PR \cdot PB}{-1 \cdot PR + 2 \cdot PB} = \infty$$

61

Соединяем точку Q с точкой K_x . Для этого из точки Q проводим прямую QK_x , параллельную PR, так как K_x — в бесконечности. На пересечении прямых PH_x . и QK_x найдем гномоническую проекцию грани $X(\overline{131})$.

Для проверки можем найти по формуле (За) точку L_x на прямой PQ и провести прямую RL_x.

Для нанесения гномонической проекции грани Y(101) по формуле (1а) найдем $QH_y = QR$. Точка H_y совпадает с точкой R. Прямая PH_y совпадает с прямой PR. Значит, точка Y находится на прямой PR. (Это, впрочем, можно решить и на основании того, что второй индекс грани равен нулю.)

По формуле (2а) найдем $PK_y = \infty$. Точка K_y на прямой PR — в бесконечности. Поэтому точка пересечения прямой QK_y с PH_y , т. е. точка $Y(10\overline{1})$ тоже в бесконечности.

Для определения положения гномонической проекции грани Z(112) по формулам (1а) и (2а) находим точки H_z и K_z ($QH_z = PK_z = 57$ мм). На пересечении PH_z и QH_z находим Z.

§ 4. Определение положения граней методом основного параллелограма

Пусть требуется нанести гномоническую проекцию грани X(pqr) (фиг. 25) (стр. 26). Строим основной параллелограм, как указано в § 7 (стр. 26).

Если ось проекций [001], по формуле (15b) (стр. 26) находим:

$$\frac{p}{r} = \frac{RK_1}{RK_0}; \qquad \frac{q}{r} = \frac{RH_1}{RH_0}.$$

$$RK_1 = \frac{p}{r}RK_0; \qquad RH_1 = \frac{q}{r}RH_0.$$
(1)

Отсюда

Откладываем от точки R на прямой RP отрезок RK_1 и на прямой RQ — отрезок RH_1 . Через точку K_1 проводим прямую, параллельную RQ, и через точку H_1 — прямую, параллельную RP. Точка пересечения этих прямых и будет гномонической проекцией грани X(pqr).

Гномоническая проекция какой-либо грани X(pqo) находится в бесконечности. Для такой грани необходимо нанести лишь прямую, проходящую через точку R(001). На этой прямой в бесконечности и находится проекция грани X(pqo). Для нанесения этой прямой найдем гномоническую проекцию любой такой грани X_1 , у которой отношение первого и второго индексов равнялось бы отношению этих индексов для грани X(pqo). По теореме 5 (стр. 56) все такис грани принадлежат одной зоне, проходящей через грань R(001). Следовательно, гномонические проекции всех этих граней, в том числе и искомой грани X(pqo), лежат на одной прямой, проходящей через точку R(001).

Проще всего нанести гномоническую проекцию грани X_1 с символом (*pq*1). Для этой грани по формуле (1) получим:

$$RK_1 = p \cdot RK_0 \qquad RH_1 = q \cdot RH_0. \tag{2}$$

Пользуясь этой формулой, находим гномоническую проекцию грани $X_1(pq1)$ так же, как указано выше для любой другой грани. Проводим прямую RX_1 . На этой прямой и лежит в бесконечности гномоническая проекция грани X(pqo).

Не следует забывать, что гномостереографическая проекция грани X'(pqo) будет лежать не на прямой RX, а на радиусе основного круга проекций, параллельном прямой RX и на внешнем круге проекций (ср. фиг. 26, стр. 27).

Пример (фиг. 49).

Дан основной параллелограм RK_0H_0U . Нанести гиомонические проекции граней $X(\overline{3}12)$ и $U(\overline{210})$.

На стороне RP основного параллелограма откладываем от точки R(001) отрезок $RK_x = -\frac{3}{2} \cdot RK_0$. Знак минус указывает, что отрезок RK_x надо отложить в сторону, обратную направлению RP. Находим точку K_x . На стороне RQ отклалываем от точки R отрезок $RH_x = \frac{1}{2}RH_0$. Находим точку H_x . Через точку K_x

проводим прямую, параллельную RQ, и через точку H_x — прямую, параллельную RP. На пересечении этих прямых находим гномощическую проекцию грани $X(\overline{3}12)$.

Для нанесения положения грани $Y(\bar{210})$ находим гномоническую проскцию грани $Y_1(211)$. Откладываем на прямой RP отрезок $RK_v = 2 \cdot RK_0$ и на прямой RQ — отрезок $RH_y = RH_0$ (формула 2). Через точки K_v и H_y проводим прямыс, нараллельные RQ и RP, и на пересечении этих прямых находим точку $Y_1(211)$. Гномоническая проекция грани ($\bar{210}$) лежит в бесконечности на прямой RY_1 в сторону, обратную направлению RY_1 . Гномостереографическая проекция грани $Y(\bar{210})$ лежит на прямой OY, параллельной RY_1 , на внешнем круге проекций. При определении направления прямой RY с тем же правом можно было бы найти положение проекции грани $Y_2(212)$ (фиг. 49).

При определении положения большого числа граней наиболее удобнопредварительно, как изложено на стр. 28, начертить сетку, подобнуюфиг. 28.

Найдите на фиг. 28 гномовические проекции граней: (623), (623), (332), (031), (031), (502), (320) и (320).

ГЛАВА ПЯТАЯ

ПЕРВОНАЧАЛЬНАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ КРИСТАЛЛОВ

§ 1. Главные этапы вычисления кристаллов

В результате измерения кристаллов какого-либо вещества на теодолитном гоннометре мы получаем ряд таблиц со сферическими координатами граней — долготами φ и полярными расстояниями ρ .¹ Результаты измерений каждого отдельного кристалла получаются неточными и у различных кристаллов одного и того же вещества не вполне совпадающими друг с другом. Неточность замеров граней кристалла зависит от следующих причин: 1) несовершенство прибора; 2) "случайные" неточности по причинам индивидуального характера; 3) внешнее несовершенство граней, а следовательно несовершенная их отражающая способность и часто встречающаяся нечеткость "сигналов", и 4) "вицинальность" граней, т. е. отклонение их от своего идеального положения — целиком или отдельными участками — благодаря внутреннему несовершенству кристаллов и отклонению их

¹ Об измерении кристаллов и протоколировании результатов измерения см. учебники по кристаллографии, в частности В. В. Доливо-Добровольский, Курс кристаллографии, 1937; Е. Е. Флинт, Практическое руководство по геометрической кристаллографии, 1937.

от геометрических законов кристаллографии. Последний источник неточности измерения кристаллов в большинстве случаев во много раз превосходит остальные и труднее всего поддается учету.

Сырой материал, полученный после измерения кристаллов, должен быть соответствующим образом обработан рядом вычислений. Главные этапы этой работы следующие: 1) вычисление средних величин для сферических координат граней всех измеренных кристаллов, или, как говорят, получение сферических координат граней для "сводного кристаллического комплекса" (совмещение кристаллов); 2) определение симметрии измеренных кристаллов (как совмещение кристаллов по результатам измерения, так и определение симметрии предварительно делается при помощи стереографических проекций кристаллов);¹ 3) исправление полученных измерением сферических координат граней согласованием их с симметрией кристаллов (это часто удобнее делать до получения сводного комплекса, для каждого кристалла в отдельности); 4) установка кристаллов² и индицирование граней; индексы либо определяются графическими методами (гл. II и III), либо, при сложных индексах, вычисляются по формулам (гл. VI и VIII); 5) вычисление сферических координат по индексам для согласования этих координат с законом целых чисел (гл. VI и VIII); 6) вычисление геометрических констант кристаллов (гл. IX).

§ 2. Целесообразная юстировка кристаллов

Для уточнения измерений и для устранения излишних осложнений в вычислениях необходима целесообразная юстировка кристаллов на гониометре перед измерением. С этой целью можно рекомендовать для руководства следующие правила.

Юстировка кристаллов по нескольким граням обычно точнее, чем по одной грани. Поэтому юстировку по зоне в присутствии в зоне нескольких граней, дающих хорошие сигналы, следует предпочесть юстировке по одной грани, хотя бы и с хорошим сигналом. Юстировка по зоне может быть заменена при определенной симметрии кристаллов юстировкой по косым граням, одинаково наклоненным к горизонтальной оси вращения гониометра, т. е. по граням, имеющим одно и то же полярное расстояние р.

Чтобы избежать осложнений в сопоставлении результатов измерений различных кристаллов одного вещества и не перечислять координат к новому полюсу (стр. 78), желательно все кристаллы юстировать одинаково. Если тот или другой кристалл после измерения при сопоставлении с другими оказался юстированным иначе, чем другие, чаще всего выгоднее кристалл перемерить, соответственно изменив юстировку, насколько, конечно, это позволяет характер огранения кристалла, качество его граней и проч.

Если измеряются уже известные кристаллы или если симметрия кристаллов и установка может быть выявлена по 1—3 измеренным кристаллам, следует всегда стремиться юстировать кристаллы так, чтобы ось [001] совпадала с горизонтальной осью вращения гониометра, т. е. с осью проекций. Это почти всегда возможно для кристаллов ромбической сингонии, средних и кубической сингоний. Такая юстировка значительно упрощает и уточняет все вычисления. Для кристаллов триклинной и моноклинной сингоний даны формулы для вычисления и при некоторых других юстировках. Но в этих случаях требуется в конце поворот и пересчет сферических координат применительно к обычной ориентировке кристаллов (см. ниже § 8 и 9). Обычная ориентировка кристаллов представлена на фиг. 50—54. Для триклинной сингонии см. фиг. 62.

¹ Стереографические проекции и задачи, решаемые при их помощи, в том числе и определение элементов симметрии см. В. В. Доливо-Добровольский, Курс кристаллографии, 1937; Н. К. Разумовский, Стереографические проекции, 1932, и др.

² Об установках см. учебники кристаллографии. Если известиа структура кристаллов, установка должна быть согласована со структурой.

Одинаково юстированные кристаллы одного вещества будут иметь для соответствующих граней в некоторых пределах одни и те же полярные расстояния р. Для кристаллов, не имеющих центра симметрии или плоскости симметрии, перпендикулярной горизонтальной оси вращения гониометра, — это, конечно, относится только к одним и тем же концам кристаллов. Долготы граней — φ — для соответствующих граней на различных кристаллах будут различные, в зависимости от положения кристаллов относительно нуля нониуса вертикального круга гониометра. Для совмещения стереограмм двух кристаллов одну из них всегда приходится повернуть относительно другой на некоторый угол. Как вычисляются средние значения углов из нескольких измерений, изложено ниже.

Если два кристалла одного вещества измерены с различных концов, последовательность углов φ для них будет обратной даже в присутствии центра симметрии и плоскости симметрии, перпендикулярной горизонтальной оси вращения гониометра. Это всегда будет иметь место при отсутствии в кристаллах плоскости симметрии, параллельной горизонтальной оси вращения гониометра, — иначе говоря, при отсутствии плоскости, проекция которой проходит через центр проекций. При вычислении средних значений углов φ берутся для одного из двух таких кристаллов углы φ , дополнительные до 360°. Стереограммы кристаллов могут быть в таких случаях совмещены непосредственно, если их наложить друг на друга лицевыми сторонами.

§ 3. Замечания об определении симметрии измеренных кристаллов

При близости триклинных кристаллов к моноклинным или моноклинных к ромбическим измерения различных концов нескольких кристаллов могут дать в сводном кристалле неправильное решение вопроса о сингонии. Триклинные (псевдомоноклинные) кристаллы могут быть приняты за моноклинные и моноклинные (псевдоромбические) — за ромбические. Вопрос для большинства случаев может быть решен кристаллооптическими методами. ¹

Необходимо еще сделать следующее замечание относительно определения симметрии кристаллов. Независимо от точности измерений установить определенно вид симметрии кристаллов при помощи измерения их на гониометре удается только в тех сравнительно немногих случаях, когда на кристаллах присутствуют формы, присущие только данному виду симметрии. Очень часто измерением обнаруживается большее число элементов симметрии, чем в действительности в кристаллах имеется. Для определения вида симметрии необходимы еще дополнительные испытания кристаллов: получение фигур травления, кристаллизация шаров, испытания на присутствие полярного пиро- или пьезоэлектричества, наличия вращения плоскости поляризации и проч.

§ 4. Координаты граней сводного кристаллического комплекса

Проектирование кристаллов, индицирование граней и ребер, вычисление координат по индексам, вычисление геометрических констант и ряд других вычислений — все это делается по строгим, совершенно точным и, повидимому, до предела упрощенным методам. Нельзя этого сказать про первоначальную обработку результатов измерения, куда входит вычисление координат граней сводного кристалла и определение симметрии. Существует только один достаточно строгий метод первоначальной обработки сырых наблюдений: это метод "наименьших квадратов", разработанный Г. В. В ульфом в применении к измерению кристаллов на теодолитном гониометре.² Но этот метод слишком сложен, и его можно рекомендовать лишь для некоторых специальных исследований геометрических особенностей реальных кристаллов.

¹ См. также статистический метод В. В. Доливо-Добровольского, Кристаллы гексагидрита. Зап. Всеросс. мин. общ., 58, № 1, 1929.

² Г. В. Вульф, Руководство по кристаллографии, 1904.

⁵ Аншелес — 706

Ниже даются с некоторыми изменениями и дополнениями способы обработки результатов измерения, предлагаемые В. В. Доливо-Добровольским.¹ Методы, предлагаемые другими авторами, по нашему мнению, либо менее точны, либо в той же мере не точны и не строги и вместе с тем более сложны. Этот отдел вычислительной кристаллографии еще недостаточно разработан.

Прежде всего совмещаем стереограммы измеренных кристаллов друг с другом и составляем стереограмму сводного кристалла, куда должны быть панесены проекции всех граней, присутствующих на каждом кристалле. Графически определяем на полученной стереограмме положение элементов симметрип, если они имеются. На отдельных кристаллах симметрия не всегда может быть обнаружена благодаря неполному развитию симметричных граней. Но в тех случаях, когда это возможно, симметрию следует устанавливать по первому же измеренному кристаллу или — по крайней мере — по первым кристаллам. Это улучшает и само измерение (дает, например, возможность легко обнаруживать случайно пропущенные при измерении грани) п облегчает сопоставление друг с другом результатов измерения отдельных кристаллов.

Действительное присутствие найденных графически элементов симметрии должно еще подтвердиться результатами вычисления. Разница углов симметричных граней с найденным вычислением положением элемента симметрии не должна превышать отклонения от параллельности параллельных граней в вертикальной зоне.

Вычисление средних значений углов ρ, при одной и той же юстировке кристаллов одного и того же вещества, всегда одинаково и не вызывает затруднений. Что касается углов φ, то такое вычисление осложняется тем, что начальный меридиан, от которого отсчитываются углы φ, для каждого измеренного кристалла свой собственный. Необходимо предварительно установить один начальный меридиан для всех измеренных кристаллов, сделав соответствующие повороты около оси проекций, т. е. прибавив или вычтя некоторые определенные углы к измеренным углам φ каждого кристалла в отдельности.

Нельзя рекомендовать принимать за начальный тот меридиан, на котором лежит одна из граней, присутствующая на всех измеренных кристаллах, хотя бы эта грань на всех кристаллах давала лучшие сигналы. Хорошая отражающая способность грани не является гарантией, что эта грань не отклонена от своего идеального положения иногда на несколько десятков минут. Ошибочно приняв долготу этой грани за нуль или приписав ей какое-либо другое значение — одно и то же во всех кристаллах — и пересчитав соответственно долготы для других граней, мы тем самым переносим погрешность в замере этой грани на все другие грани. Большая гарантия в точности достигается тогда, когда начальный меридиан устанавливается не по одной, а по нескольким граням с хорошими сигналами.

В тех очень редких случаях, когда все измеренные кристаллы имеют одни и те же грани и соответствующие грани на всех кристаллах одинакового качества, можно просто вычислить среднее арифметическое углов φ для каждой грани. Начальный меридиан выбираем затем уже по сводному кристаллическому комплексу.

В более обычных случаях можно рекомендовать пользоваться двумя способами. Первый способ относится, главным образом, к кристаллам триклишной сингонии, второй — к кристаллам других сингоний, если в них имеются плоскости симметрии, параллельные горизонтальной оси вращения гониометра, т. е. плоскости, проекции которых проходят в стереограммах через ось проекций.

Для кристаллов триклинной сингонии и для кристаллов других сингоний, при отсутствии в них указанных плоскостей симметрии, находим разности долгот для различных пар граней. Вычисляем затем средние значения этих разностей долгот для сводного кристалла. Приняв после этого в сводном кристалле один

¹ В. В. Доливо-Добровольский, Кристаллы шестиводного сернокислого магния Зап. Всеросс. мнн. общ., 58, № 1, 1929; Исследование геометрических свойств кристаллов кианита, Тр. Всесоюзи. геол.-разв. объед., вып. 235, 1932.

Моноклинная сингония

 $\begin{array}{l} \varphi_{p_1 p_2 p_3} = 180^\circ - \varphi_{p_1 \overline{p}_2 p_3} \\ \varphi_{\overline{p}_1 p_2 p_3} - 360^\circ = 180^\circ - \varphi_{\overline{p}_1 p_2 p_3} \end{array}$

Фиг. 50.

Ромбическая сингония

$$\varphi_{1} = \begin{cases} \varphi_{1} \\ 180^{\circ} - \varphi_{2} \\ \varphi_{3} - 180^{\circ} \\ 360^{\circ} - \varphi_{4} \\ \varphi_{M\Gamma}, 51. \end{cases}$$

Гексагональная сингония

 $\varphi_{1} = \begin{cases} \varphi_{1} & \varphi_{7} - 180^{\circ} \\ 60^{\circ} - \varphi_{2} & 240^{\circ} - \varphi_{8} \\ \varphi_{3} - 60^{\circ} & \varphi_{9} - 240^{\circ} \\ 120^{\circ} - \varphi_{4} & \varphi_{9} - 240^{\circ} \\ 300^{\circ} - \varphi_{10} & \varphi_{11} - 300^{\circ} \\ 180^{\circ} - \varphi_{6} & 360^{\circ} - \varphi_{12} \\ \varphi_{HT} - 53 & \varphi_{HT} - 53 \\ \end{cases}$

Тригональ

[12]

K cmp. 67.

Тетрагональная сингония

ная (ромбоэдрическая) сингония

$$\varphi_{1} = \begin{cases} \varphi_{1} \\ 120^{\circ} - \varphi_{2} \\ \varphi_{3} - 120^{\circ} \\ \varphi_{6} - \varphi_{6} \\ \varphi_{6} - \varphi_{6} \\ \varphi_{6} - \varphi_{6} \end{cases}$$

из мериднанов за начальный, по разностям долгот определяем долготу с для каждой грани.

Если в сводной стереограмме, найденной графически, обнаруживается плоскость симметрии, проходящая через центр проекций, определяем сначала положение этой плоскости. Азимут этой плоскости (не долгота перпендикуляра к ней) вычисляется для каждого кристалла в отдельности как среднее арифметическое долгот тех симметричных граней, которые дают лучшие сигналы. Принимаем за начальный меридман перпендикуляр к этой плоскости и вычитаем его первоначальную долготу из долготы каждой грани. Таким же образом находим начальный меридиан и отсчитанные от него долготы граней для других измеренных кристаллов. Находим затем сферические координаты сводного кристалла, вычислив средние значения углов о и р для каждой грани. Чем большее количество кристаллов измерено, тем менее в сводном комплексе вычисленное положение граней будет отличаться от идеального. Независимо от остающихся все же отклонений, мы можем приписать для граней, перпендикулярных или параллельных элементам симмстрии, те долготы, которые отвечают их идеальному положению. Так, например, для кристаллов моноклинной сингонии для грани (010) мы принимаем $\phi = 0^{\circ}$, для (010) — 9 = 180°, для граней (100), (100) и для других граней в зонс [010] принимаем $\phi = 90^\circ$ и 270°. Аналогично поступаем и в случаях более высокой симметрии кристаллов (ср. ниже пример 2). Для всех граней вертикальной зоны принимаем вседа $\rho = 90^{\circ}$. Необходимо все же иметь в виду, что отклонения от указанных значений координат может быть характерным для кристаллов различного генезиса. Поэтому эти отклонения необходимо учитывать во многих случаях согласно с той специальной задачей, которая преследуется при измерении кристаллов.

В присутствии двух, трех, четырех или шести плоскостей, проходящих через центр проекций, азимут каждой из них вычисляем так же, как это описано выше для одной плоскости. Углы между определенными таким образом плоскостями симметрии не будут в точности равны 90, 60, 45 или 30°, как это должно быть в кристаллах соответствующих сингоний. Приводим все плоскости к положению той, которую затем примем за начальный меридиан. Это делается так же, как и для граней, по приведенным ниже таблицам. Затем находим среднее значение азимутов плоскостей и это значение принимаем за начальный меридиан. Далее поступаем, как описано выше для моноклинных кристаллов (см. ниже, пример 2).

§ 5. Приведение сферических координат к одному сектору

Определением положения начального мериднана в каждом кристалле и вычислением средних значений координат граней для сводного комплекса не заканчивается еще первоначальная обработка результатов измерения. Необходимо еще найти средние значения сферических координат для симметричных граней сводного комплекса. (Эти значения могут быть, конечно, найдены для каждого кристалла в отдельности и после этого — координаты граней сводного кристалла; так сделано в примере 2.) Среднее значение полярного расстояния р для симмстричных граней вычисляется непосредственно. Для вычисления среднего значения долгот φ симметричных граней необходимо предварительно привести грани к одному из секторов, на которые делится стереограмма кристалла плоскостями симметрии: к 1-й половине стереограммы в кристаллах моноклинной сингонии, к 1-му квадранту — в кристаллах ромбической сингонии, к 1-му октанту — в тетрагональных кристаллах и к 1-му сексанту или додеканту — в кристаллах тригональных и гексагональных. Приведение к 1-му сектору делается по нижеприведенным таблицам, иллюстриуемым соответствующими фигурами (фиг. 50—54).

Для кристаллов гексагональной сингонии с тремя плоскостями симметрии, проходящими через ось проекций, поступаем, как для тригональной сингонии. При отсутствии рассматриваемых здесь плоскостей симметрии, но в присутствии соответствующей оси симметрии, совпадающей с осью проекций, приведение координат к одному сектору производится подобным же образом.

*

Сферические координаты граней сводного кристаллического комплекса, приведенные к одному сектору, и даются обычно в особой таблице, как величины "наблюденные", при описании измеренных кристаллов. Рядом обычно дается таблица "вычисленных" координат, полученных по формулам, связывающим сферические координаты с индексами граней, и таким образом согласованных с законом целых чисел.

§ 6. Веса наблюдений

Грани кристаллов дают всегда сигналы различного качества и, следовательно, замеряются с различной точностью. Это может быть учтено при вычислении координат сводного кристалла и приведении их к одному сектору стереограммы.

Оцениваем качество сигналов по пятибалльной системе: худшим сигналам даем оценку 1, лучшим — 5, промежуточным — 2, 3, 4. Примем за вес наблюдения величину, обратно пропорциональную квадрату ошибки измерения. Ошибки измерения зависят от качества сигналов. В следующей таблице приводятся средние ошибки измерений, найденные опытным путем, для сигналов указанных категорий. Здесь же даны величины, обратно пропорциональные квадратам ошибок, и веса наблюдений, приблизительно пропорциональные этим величинам. При этом вес наблюдения при сигнале среднего качества (3) принят за единицу.¹

Качество сигнала	5	4	3	2	1
Ошибка Δ	$\frac{2}{1}$	$2\frac{1}{2}'$	$3\frac{1'}{2}$	10'	20' 1
∆ [≌] Вес наблюдения <i>р</i>	4 3	25 2	49 1	100 0,1	400 0,03

Веса наблюдений для сигналов 2 и 1 настолько малы, что практически очень мало влияют на результаты вычислений средних весовых значений. Поэтому для упрощения выкладок примем эти веса за нуль. Таким образом, сигналам с баллами 5, 4, 3, 2 и 1 отвечают веса наблюдений 3, 2, 1, 0 и 0.

Часто бывает, что вместо одной грани мы имеем дело с несколькими ее вициналями, которые дают более или менее симметрично расположенные сигналы. В этом случае нельзя брать отсчеты координат только для одной из вициналей, хотя бы она давала лучший сигнал. Следует замерять все вицинали и затем на-ходить средние значения координат. Вместо этого можно рекомендовать более простой и не менее точный прием, а именно замерять координаты некоторой средней точки между сигналами, относительно которой последние симметрично расположены. Общий вес такой грани зависит от качества всех сигналов, даваемых вициналями, от симметрии в их расположении и пр.

Как используются веса наблюдений для получения средних весовых значений сферических координат — видно из приводимых в следующем параграфе примеров. Вычисление весовых средних нами по возможности упрощается, хотя часто в ущерб строгости. Подобное упрощение оправдывается, главным образом, тем, что при самом строгом использовании весов наблюдений не устраняется главная ошибка измерения, а именно ошибка от отклонения граней от своего идеального положения.

¹ Таблица заимствована у В. В. Доливо-Добровольского, Кристаллы гексагидрита (см. сноску на стр. 66).

§ 7. Примеры

Пример 1. Реальгар. Моноклинная сингония. Измерено два кристалла. Результаты измерения следующие (р — вес наблюдений):

№ граней	Символы	Кристалл № 1				Кристалл № 2			
		р	φ	p	р	ဖု	P		
. 1	010	2	11°07	89°58	2	354°52	90°03		
2	110	2	67°44	90°02	3	51°28	90°00		
3	100	1	101°02	89°57					
4	110	1	134°27	89°54	2	118°11	89°59		
5	010	2	191°05	90°02	2	174°48	89°57		
6	110	3	247°43	90°00	1	231°30	90°02		
7	100	· 1	281°03	90°00	_				
8	ī10	2	314°27	90°01	0	298°15	90°04		
9	001	2	101°06	23°55	1	84°49	23°56		
10	011	3	53°30	33°21					
11	011	7	148°38	33°25		_			
12	· 111	3	222°30	29°38	2	206°08	29°39		
13	111	2	339°48	29°37	1	323°36	29°32		
14	111	1	78°40	51°53	3	62°26	51°59		
15	111	1	123°24	52°00	1	107°15	51°56		

Стереограмма кристалла № 1 представлена на фиг. 55.

Фиг. 55.

Находим для кристалла № 1 азимут плоскости симметрии как полусумму долгот каждой пары симметричных граней. За вес для каждого полученного значения азимута плоскости принимаем наименьший из весов наблюдений двух данных граней.
Mi prauož	Символи		p -	Азимут п.	поскости	симметрии
™ Ipanen	Символы	Ŷ		Ŷ	p	. φ · <i>p</i>
1 .5	010 010	11°07 191°05	2 2	} 101°06	2	202°12
2 4	1 <u>10</u> 1 <u>1</u> 0	67°44 134°27		} 101°05,5	1	101°05,5
6 8	110 110	247°43 314°27	3 2	$\left.\right\} \begin{array}{c} -281^{\circ}05 \\ -180^{\circ}00 \\ \hline 101^{\circ}05 \end{array}\right.$	2	202°10
10 11	011 011	53°30 148°38	3 1	} 101°04	1	101°04
12 13	111 111	222°30 339°48	3 2	$\left.\right\} \begin{array}{c} -\frac{281^{\circ}09}{180^{\circ}00} \\ \hline 101^{\circ}09 \end{array}\right.$	2	202°18
14 15	$\frac{111}{1\overline{1}1}$	78°40 123°24	1	} 101°02	1	101°02
3	100	101°02	1	101°02	1	101°02
7	<u>1</u> 00	281°03	1		1	101903
9	001	101°06	2	101°06	2	202°12
					13	1314°1 8, 5

Весовое среднее значение для азимута плоскости симметрии получаем:

$$\frac{1314^{\circ}18,5}{13} = 101^{\circ}06.$$

Долгота для перпендикуляра к плоскости симметрии и вместе с тем долгота грани (010) получает значение 101°06 — 90° == 11°06. Принимаем меридиан с гранью (010) за начальный и отнимаем от углов φ всех граней 11° 06. Долготу грани (010) принимаем 180°, граней (100) и (001) — 90° и грани (100) — 270°. Принимаем для вертикальных граней $\rho == 90^\circ$.

В тех случаях, когда φ и р одной грани получают различные веса, берем для них меньший вес. В кристалле № 1 грани № 1, 5, 3 и 7 получают вес 13, а не 14 (сумму весов вертикальных граней), грань 9 получает вес 2 (а не 13). В кристалле № 2 для тех же граней берем веса 7 и 1.

Получаем следующие координаты и веса для кристалла № 1 и таким же путем найденные координаты и веса для кристалла № 2.

			Кристалл №	1	Кристалл № 2			
маранен Символы	p	ဗ္	P	p	φ	P		
1	010	13	0°00	90°00	7	0°00	90°00	
5	010	13	180°00	90°00	7	180°00	90°00	
2	110	2	56°38	90°00	3	56°38	90°00	

№ граней	Cumport		Кристалл №	1	Кристалл № 2			
л∞ гранеи	Символы	р	ဖု	ρ	р	φ	٩ [.]	
4	110	1	123°21	90°00	2	123°21	90°00	
6	110	3	2 36° 37	90°00	1	236°40	90°00	
8	110	2	303°21	90°00	0	303°25	. 90°00	
10	011	3	42°24	33°21				
11	011	1	137°32	33°25				
12	111	3	211°24	29°38	2	211°18	29°39	
13	111	2	328°42	29°37	1	328°46	29°32	
14	111	1	63°3 4	51°53	3	67°36	51°59	
15	111	1	112°18	52°00	1	112°25	51°56	
3	100	13	90°00	90°00]		
7	$\overline{1}00$	13	270°00	90°00				
9	001	2	90°00	2 3° 55	1	90°0 0	23°56	

Находим средние весовые значения координат для сводного кристалла.

6.
$$\varphi_{\bar{1}\bar{1}0} = \frac{236^{\circ}37 \cdot 3 + 236^{\circ}40}{4} = 236^{\circ}37,75$$

12.
$$\varphi_{\bar{1}\bar{1}1} = \frac{211^{\circ}24 \cdot 3 + 211^{\circ}18 \cdot 2}{5} = 211^{\circ}21,6$$
$$\varphi_{\bar{1}\bar{1}1} = \frac{29^{\circ}38 \cdot 3 + 29^{\circ}39 \cdot 2}{5} = 29^{\circ}38,5$$

13.
$$\varphi_{\bar{1}11} = \frac{328^{\circ}42 \cdot 2 + 328^{\circ}46}{3} = 328^{\circ}43,33$$

$$\rho_{111} = \frac{2^{5} 67^{\circ} 2^{\circ} + 2^{\circ} 62^{\circ}}{3} = 29^{\circ} 35,33$$
14.
$$\varphi_{111} = \frac{67^{\circ} 34 + 67^{\circ} 36 \cdot 3}{4} = 67^{\circ} 35,5$$

$$\rho_{111} = \frac{51^{\circ}53 + 51^{\circ}59 \cdot 3}{4} = 51^{\circ} 57,5$$

15.
$$\varphi_{1\overline{1}1} = \frac{112 \cdot 18 + 112^{\circ}25}{2} = 112^{\circ} 21,5$$
$$p_{1\overline{1}1} = \frac{52^{\circ}00 + 51^{\circ}56}{2} = 51^{\circ} 58$$
9.
$$p_{001} = \frac{23^{\circ}55 \cdot 2 + 23^{\circ}56}{2} = 23^{\circ} 55,33$$

$$p_{001} = \frac{23^{\circ}55 \cdot 2 + 23^{\circ}56}{3} = 23^{\circ}55,33$$

Получаем следующие координаты сводного кристалла с их суммарными весами:

№ граней	Символы	$\Sigma \rho$	ė	P
1	010	20	0°00	90°00
5	010	20	180°00	90°00
2	110	5	56°38	90°00
4	110	3	1 23°21	90°00
6	110	4	236°38	90°00
8	Ĩ10	2	30°321	90°00
10	011	3	42°24	33°21
11	011	1	137°32	33°25
12	111	5	211°21,5	29°38,5

№ граней	Символы	Σp	ŵ	P	
13	Ī11	3	328°43,5	29°35,5	
14	111	4	67°35,5	51°57,5	
15	111	2	112°21,5	51°58	
3	100	13	90°00	90°00	
7	100	13	270°00	90°00	
9	001	3	90°00	23°55,5	
				1	

Находим весовые средние значения координат, приведенных к первой половине стереограммы (см. § 5, стр. 67, фиг. 50). Так как грани 2, 4, 6 и 8 симметричны также относительно двойной оси, приводим их к первой четверти.

2, 4, 6 и 8.
$$\varphi_{110} = \frac{56^{\circ}38 \cdot 5 + 56^{\circ}39 \cdot 3 + 56^{\circ}38 \cdot 4 + 56^{\circ}39 \cdot 2}{14} = 56^{\circ}38,36$$

10 и 11. $\varphi_{011} = \frac{42^{\circ}24 \cdot 3 + 42^{\circ}28}{4} = 42^{\circ}25$

$$\mathsf{P}_{011} = \frac{33^\circ 21 \cdot 3 + 33^\circ 25}{4} = 33^\circ 22$$

12 и 13. $\phi_{\overline{1}11} = -\frac{31^{\circ}21,5\cdot 5 + 31^{\circ}16,5\cdot 3}{8} = -31^{\circ}19,5$

$$\mathbf{p}_{\overline{1}11} = \frac{29^{\circ}38, 5 \cdot 5 + 29^{\circ}35, 5 \cdot 3}{8} = 29^{\circ}37, 1$$

14 и 15. $\varphi_{111} = \frac{67^{\circ}35,5 \cdot 4 + 67^{\circ}38,5 \cdot 2}{6} = 67^{\circ}36,5$

$$p_{111} = \frac{51^{\circ}57, 5 \cdot 4 + 51^{\circ}58 \cdot 2}{6} = 51^{\circ}57, 7$$

Таким образом, получаем следующие координаты сводного кристалла, приведенные к 1-й половине стереограммы.

№ граней	Символы	Σp	ę	ρ
9.	001	3	90°00	2 3° 55,5
3и7	100	13	99°00	90°00
1 ห 5	010	20	0°00	90°00
2, 4, 6 и 8	110	14	56°38,5	90°00
10 н 11	011	4	42°25	33°22
14 н 15	111	6	67°36,5	51°57,5
12и13	111	8	— 31°19,5	29°37
			1	

За исходные для дальнейших вычислений должны быть взяты грани, имеющие наибольшие значения <u>Σ</u>p. Пример 2. Барит. Ромбическая сингония.

В результате измерения двух кристаллов барита получены следующие координаты. (На фиг. 56 представлена стереограмма кристалла № 1.)

No po avar	Cumport		Кристалл М	è 1		Кристалл 🕅	2 2
ле гранеи	Символы	р	ę	ρ	р	φ	р
1	001	3	0	0°00	3	$\frac{0}{0}$	0°00
2	010	2	70°22	90°00	3	18°21	90°00
3	110	1	121°04	90°00	3	69° 19	90°00
4	100	0	160°15	90°0 0	3	108°10	90°00
5	110	0	199°46	90°00	3	147°04	90°00
6	010	1	249°56	90°00	1	198°06	90°00
7	110	2	300°31	90°00	3	249°18	90°00
8	100	• 0	339°54	90°00	3	288°09	90°00
9	110	3	19°20	90°00	3	327°06	90°00
10	102	3	160°15	38°59	3	108°16	37°23
11	102	3	340°16	38°50	3	288°12	37°19
12	011	3	70°22	52°41	3	18°10	51°00
13	011	3	250°04	52°47	3	198°13	50°53
14	122	3	101°58	57°07	3	49°5 5	55°26
15	$1\overline{2}2$	3	219°05	58°09	3	166°29	55°21
16	$\overline{1}\overline{2}2$	2	282°22	57°06	3	230°08	55°21
17	122	2	38°47	57°05	3	346°36	55°21
18	111	3	121°04	64°34			
19	111	3	20°10	62°45			
20	111	0	302°05	63°44	2	249°29	64°43
21	111	2	199°02	66°18			

Фиг. 56.

Так же, как и в примере 1 для одной плоскости симметрии, находим азизауты двух плоскостей, параллельных (010) и (100) для кристалла № 1.

№ грапей	Символы	р	ဗု	<i>p</i> - ب
2, 6	010, 010	1	1 60°0 9	160°09
3, 5	110, 110	0	160°25	0°00
7,9	110, 110	2	1 59°55, 5	319°51
12, 13	011, 011	3	160°13	480°39
14, 15	122, 122	3	160°31,5	481°34,5
16, 17	122, 122	2	160°34,5	321°09
18, 21	111, 111	2	160°03	320°06
19, 20	ī11, ī11	0	161°07,5	0°00
4 ·	100	0	160,15	0°00
10	102	3	160°15	480°45
11	102	3	160°16	480°48
8	100	0	1 59°5 4	0°00
		19		3045°01,5

Азимут плоскости симметрии, параллельной грани (010) [т. е. ф для грани (100)]

Азимут данной плоскости симметрии равняется:

$$\frac{3045^{\circ}\,01,5}{19} = 1.60^{\circ}\,16.$$

Азимут плоскости симметрии, параллельной грани (100) [т. е. ф для грани (010)]

№ граней	Символы	p	ų	$\varphi \cdot p$
3, 9	110, 110	1	70°12	70°12
4, 8	100 , 100	0	70°04,5	0°00
5, 7	110, 110	0	70°08, 5	0°00
10, 11	102, 102	3	70°15,5	210°46,5
14, 17	122, 122	2	70°22,5	140°45
15, 16	1 2 2, 122	2	7 0°43, 5	141°27 *
18, 19	111, 111	3	70°37	211°51
20, 21	<u>11</u> 1, 111	0	70°33,5	0°0 0
2	010	2	70° 22	140°44
12	011	3	70°2 2	211°06
13	011	3	70°04	210°12
6	010	1	69°56	69°56
		20	·	1406°59,5

Получаем азимут плоскости симметрии:

$$\frac{1406^{\circ} 59,5}{20} = 70^{\circ} 21.$$

Так как плоскости симметрии должны быть перпендикулярны друг другу, вычитаем 90° из 160° 16 и находим весовое среднее для фо10

$$\varphi_{010} = \frac{70^{\circ}16 \cdot 19 + 70^{\circ}21 \cdot 20}{39} = 70^{\circ}18,5.$$

Вычитаем 70° 18,5 из всех углов φ . За вес граней (001), (010), (010), (100) и (100) принимаем 12, как сумму весов для (001) и вертикальных граней (меньший из весов 12 и 39). Приводим углы φ для симметричных граней к 1-му квадранту (стр. 67, фиг. 51).

№ граней	Символы	р	φ	P
1	001	12	· <u>0</u>	0°00
2	010	12	0°00	90°00
6	010	12	0°00	90°00
4	100	12	90°00	90°00
8	100	12	90°00	90°00
3	110	1	50°45,5	90°00
5	110	0	50°32,5	90°00
7	$\overline{1}\overline{1}0$	2	50°12,5	90°00
9	<u>ī</u> 10	3	50°58,5	90°00
10	102	3	90°00	38°59
11	<u>ī</u> 02	3	90°00	38°50
12	011	3	0°00	52°41
13	011	3	0°00	52°47
14	122	3	31°39,5	57°07
15	$1\overline{2}2$	3	31°13,5	58°09
16	$\overline{122}$	2	32°03,5	57°06
17	122	2	31°31,5	57°05
18	111	3	50°45,5	64°34
19	Ï11	3	50°08,5	62°45
20	111	0	51°46,5	63°4 4
21	111	2	51°16,5	66°18
i				

Beco	вые	cpe	едние	координ	наты, і	приведе	нные н	<1-му	у квад	цранту,	крис	талла	№ 1	1 и
кристалла	№	2,	для ко	торого (они най	ідены та	ким ж	е пу	гем,	получа	ются	следу	ющі	ie:

Na prauoà	Cumport		Кристалл М	2 1	Кристалл № 2			
ле транен	Символы	$\Sigma \rho$	φ	P	Σp	ဗု	P	
1	001	12	$\frac{0}{0}$	0°00	25	$\frac{0}{0}$	0°00	
2,6	010	12	0°00	90°00	25	0°00	90°00	
4, 8	100	12	90°00	90°00	25	90°00	90°00	
3, 5, 7, 9	110	6	50°41	90°0 0	12	51°07	90°00	
12, 13	011	6	0°00	52°44	6	0°00	50°56,5	
10, 11	102	6	9 0°0 0	38°5 4,5	6	90°00	37°21	
14, 15, 16, 17	122	10	31°35	57°25	12	31°44,5	55°22	
18, 19, 20, 21	111	8	50°39,5	64°19	2	51°16	63°43	
					1			

Символы	Σp	ာ်	β
001	37	$\frac{0}{0}$	0°00
010	37	0°00	90°00
100	37	90°00	90°00
110	18	50°58,5	90°00
011	12	0°00	51°50
102	12	90°00	38°08
122	22	31°40	56°18
111	10	50°47	64°24
		1	

Весовые средние координаты, приведенные к первому квадранту сводного кристалла, получаются следующие:

Координаты с большими весами должны служить исходными для дальнейших вычислений.

§ 8. Сферические координаты полюса дуги, проходящей через две точки

Если точки являются гномостереографическими проекциями граней, то полюсом дуги, проходящей через них, будет граммастереографическая проекция оси

Фиг. 57.

зоны, проходящей через эти грани (граммастереографическая проекция ребра пересечения последних). Чаще всего координаты полюса дуги приходится вычислять при поворотах, когда необходимо данную дугу совместить с плоскостью проекций. При этом она становится основным кругом проекций, а следовательно полюс дуги перемещается в центр проекций.

Пусть φ_m , ρ_m и φ_n , ρ_n (фиг. 57) сферические координаты точек M и N, а φ_p и ρ_p искомые сферические координаты полюса P дуги MN. Проведем дуги больших кругов через точки M и P и точки N и P. Точка P, как полюс дуги MN, отстоит на 90° от всех точек этой дуги, а поэтому PM = PN = 90°. Из прямосторонних сферических треугольников OPM и OPN имеем:

$$\cos (\varphi_p - \varphi_m) = -\operatorname{ctg} \rho_p \operatorname{ctg} \rho_m,$$
$$\cos (\varphi_p - \varphi_n) = -\operatorname{ctg} \rho_p \operatorname{ctg} \rho_n.$$

Решая совместно эти уравнения относительно фр и рр, получим:

$$tg \varphi_{p} = -\frac{tg \rho_{m} \cos \varphi_{m} - tg \rho_{n} \cos \varphi_{n}}{tg \rho_{m} \sin \varphi_{m} - tg \rho_{n} \sin \varphi_{n}}, \qquad (1)$$

$$\operatorname{ctg} \boldsymbol{\rho}_{p} = -\operatorname{tg} \boldsymbol{\rho}_{m} \cos\left(\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{m}\right), \tag{2a}$$

нлн

$$\operatorname{ctg} \boldsymbol{\rho}_{p} = -\operatorname{tg} \boldsymbol{\rho}_{n} \cos\left(\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{n}\right). \tag{2b}$$

Формулу (1) можно привести к логарифмическому виду. Для этого за нулевой меридиан примем меридиан ОК, для которого

$$\varphi_k = \frac{1}{2} (\varphi_m + \varphi_n).$$

Обозначим новые долготы φ соответственно через φ_p' , φ_m' и φ_n' . По формуле (1) имеем:

$$\operatorname{tg} \varphi_{p}' = -\frac{\operatorname{tg} \rho_{m} \cos \varphi_{m}' - \operatorname{tg} \rho_{n} \cos \varphi_{n}'}{\operatorname{tg} \rho_{m} \sin \varphi_{m}' - \operatorname{tg} \rho_{n} \sin \varphi_{n}'}$$

Фиг. 58.

Подставим сюда вместо φ_m' и φ_n' их значения:

$$\varphi_{m}' = \varphi_{m} - \varphi_{k} = \varphi_{m} - \frac{1}{2}(\varphi_{m} + \varphi_{n}) = -\frac{1}{2}(\varphi_{n} - \varphi_{m}),$$
$$\varphi_{n}' = \varphi_{n} - \varphi_{k} = \varphi_{n} - \frac{1}{2}(\varphi_{m} + \varphi_{n}) = \frac{1}{2}(\varphi_{n} - \varphi_{m}).$$

После преобразований получим:

$$tg \varphi_{p}' = ctg \frac{1}{2} (\varphi_{n} - \varphi_{m}) \frac{\sin(\rho_{m} - \rho_{n})}{\sin(\rho_{m} + \rho_{n})}$$

$$\varphi_{p} = \varphi_{p}' + \varphi_{k} = \varphi_{p}' + \frac{1}{2} (\varphi_{m} + \varphi_{n})$$

$$(3)$$

Пример (фиг. 58).

Даны сферические координаты $\varphi_{010} = 0^{\circ}$ и $\rho_{010} = 90^{\circ}$ грани (010) и $\varphi_{100} = = 105^{\circ}$ 14 и $\rho_{100} = 55^{\circ}$ 28,5 грани (100).

Вычислить сферические координаты φ_p и ρ_p полюса *P* дуги, проведенной через гномостереографические проекции этих граней (сферические координаты оси [001]; дуга на рис. 58 не проведена).

Подставив координаты граней (010) и (100) в формулы (1) и (2b), получаем

tg
$$\varphi_p = \infty$$
; $(\varphi_p' = 90^\circ)$; $\underline{\varphi_p'' = -90^\circ}$
ctg $\rho_p = -$ tg 55° 28,5 cos (- 195 · 14) = tg 55° 28,5 cos 15° 1
lg tg 55° 28,5 = 0,16246
lg cos 15° 14 = 1,98447
lg ctg $\rho_p = 0,14693$
 $\underline{\rho_p = 35^\circ 29,5}$

77

§ 9. Перечисление сферических координат к новому полюсу

Пусть при полюсе *O* грань *N* имеет сферические координаты φ_n (при отсчете от меридиана *OP*) и ρ_n (фиг. 59). При каком-либо другом полюсе *P* (или, что то же, при другой плоскости проекций) та же грань будет иметь другие координаты φ_n' и ρ_n' , которые и требуется вычислить. Пусть полярное расстояние нового полюса *P* относительно старого *O* будет ρ_p . Если сделать поворот около направления, перпендикулярного *OP*, на угол ρ_p , то точка *P* совпадет с точкой *O*, точка *N*, описав другу по параллели, совпадет с какой-либо точкой *N'* и *PN* совпадет с *ON'*. При отсчете долгот φ от меридиана *OP* будем иметь:

$$\varphi_n' = \angle KON' = \angle KPN,$$

$$\rho_n' = \bigcirc ON' = \bigcirc PN,$$

$$\angle OPN = 180^\circ - \varphi_n'.$$

Из сферического треугольника *PON* будем иметь:

$$\cos \rho_n' = \cos \rho_n \cos \rho_p + \sin \rho_n \sin \rho_p \cos \varphi_n \\ \sin \varphi_n' = \frac{\sin \varphi_n \sin \rho_n}{\sin \rho'_n}$$
(1)

$$\operatorname{ctg} \varphi_{n}^{'} = \frac{\operatorname{ctg} \rho_{n} \sin \rho_{p} - \cos \rho_{p} \cos \varphi_{n}}{\sin \varphi_{n}} \left\{ \begin{array}{c} \text{(2)} \\ \sin \rho_{n}^{'} = \frac{\sin \varphi_{n} \sin \rho_{n}}{\sin \varphi_{n}^{'}} \end{array} \right\}$$

Перед вычислением следует сделать поворот графически на сетке Вульфа и вычисленные углы сопоставлять с графически найденным положением проекций граней.

Пример (фиг. 58).

Даны: сферические координаты граней (2-й, 3-й н 4-й столбцы).

Символ граней	При отсчете ф от мери- диана с (010)		При отсчете о от мери- диана ОР		При отсчете ¢' от мери- диана с (010)	
	φ	P	φ	φ'	ې' م'	ρ'
(100)	105°14	55°28,5	195°14	192°30	102°30	90°00
(010)	0°00	90°00	90°00	90°00	0°00	90°00
(001)	— 90°07	43°28	0°07	— 0°34,5	90°34,5	7°58,5
(111)	24°49	28°25	114°49	147°19	57°19	53°07
(021)	— 160°53	70°56	— 70°53	— 86°00	— 176°00	63°32
(231)	47°22	78°44	1 37°2 2	137°28	47°28	105°27,5
P [001]	— 90°00	35°29,5	0°00	—	*** · *	
						1

До поворота

После поворота

Вычнслить сферические координаты этих граней после поворота, при котором зона [001] делается вертикальной и точка *P* [001] совмещается с центром основного круга проскций. Сферические координаты оси [001] (точки *P*): вычислены в примере предыдущего § (стр. 77).

Перечисляем прежде всего долготы φ , приняв за начальный меридиан *OP*. Так как $\varphi_p = -90^\circ$, прибавляем 90° ко всем углам φ . Полученные долготы приведены в столбце 4-м.

(100)

Подставляя в формулу (1) φ₁₀₀, ρ₁₀₀ и ρ_ρ, получаем:

 $\cos \rho'_{100} = \cos 55^{\circ}28,5 \cdot \cos 35^{\circ}29,5 + \sin 55^{\circ}28,5 \cdot \sin 35^{\circ}29,5 \cdot \cos 195^{\circ}14 = \\ = \cos 55^{\circ}28,5 \cdot \cos 35^{\circ}29,5 - \sin 55^{\circ}28,5 \cdot \sin 35^{\circ}29,5 \cdot \cos 15^{\circ}14$

$+rac{\overline{1},75341}{\overline{1},91073}$	1,91587 , $\overline{1},76386$	$-\frac{0,4617}{0,4617}$	9100 — 90°
1,66414	1,98447	$\cos p'_{100} = 0$	<u>P100</u> — 50
	1,66420		

 $\sin \varphi_{100}' = \sin 195^{\circ}14 \cdot \sin 55^{\circ}28,5 = -\sin 15^{\circ}14 \cdot \sin 55^{\circ}28,5$

$$+\frac{1,41954}{1,91587} \qquad \qquad (\varphi'_{100} = -12^{\circ}30) \\ \underline{\varphi'_{100}} = 192^{\circ}30 \\ \underline{\varphi'_{100}} = 192^{\circ}30$$

(010)

При подстановке в формулу (1) получаем:

(001)

 $\cos \rho'_{001} = \cos 43^{\circ}28 \cdot \cos 35^{\circ}29,5 + \sin 43^{\circ}28 \cdot \sin 35^{\circ}29,5 \cdot \cos 0^{\circ}07$

- $+ \frac{\overline{1,86080}}{1,91073} + \frac{\overline{1,83755}}{1,76386} + \frac{0,59093}{0,39940} + \frac{0,39940}{1,60141} + \frac{0,99033}{10,99033} = 1,99578$

(111)

 $\cos p'_{111} = \cos 28^{\circ}25 \cdot \cos 35^{\circ}29,5 + \sin 28^{\circ}25 \cdot \sin 35^{\circ}29,5 \cdot \cos 114^{\circ}49 = \cos 28^{\circ}25 \cdot \cos 35^{\circ}29,5 - \sin 28^{\circ}25 \cdot \sin 35^{\circ}29,5 \cdot \sin 24^{\circ}49$

$+\frac{\overline{1},94424}{\overline{1},91073}$	$\overline{1},67750$	-0,71610 -0,11596
1,85497	1,62296	$\lg 0,60014 = 1,77825$
-	1,06432	ρ΄ ₁₁₁ = 53° 07

 $\sin \varphi'_{111} = \frac{\sin 114^{\circ}49 \sin 28^{\circ}25}{\sin 53^{\circ}07} = \frac{\cos 24^{\circ}49 \sin 28^{\circ}25}{\sin 53^{\circ}07}$ + $\frac{\overline{1,95792}}{1,67750}$ ($\varphi'_{111} = 32^{\circ}41$) - $\frac{1,63542}{1,90301}$ $\varphi'_{111} = 180^{\circ} - 32^{\circ}41 = 147^{\circ}19$ lg sin $\varphi'_{111} = \overline{1,73241}$ $\cos \rho_{021} = \cos 70^{\circ}56 \cdot \cos 35^{\circ}29,5 + \sin 70^{\circ}56 \cdot \sin 35^{\circ}29,5 \cdot \cos 70^{\circ}53$

$$+ \underbrace{\frac{\overline{1,51411}}{1,91073}}_{\overline{1,42484}} + \underbrace{\frac{\overline{1,97550}}{\overline{1,51520}}}_{\overline{1,51520}} + \underbrace{+ \underbrace{0,2660}_{0,1797}}_{\lg 0,4457 = 1,64904}$$

<u> Poīi = 63°32</u>

$$\sin \varphi_{0\overline{2}1} = \frac{\sin 70^{\circ}53 \sin 70^{\circ}56}{\sin 63^{\circ}32} .$$

$$+ \frac{\overline{1,97536}}{\overline{1,97550}} - \frac{\overline{1,95086}}{\overline{1,95192}} \frac{\varphi'_{0\overline{2}1} = -86^{\circ}00}{\overline{1,99894}}$$

(231)

 $\cos \rho'_{23\overline{1}} = \cos 78^{\circ}44 \cdot \cos 35^{\circ}29,5 + \sin 78^{\circ}44 \cdot \sin 35^{\circ}29,5 \cdot \cos 138^{\circ}22 =$ = $\cos 78^{\circ}44 \cdot \cos 35^{\circ}29,5 - \sin 78^{\circ}44 \cdot \sin 35^{\circ}29,5 \cdot \sin 48^{\circ}22.$

1,29087	$\overline{1},99155$	0,15907
⁺ ī,91073	+1,76386	0,42557
1,20160	1,87356	$\cos \rho'_{23\overline{1}} = -0,26650$
·	1,62897	

 $\lg \cos(180 - \rho'_{231}) = 1,42570$

 $\rho_{231} = 180 - 74^{\circ}32,5 = 105^{\circ}27,5$

 $\sin \varphi'_{23\overline{1}} = \frac{\sin 138^{\circ}22 \sin 78^{\circ}44}{\sin 105^{\circ}27,5} = \frac{\cos 48^{\circ}22 \sin 78^{\circ}44}{\cos 15^{\circ}27,5}$ $+ \frac{1,82240}{\overline{1,99155}} \qquad (\varphi'_{23\overline{1}} = 42^{\circ}32)$ $- \frac{\overline{1,81395}}{\overline{1,98400}} \qquad \underline{\varphi'_{23\overline{1}}} = 180^{\circ} - 42^{\circ}32 = \underline{137^{\circ}28}$

Так как для грани (231) полярное расстояние (ρ) оказалось после поворота больше 90°, эта грань окажется в нижней полусфере. Ее проекция на фиг. 58 обозначена кружочком. Вместо грани (231) на верхней полусфере окажется (если есть центр симметрии) грань ей параллельная (231). Координаты последней будут:

$$\varphi'_{23\vec{i}} = 180^{\circ} - 137^{\circ}28 = 42^{\circ}32$$

(считая от меридиана ОР)

$$\rho'_{2\bar{3}1} = 180^{\circ} - 105^{\circ}27, 5 = 74^{\circ}32, 5.$$

Вычисленные для всех граней новые координаты выписаны в столбцах 5 и 7 табл. (стр. 78). В столбце 6 долготы φ' пересчитаны для нулевого меридиана с гранью (010), для чего ко всем углам 5-го столбца необходимо прибавить $\varphi_p = -90^\circ$, т. е. вычесть из них 90° .

ГЛАВА ШЕСТАЯ

ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ ВЫЧИСЛЕНИЯ ИНДЕКСОВ И СФЕРИЧЕСКИХ КООРДИНАТ

§ 1. Общая зависимость между индексами и сферическими координатами

Мы выведем в наиболее общем виде зависимость между индексами граней (или ребер) и их сферическими координатами из формулы (11) (стр. 12), выра-

жающей рациональность двойных отношений площадей треугольников на плоскостн проекций. Из формулы, выражающей общую зависимость между индексами и сферическими координатами, выведем в следующих параграфах формулы для вычисления индексов и сферических координат для всех сингоний — как в общих случаях, так и в ряде частных случаев.

Пусть на фиг. 60 P, Q, R, U и X — гномонические проекции граней (или линейные проекции ребер). Соединим эти точки прямыми так же, как на фиг. 7. Получим шесть треугольников, двойные отношения которых рациональны [формула (11), стр. 12], т. е.

Фпг. 60.

$$\frac{\Pi\pi. \bigtriangleup XQR}{\Pi\pi. \bigtriangleup UQR} : \frac{\Pi\pi. \bigtriangleup XPR}{\Pi\pi. \bigtriangleup UPR} : \frac{\Pi\pi. \bigtriangleup XPQ}{\Pi\pi. \bigtriangleup UPQ} = p : q : r.$$
(1)

Пусть точка О — центр проекций, т. с. линейная проекция оси проекций, перпендикуляра, опущенного из центра пучка (точки S на фиг. 6) на плоскость проекций.

Соединим каждую из указанных выше точек с центром проекций О и выразим площадь каждого из шести треугольников через алгебраическую сумму площадей треугольников с общей вершиной в точке O:

пл. $\triangle XQ$	R= г	1л. ∆ 🤇	QOX - 1	пл. 🛆 🕻	QOR +	пл. 🛆 .	XOR
пл. △ UQ	R = r	тл. ∆ 🤇	2 <i>0U</i> —1	пл. 🛆 🕻	QOR +	пл. 🛆	UOR
пл. 🛆 ХРА	R = 1	іл. ∆ Х	KOP — I	1л. 🛆 F	POR -	пл. 🛆 .	XOR
пл. 🛆 UPI	R == 1	тл. ∆ L	10P — I	1л. △ Р	POR -	пл. 🛆	UOR
пл. △ ХРС	Q — п	іл. <u>∧</u> Q	OX + I	1л. 🛆 📿	<u>0</u> 0P —	пл. 🛆	ХОР
пл. 🛆 UPe	Q = -r	1л. △ 📿	20U+1	іл. ∆ Ç	0P —	пл. 🛆	UOP

Площади треугольников в правых частях предыдущих равенств выразим через произведения двух сторон на синус угла между ними, причем в этих произведениях будем брать сторонами указанные выше отрезки от центра *O* до гномонических проекций граней (линейных проекций ребер).

Подставив затем в формулу (1), получим:

$$\frac{OQ \cdot OX \cdot \sin QOX - OQ \cdot OR \cdot \sin QOR + OX \cdot OR \cdot \sin XOR}{OQ \cdot OU \cdot \sin QOU - OQ \cdot OX \cdot \sin QOR + OU \cdot OX \cdot \sin UOR} :$$

$$:\frac{OX \cdot OP \cdot \sin XOP - OR \quad OP \cdot \sin ROP - OX \cdot OR \cdot \sin XOR}{OU \cdot OP \cdot \sin UOP - OR \cdot OP \cdot \sin ROP - OU \cdot OR \cdot \sin UOR} :$$

$$\frac{\partial Q}{\partial Q} \cdot \frac{\partial U}{\partial U} \cdot \sin Q \partial U - \partial Q \cdot O P \cdot \sin Q \partial P + \partial U \cdot O P \cdot \sin U \partial P}{\partial Q \cdot O P \cdot \sin U \partial P} = p : q : r$$

6 Аншелес — 706

Обозначим полярные расстояния граней (или ребер) P, Q, R, U и X соответственно через ρ_p , ρ_q , ρ_r , ρ_u и ρ_x , тогда

$$OP = h \operatorname{tg} \rho_{p}$$

$$OQ = h \operatorname{tg} \rho_{q}$$

$$OR = h \operatorname{tg} \rho_{r}$$

$$OU = h \operatorname{tg} \rho_{u}$$

$$OX = h \operatorname{tg} \rho_{x}$$

где h — расстояние центра пучка (точка S на фиг. 6) от плоскости проекций. Выразим углы предыдущего выражения через долготы φ . Обозначим соответственно эти углы для граней P, Q, R, U и X через φ_p , φ_q , φ_r , φ_u и φ_x . Тогда

 $\angle QOP = \varphi_p - \varphi_q, \quad \angle QOR = \varphi_r - \varphi_o, \quad \angle QOU = \varphi_u - \varphi_q, \quad \angle QOX = \varphi_x - \varphi_q$ $\angle ROP = \varphi_p - \varphi_r, \quad \angle UOP = \varphi_p - \varphi_u, \quad \angle XOP = \varphi_p - \varphi_x, \quad \angle UOR = \varphi_r - \varphi_u$

и, наконец, $\angle XOR = \varphi_r - \varphi_x$.

Подставляя в предыдущее равенство, получим:

$$\frac{\operatorname{tg} \rho_{q} \operatorname{tg} \rho_{x} \sin (\varphi_{x} - \varphi_{q}) - \operatorname{tg} \rho_{q} \operatorname{tg} \rho_{r} \sin (\varphi_{r} - \varphi_{q}) + \operatorname{tg} \rho_{r} \operatorname{tg} \rho_{x} \sin (\varphi_{r} - \varphi_{x})}{\operatorname{tg} \rho_{q} \operatorname{tg} \rho_{u} \sin (\varphi_{u} - \varphi_{q}) - \operatorname{tg} \rho_{q} \operatorname{tg} \rho_{r} \sin (\varphi_{r} - \varphi_{q}) + \operatorname{tg} \rho_{r} \operatorname{tg} \rho_{u} \sin (\varphi_{r} - \varphi_{u})}:$$

$$\cdot \frac{\operatorname{tg} \rho_{p} \operatorname{tg} \rho_{x} \sin (\varphi_{p} - \varphi_{x}) - \operatorname{tg} \rho_{p} \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r}) - \operatorname{tg} \rho_{r} \operatorname{tg} \rho_{x} \sin (\varphi_{r} - \varphi_{x})}{\operatorname{tg} \rho_{p} \operatorname{tg} \rho_{u} \sin (\varphi_{p} - \varphi_{u}) - \operatorname{tg} \rho_{p} \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r}) - \operatorname{tg} \rho_{r} \operatorname{tg} \rho_{u} \sin (\varphi_{r} - \varphi_{u})}:$$
(2a)

 $:\frac{\operatorname{tg}\rho_q\operatorname{tg}\rho_x\sin\left(\varphi_x-\varphi_q\right)-\operatorname{tg}\rho_q\operatorname{tg}\rho_p\sin\left(\varphi_p-\varphi_q\right)+\operatorname{tg}\rho_p\operatorname{tg}\rho_x\sin\left(\varphi_p-\varphi_x\right)}{\operatorname{tg}\rho_q\operatorname{tg}\rho_u\sin\left(\varphi_u-\varphi_q\right)-\operatorname{tg}\rho_q\operatorname{tg}\rho_p\sin\left(\varphi_p-\varphi_q\right)+\operatorname{tg}\rho_p\operatorname{tg}\rho_u\sin\left(\varphi_p-\varphi_u\right)}=p:q:r.$

Вынесем за скобки:

В	числителе	первой	дроби	$tg \rho_q tg \rho_r tg \rho_x$
л	знаменателе	n	л	$tg \rho_q tg \rho_r tg \rho_u$
n	числителе	второй	n	$\operatorname{tg} p_p \operatorname{tg} p_r \operatorname{tg} p_x$
n	знаменателе	<i>n</i>	л	$tg \rho_p tg \rho_r tg \rho_n$
7	числителе	третьей	"	$tg \rho_p tg \rho_q tg \rho_x$
n	знаменателе	n	n	$\operatorname{tg} \mathbf{p}_p \operatorname{tg} \mathbf{p}_q \operatorname{tg} \mathbf{p}_n$

Произведя сокращения, получим:

$$\frac{\operatorname{ctg} \rho_{r} \sin (\varphi_{x} - \varphi_{q}) - \operatorname{ctg} \rho_{x} \sin (\varphi_{r} - \varphi_{q}) + \operatorname{ctg} \rho_{q} \sin (\varphi_{r} - \varphi_{x})}{\operatorname{ctg} \rho_{r} \sin (\varphi_{r} - \varphi_{q}) - \operatorname{ctg} \rho_{x} \sin (\varphi_{r} - \varphi_{q}) + \operatorname{ctg} \rho_{q} \sin (\varphi_{r} - \varphi_{u})} :$$

$$\frac{\operatorname{ctg} \rho_{r} \sin (\varphi_{p} - \varphi_{x}) - \operatorname{ctg} \rho_{x} \sin (\varphi_{p} - \varphi_{r}) - \operatorname{ctg} \rho_{p} \sin (\varphi_{r} - \varphi_{u})}{\operatorname{ctg} \rho_{r} \sin (\varphi_{p} - \varphi_{u}) - \operatorname{ctg} \rho_{u} \sin (\varphi_{p} - \varphi_{r}) - \operatorname{ctg} \rho_{p} \sin (\varphi_{r} - \varphi_{u})} :$$

$$\frac{g \rho_{p} \sin (\varphi_{x} - \varphi_{q}) - \operatorname{ctg} \rho_{x} \sin (\varphi_{p} - \varphi_{q}) + \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})}{\operatorname{ctg} \rho_{p} \sin (\varphi_{u} - \varphi_{q}) - \operatorname{ctg} \rho_{u} \sin (\varphi_{p} - \varphi_{q}) + \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})} = p : q : r.$$
(2b)

Если грани (или ребра) P, Q и R основные — (100), (010) и (001), а грань (или ребро) U единичная — (111), то p, q и r — индексы грани (или ребра) X. Получаем таким образом общую зависимость между индексами и сферическими координатами.

Зависимость между индексами и сферическими координатами граней или ребер кристаллического комплекса, выраженную в формулах (2), мы можем еще несколько обобщить, приняв, что четвертой данной гранью является не грань U с символом (111), а какая-либо грань V с символом ($p_v q_v r_v$). Заменить грань U гранью V мы можем таким образом. Заменим сначала хотя бы в формуле (2b) φ_x и ρ_x координатами грани V, которые обозначим через φ_v и ρ_v :

$$\frac{\operatorname{ctg} \rho_r \sin (\varphi_v - \varphi_q) - \operatorname{ctg} \rho_v \sin (\varphi_r - \varphi_q) + \operatorname{ctg} \rho_q \sin (\varphi_r - \varphi_v)}{\operatorname{ctg} \rho_r \sin (\varphi_u - \varphi_q) - \operatorname{ctg} \rho_u \sin (\varphi_r - \varphi_q) + \operatorname{ctg} \rho_q \sin (\varphi_r - \varphi_v)}:$$

$$:\frac{\operatorname{ctg} \rho_r \sin (\varphi_p - \varphi_v) - \operatorname{ctg} \rho_v \sin (\varphi_p - \varphi_r) - \operatorname{ctg} \rho_p \sin (\varphi_r - \varphi_v)}{\operatorname{ctg} \rho_r \sin (\varphi_p - \varphi_u) - \operatorname{ctg} \rho_u \sin (\varphi_p - \varphi_r) - \operatorname{ctg} \rho_p \sin (\varphi_r - \varphi_v)}:$$

$$:\frac{\operatorname{ctg} \rho_p \sin (\varphi_v - \varphi_q) - \operatorname{ctg} \rho_v \sin (\varphi_p - \varphi_q) + \operatorname{ctg} \rho_q \sin (\varphi_p - \varphi_v)}{\operatorname{ctg} \rho_p \sin (\varphi_p - \varphi_q) - \operatorname{ctg} \rho_u \sin (\varphi_p - \varphi_q) + \operatorname{ctg} \rho_q \sin (\varphi_p - \varphi_v)} = p:q:r.$$

А теперь разделим почленно равенство (2b) на полученное и сократим знаменатели дробей в левых частях равенства; получаем окончательно:

$$\frac{\operatorname{ctg} \rho_{r} \sin (\varphi_{r} - \varphi_{q}) - \operatorname{ctg} \rho_{x} \sin (\varphi_{r} - \varphi_{q}) + \operatorname{ctg} \rho_{q} \sin (\varphi_{r} - \varphi_{x})}{\operatorname{ctg} \rho_{r} \sin (\varphi_{v} - \varphi_{q}) - \operatorname{ctg} \rho_{v} \sin (\varphi_{r} - \varphi_{q}) + \operatorname{ctg} \rho_{q} \sin (\varphi_{r} - \varphi_{v})} :$$

$$: \frac{\operatorname{ctg} \rho_{r} \sin (\varphi_{p} - \varphi_{x}) - \operatorname{ctg} \rho_{x} \sin (\varphi_{p} - \varphi_{r}) - \operatorname{ctg} \rho_{p} \sin (\varphi_{r} - \varphi_{v})}{\operatorname{ctg} \rho_{r} \sin (\varphi_{p} - \varphi_{v}) - \operatorname{ctg} \rho_{v} \sin (\varphi_{p} - \varphi_{v}) - \operatorname{ctg} \rho_{p} \sin (\varphi_{r} - \varphi_{v})} :$$
(3)

 $=:\frac{\operatorname{ctg}\,\rho_p\,\sin\,(\varphi_x-\varphi_q)-\operatorname{ctg}\,\rho_x\,\sin\,(\varphi_p-\varphi_q)+\operatorname{ctg}\,\rho_q\,\sin\,(\varphi_p-\varphi_x)}{\operatorname{ctg}\,\rho_p\,\sin\,(\varphi_v-\varphi_q)-\operatorname{ctg}\,\rho_x\,\sin\,(\varphi_p-\varphi_q)+\operatorname{ctg}\,\rho_q\,\sin\,(\varphi_p-\varphi_v)}=\frac{p}{p_v}:\frac{q}{q_v}:\frac{r}{r_v}.$

Для того случая, когда три грани (или ребра) *P*, *Q* и *R*, координаты которых входят в формулу (3), принимаются за основание, формула (3) является самым общим выражением зависимости между индексами и сферическими координатами граней и ребер кристалла.

Плоскость проекций (или нормальная к ней ось проекций), от положения которой зависят, конечно, координаты φ и ρ , занимает у нас общее положение, как указано на стр. 10, а потому ни один из углов, входящих в формулу, не приобретает предсльного значения, какое они, как увидим, будут получать при частных положениях плоскости проекций. Кроме того, ни один из углов, входящих в формулу, мы не предполагаем равным другому или 90°, что могло бы отвечать частным случаям кристаллических комплексов.

Формула (3) может быть признана за самое общее выражение еще и потому, что трем граням, координаты которых входят в формулу, мы всегда при вычислениях имеем право приписать значение основных граней, хотя бы это расходилось с общепринятыми, но все же условными правилами установок.

§ 2. Предварительные замечания к формулам. Обозначения

Формулы (2) и (3) или, вернее, формулы, которые мы выведем из них в следующих параграфах, послужат нам для производства наиболее важной части вычисления кристаллов.

После измерения кристаллов данного соединения на гониометре, как указано в гл. V, § 1 (стр. 64), необходимо еще произвести ряд вычислений, главная часть которых состоит: 1) в вычислении индексов граней кристаллического комплекса и 2) в вычислении сферических координат граней.

Необходимость вычисления индексов граней после измерения кристалла не требует пояснений, так как при измерении получаются лишь сферические координаты. Нужно, впрочем, сказать, что индексы граней (и ребер) гораздо проще отыскиваются графическими методами, за исключением тех сравнительно редких случаев, когда эти индексы являются сравнительно сложными числами, при которых графические методы могут оказаться недостаточно точными.

Сферические координаты различных грансй при измерении кристалла получаются с различной точностью, так как грани одного и того же кристалла не одинаково совершенны, дают различной яркости и различной отчетливости рефлексы; очень часто также грани благодаря вицинальности дают по несколько "спгналов". Поэтому при описании геометрических свойств кристаллов и требуется, кроме измеренных координат, указать также и вычисленные.

Но для вычисления индексов и сферических координат граней (или ребер) крпсталла должны быть даны в общем случае — для крпсталлов триклинной сингонии — индексы и сферические координаты четырех граней, три из которых не лежат в одной зоне. В кристаллах других сингоний в большинстве случаев оказывается достаточным и меньшее количество данных граней. Эти грани, которые являются исходными при вычислении, мы в дальнейшем так и будем называть "исходными" гранями кристаллического комплекса. Среди всех наблюдаемых граней комплекса за исходные грани принимаются такие, которые при измерении дают лучшие сигналы и потому точнее всего замеряются. Сферические координаты этих граней необходимо измерить наиболее тщательно и по несколько раз на одном и том же кристалле.

Исходными гранями, конечно, не обязательно должны являться грани основныс — (100), (010) и (001) — и единичная — (111); этих граней или совсем может не оказаться на кристалле, или они окажутся гранями с плохими сигналами. При выводе формул мы будем все же считать, что три из исходных граней являются основными, т. е. выбранными за таковые по общепринятым правилам установок. Впрочем, трем исходным граням мы всегда можем приписать символы (100), (010) и (001), но лишь временно, для удобства вычисления координат других граней, и тогда такая установка часто уже не будет отвечать общепринятым видам установок. В § 2 гл. VII (стр. 132) этот случай будет специально рассмотрен.

Одна и та же формула (2) или (3) может служить нам как для вычисления ищексов граней (или ребер), так и для вычисления сферических координат. Пусть в формулах (2a) и (2b) P, Q, R и U или (3) P, Q, R и V будут исходные грани Как видим по формулам, для вычисления индексов, кроме индексов и сферических координат исходных граней, должны быть даны еще сферические координаты грани X. Эти последние мы берем иепосредственно из данных измерения. Если координаты искомых граней измерены нами и недостаточно точно (вследствие несовершенства граней), то это не может здесь играть роли, так как мы знаем, что индексы должны быть целыми и наивозможно простыми числами. Если вследствие неточности координат получается дробное число, мы выбираем ближайшее целое простое число, — производим, как говорят, "поправку на закон Аюи".

В большинстве случаев получающиеся дроби отличаются от целых простых чисел не больше, чем на единицу во втором знаке. Чтобы вычислить сферические координаты (φ_x и ρ_x) искомой грани, должны быть даны, кроме индексов и сферических координат исходных граней, индексы искомой грани с внесенной уже поправкой на закон Аюи.

Для вывода соответствующих формул мы разбиваем формулы (2) или (3) на два уравнения разными способами, беря, скажем, для первого уравнения отношенис первой и второй дробей левой части равенства и приравнивая их отношению первого и второго индексов, а для второго уравнения — отношение, скажем, первой и третьей дробей, приравнивая отношению первого и третьего индексов. Таким образом получаем два уравнения с двумя неизвестными. Подставляя в них координаты исходных граней и индексы искомых граней, уже раньше полученные и исправленные на закон Аюи, и решая эти уравнения относительно φ_x и ρ_x , паходим точные координаты искомых граней. Последние будут отличаться от измеренных координат вследствие указанной поправки на закон Аюи.

Практически при вычислении пользоваться довольно сложными формулами (2) и (3) никогда не приходится. Эти формулы имеют лишь то важное значение, что они дают самую общую зависимость между индексами и сферическими координатами, и поэтому из них могут быть выведены формулы для всех мыслимых частных случаев, с которыми практически приходится иметь дело. Эти частные случаи выводятся из них одной лишь подстановкой предельных значений величии, входящих в формулы, или сокращениями, проистекающими от равенства некоторых величин при большей симметрии или при некоторых определенных положениях искомой грани относительно граней исходных.

Этими формулами пришлось бы пользоваться при вычислениях лишь в том случае, если бы при измерении мы не юстировали кристаллов; наклеив кристалл в произвольном положении, в таком виде измеряли бы его. Но этого никогда не делается: не делается не только потому, что тогда сложнее становится вычисление, но и потому, что сложнее и требует большего времени и само измерение. Кристаллы перед измерением обычно юстируются. Юстировка может быть произведена тремя способами, и в зависимости от этого та или другая величина в формулах (2) и (3) получает то или другое предельное значение.

I способ. Юстировка по зоне, т. е. совмещение оси зоны с горизонтальной осью гониометра, которая, как сказано, является осью проскций. Если мы прибегли к такой юстировке, то, по крайней мере, две грани данной зоны дают наиболее хорошие сигналы (в противном случае все полученные при измерении данные оказались бы вообще непригодными). Естественно в таком случае эти две грани и принять за две исходные грани из четырех. Тогда р для двух исходных граней окажется равным 90° и котангенсы этих углов в формулах (2) и (3) будут равны 0.

II способ. Юстировка по грани, т. е. совмещение нормали к какой-либо грани с горизонтальной осью гопиометра, или, что то же, с осью проекций. Тогда эта грань принимается за одну из исходных, ее р будет равияться 0°, и ташенс р в формуле (2a) будет равен 0.

Как увидим, и в том и другом случаях формулы сразу сильно упрощаются.

Ш с пособ. Юстировка по граням, равно наклоненным к какой-либо оси симметрин. Этот случай сводится ко II, так как данная ось симмстрии здесь окажется совмещенной с осью проекций, а потому с ней же будет совмещен и перпендикуляр к грани, нормальной к этой оси. Эту грань — возможную или наблюдаемую — мы и принимаем за одну из исходных; р для нее равно 0°.

В следующих параграфах мы выведем по формулам (2) и (3) формулы для вычисления индексов и сферических координат грансй кристаллов для всех сингоний и при юстировках по зоне [001] и по грани (001) (III случай юстировки, как указано выше, сводится ко II). Хотя некоторые из приведенных ниже формул для различных частных случаев настолько просто выводятся, что без особых затруднений это могло бы быть сделано уже при самом вычислении, каждый раз, как окажется в этом нужда, — мы все же приведем и эти формулы, чтобы насколько возможно упростить вычисление. Этим мы достигнем того, что вычисление сведется к механической подстановке в нужную формулу известных величин и производству пад ними действий, указанных в формуле.

Чтобы избежать грубых ошибок при вычислениях индексов и особенно при вычислениях сферических координат, совершенно необходимо иметь перед собой во время работы стереографическую проекцию вычисляемых кристаллов в той ориентировке, при которой производится вычисление. Результаты вычислений необходимо сопоставлять со стереограммой. Лучше предварительно определить графическими методами и символы граней, по крайней мерс те наиболее простые, правильность в определении которых графическими методами не вызывает сомнения.

Те величины в формулах, которые являются постоянными при вычислениях всех граней одного и того же кристаллического комплекса, отмечены сверху или снизу скобками или кроме того обозначены особыми буквами. Логарифмы этих величин и соответствующие числа, раз вычисленные для одной грани, необходимо также резко выделять, чтобы при вычислении других граней не затрачивать времени на их отыскание в произведенных уже вычислениях, а тем более — не вычислять их снова. Все формулы выведены лишь для верхних граней. Чтобы определить символ какой-либо нижней грани, надо вычислить ее индексы для параллельной ей верхией грани (наблюдаемой или возможной) и взять индексы с обратными знаками. Углы φ для нижних граней равны углам φ для параллельных им верхних граней плюс 180°, углы же р для нижних равны 180° минус углы для верхних. Во всех формулах приняты следующие обозначения:

P-(100)	с коорд	инатами	$\varphi_p,$	Pρ)
Q - (010)	n	"m	φ,	Pa	} основные грани
R - (001)	л	n	φ,	٩r Pr	J
$U_{-(111)}$	л	π	φ",	Pu	единичная грань
X - (pqr)	л	л	φ _x ,	٩x	искомая грань

P, *Q*, *R* п *U*—псходные грани; *X*—грань, индексы или координаты которой отыскиваются.

Углы φ будем отсчитывать от меридиана с гранью \hat{Q} (010) — положительные по часовой стрелке, отрицательные против часовой стрелки ($\varphi_q = 0^\circ$).

В тех случаях, когда четвертой исходной гранью является не грань U с символом (111), а какая-либо грань V с символом ($p_v q_v r_v$), во всех приведенных ниже формулах следует произвести следующие замены [стр. 83, формула (3)]: координаты φ_u и ρ_u заменить координатами — φ_v и ρ_v , p заменить частным $\frac{p}{p_v}$, q заменить $\frac{q}{q_v}$ и r заменить $\frac{r}{r_v}$.

§ 3. Триклинная (агирная) сингония Юстировка по зоне [001]

$$\varphi_q = 0^\circ; \quad \rho_p = \rho_q = 90^\circ$$

pqr

$$p:q:r = \frac{\operatorname{ctg}\,\rho_r\,\sin\varphi_x - \operatorname{ctg}\,\rho_x\,\sin\varphi_r}{\operatorname{ctg}\,\rho_r\,\sin\varphi_u - \operatorname{ctg}\,\rho_u\,\sin\varphi_r}: \frac{\operatorname{ctg}\,\rho_r\,\sin(\varphi_p - \varphi_x) - \operatorname{ctg}\,\rho_x\,\sin(\varphi_p - \varphi_r)}{\operatorname{ctg}\,\rho_r\,\varphi_u) - \operatorname{ctg}\,\rho_u\,\sin(\varphi_p - \varphi_r)}: \frac{\operatorname{ctg}\,\rho_x}{\operatorname{ctg}\,\rho_u}.$$
(1a)

Вынося за скобку в числителях первой и второй дробей $\operatorname{ctg} \rho_r \operatorname{ctg} \rho_x$, а в знаменателях $\operatorname{ctg} \rho_r \operatorname{ctg} \rho_u$ и сократив, окончательно получим:

$$p:q:r = \frac{\operatorname{tg}\,\rho_x \sin\,\varphi_x - \operatorname{tg}\,\rho_r \sin\,\varphi_r}{\operatorname{tg}\,\rho_u \sin\,\varphi_u - \operatorname{tg}\,\rho_r \sin\,\varphi_r} : \frac{\operatorname{tg}\,\rho_x \sin\,(\varphi_p - \varphi_x) - \operatorname{tg}\,\rho_r \sin\,(\varphi_p - \varphi_r)}{\operatorname{tg}\,\rho_r \sin\,(\varphi_p - \varphi_u) - \operatorname{tg}\,\rho_r \sin\,(\varphi_p - \varphi_r)} : 1.$$
(1b)

Вводим следующие обозначения для тех частей формулы, которые являются постоянными при вычислении каждого данного кристаллического комплекса:

$$\begin{aligned} & \text{tg } \rho_r \, \sin \varphi_r = A \\ & \text{tg } \rho_u \sin \varphi_u = B \\ & \text{tg } \rho_r \, \sin (\varphi_p - \varphi_r) = C \\ & \text{tg } \rho_u \sin (\varphi_p - \varphi_u) = D \end{aligned}$$

Та же формула получает следующий вид:

$$p:q:r = \frac{\operatorname{tg} \rho_x \sin \varphi_x - A}{B-A} : \frac{\operatorname{tg} \rho_x \sin (\varphi_p - \varphi_x) - C}{D-C} : 1.$$

Первую и вторую дроби правой части формулы (1b) приведем к логарифмическому виду. Для этого примем:

$$\frac{\operatorname{tg}\rho_{x}\sin\varphi_{x}}{\operatorname{tg}\rho_{r}\sin\varphi_{r}} = \frac{\operatorname{tg}\rho_{x}\sin\varphi_{x}}{A} = \operatorname{tg}\theta_{1};$$

$$\frac{\operatorname{tg}\rho_{y}\sin\varphi_{r}}{\operatorname{tg}\rho_{r}\sin\varphi_{r}} = \frac{B}{A} = \operatorname{tg}\theta_{2};$$

$$\frac{\operatorname{tg}\rho_{x}\sin(\varphi_{p}-\varphi_{x})}{\operatorname{tg}\rho_{r}\sin(\varphi_{p}-\varphi_{r})} = \frac{\operatorname{tg}\rho_{x}\sin(\varphi_{p}-\varphi_{x})}{C} = \operatorname{tg}\theta_{3};$$

$$\frac{\operatorname{tg}\rho_{x}\sin(\varphi_{p}-\varphi_{r})}{\operatorname{tg}\rho_{r}\sin(\varphi_{p}-\varphi_{r})} = \frac{\operatorname{tg}\rho_{x}\varphi_{r}}{C} = \operatorname{tg}\theta_{4}.$$

;

Тогда после соответствующих преобразований получим:

$$p:q:r = \frac{\cos\theta_2\sin(\theta_1 - 45^\circ)}{\cos\theta_1\sin(\theta_2 - 45^\circ)}: \frac{\cos\theta_4\sin(\theta_3 - 45^\circ)}{\cos\theta_3\sin(\theta_4 - 45^\circ)}: 1.$$
(1c)

Чтобы вывести формулы для вычисления φ_x и ρ_x , разобьем формулу (1b) на уравнения:

$$\frac{p}{r} = \frac{\lg \rho_x \sin \varphi_x - \lg \rho_r \sin \varphi_r}{\lg \rho_u \sin \varphi_u - \lg \rho_r \sin \varphi_r},$$
$$\frac{q}{r} = \frac{\lg \rho_x \sin (\varphi_p - \varphi_x) - \lg \rho_r \sin (\varphi_p - \varphi_r)}{\lg \rho_u \sin (\varphi_p - \varphi_u) - \lg \rho_x \sin (\varphi_p - \varphi_r)}$$

Решая совместно эти два уравнения относительно φ_x и ρ_x , найдем:

$$\operatorname{ctg} \varphi_{x} = \frac{q \operatorname{tg} \rho_{u} \sin (\varphi_{p} - \varphi_{u}) + (r - q) \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{\sin \varphi_{p} \left[p \operatorname{tg} \rho_{u} \sin \varphi_{u} + (r - p) \operatorname{tg} \rho_{r} \sin \varphi_{r} \right]} + \operatorname{ctg} \varphi_{p} = \frac{q \cdot D + (r - q) \cdot C}{\sin \varphi_{p} \left[p \cdot B + (r - p) \cdot A \right]} + \operatorname{ctg} \varphi_{p};$$
(2)

$$\operatorname{tg} \rho_{x} = \frac{q \operatorname{tg} \rho_{\mu} \sin \left(\varphi_{p} - \varphi_{\mu}\right) + (r - q) \operatorname{tg} \rho_{r} \sin \left(\varphi_{p} - \varphi_{r}\right)}{r \sin \left(\varphi_{p} - \varphi_{x}\right)} = \frac{q \cdot D + (r - q) \cdot C}{r \sin \left(\varphi_{p} - \varphi_{x}\right)}, \quad (3a)$$

или

$$tg \rho_x = \frac{p tg \rho_u \sin \varphi_u + (r-p) tg \rho_r \sin \varphi_r}{r \sin \varphi_x} = \frac{p \cdot B + (r-p) \cdot A}{r \sin \varphi_x}.$$
 (3b)

Подставляя в формулу (1а), найдем:

$$p:q = \frac{\sin \varphi_x}{\operatorname{ctg} \rho_r \sin \varphi_u - \operatorname{ctg} \rho_u \sin \varphi_r} : \frac{\sin (\varphi_p - \varphi_x)}{\operatorname{ctg} \rho_r \sin (\varphi_p - \varphi_u) - \operatorname{ctg} \rho_u \sin (\varphi_p - \varphi_r)}$$

Вынося за скобки и сокращая ctg p, ctg p, и затем переставляя средние члены в правой части равенства, получим:

$$p:q = \frac{\sin\varphi_x}{\sin(\varphi_p - \varphi_x)}: \frac{\overline{tg\,\rho_u \sin\varphi_u - tg\,\rho_r \sin\varphi_r}}{tg\,\rho_u \sin(\varphi_p - \varphi_u) - tg\,\rho_r \sin(\varphi_p - \varphi_r)} = \frac{\sin\varphi_x}{\sin(\varphi_p - \varphi_x)}: \frac{B-A}{D-C}.$$
 (5)

Вторая дробь правой части формулы постоянна для всех граней данного пояса, т. е. для граней, у которых последний индекс равен нулю. То же самое и ниже — для граней со вторым индексом, равным нулю, и с первым индексом, равным нулю.

Подставляя r = 0 в формулу (2), получим:

$$\operatorname{ctg} \varphi_{\mathbf{x}} = \frac{q \left[\operatorname{tg} \varphi_{\mu} \sin \left(\varphi_{p} - \varphi_{\mu} \right) - \operatorname{tg} \varphi_{r} \sin \left(\varphi_{p} - \varphi_{r} \right) \right]}{p \sin \varphi_{p} \left[\operatorname{tg} \varphi_{\mu} \sin \varphi_{u} - \operatorname{tg} \varphi_{r} \sin \varphi_{r} \right]} + \operatorname{ctg} \varphi_{p} = \frac{q \left(D - C \right)}{p \sin \varphi_{p} \left(B - A \right)} + \operatorname{ctg} \varphi_{p}. \tag{6}$$

$$\operatorname{ctg}\varphi_{x} = \frac{\operatorname{tg}\rho_{n}\sin\left(\varphi_{p}-\varphi_{n}\right)-\operatorname{tg}\rho_{r}\sin\left(\varphi_{p}-\varphi_{r}\right)}{\sin\varphi_{p}\left(\operatorname{tg}\rho_{n}\sin\varphi_{n}-\operatorname{tg}\rho_{r}\sin\varphi_{r}\right)} + \operatorname{ctg}\varphi_{p} = \frac{D-C}{\sin\varphi_{p}\left(B-A\right)} + \operatorname{ctg}\varphi_{p}.$$

1.----

(4)

Эту формулу можно преобразовать в следующую:

$$\operatorname{ctg} \varphi_{\mathbf{x}} = \frac{\frac{1}{\operatorname{tg} \rho_{\boldsymbol{u}} \cos \varphi_{\boldsymbol{u}} - \operatorname{tg} \rho_{\boldsymbol{r}} \cos \varphi_{\boldsymbol{r}}}{\frac{1}{\operatorname{tg} \rho_{\boldsymbol{u}} \sin \varphi_{\boldsymbol{u}} - \operatorname{tg} \rho_{\boldsymbol{r}} \sin \varphi_{\boldsymbol{r}}}}{\frac{1}{\operatorname{tg} \rho_{\boldsymbol{u}} \sin \varphi_{\boldsymbol{u}} - \operatorname{tg} \rho_{\boldsymbol{r}} \sin \varphi_{\boldsymbol{r}}}} = \frac{\frac{1}{\operatorname{tg} \rho_{\boldsymbol{u}} \cos \varphi_{\boldsymbol{u}} - \operatorname{tg} \rho_{\boldsymbol{r}} \cos \varphi_{\boldsymbol{r}}}}{\frac{B - A}{|\boldsymbol{u}|}},$$

$$\varphi_{\bar{1}\bar{1}0} = \varphi_{110} + 180^{\circ}; \quad \rho_{\bar{1}\bar{1}\bar{0}} = 90^{\circ}.$$

Подставляя в формулу (6) p=1 и q=-1, получим:

$$\operatorname{ctg} \varphi_{x} = -\frac{\left| \frac{\operatorname{tg} \rho_{u} \sin (\varphi_{p} - \varphi_{u}) - \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{\sin \varphi_{p} \left[\operatorname{tg} \rho_{u} \sin \varphi_{n} - \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r}) \right]} + \operatorname{ctg} \varphi_{p} = -\frac{D - C}{\sin \varphi_{p} \left(B - A \right)} + \operatorname{ctg} \varphi_{p},$$
или
$$\operatorname{ctg} \varphi_{x} = -\frac{\left| \frac{\operatorname{tg} \rho_{u} \cos \varphi_{n} - \operatorname{tg} \rho_{r} \cos \varphi_{r}}{\operatorname{tg} \rho_{u} \sin \varphi_{u} - \operatorname{tg} \rho_{r} \sin \varphi_{r}} \right|}{\left| \frac{\operatorname{tg} \rho_{u} \cos \varphi_{u} - \operatorname{tg} \rho_{r} \cos \varphi_{r}}{\operatorname{tg} \rho_{u} \sin \varphi_{u} - \operatorname{tg} \rho_{r} \sin \varphi_{r}}} = -\frac{\left| \frac{\operatorname{tg} \rho_{u} \cos \varphi_{u} - \operatorname{tg} \rho_{r} \cos \varphi_{r}}{\operatorname{tg} \rho_{u} \cos \varphi_{u} - \operatorname{tg} \rho_{r} \cos \varphi_{r}} \right|}{\left| \frac{\operatorname{tg} \rho_{u} \cos \varphi_{u} - \operatorname{tg} \rho_{r} \cos \varphi_{r}}{\operatorname{tg} \rho_{u} \sin \varphi_{u} - \operatorname{tg} \rho_{r} \sin \varphi_{r}}}$$

$$\varphi_{\bar{1}10} = \varphi_{1\bar{1}0} + 180^\circ; \quad \rho_{\bar{1}10} = 90^\circ.$$

X - B зоне [010]; q = 0.

por

110

Подставляя в формулы (1b), (2) и (3), найдем:

$$\frac{p}{r} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - \operatorname{tg} \rho_r \sin \varphi_r}{\operatorname{tg} \rho_u \sin \varphi_u - \operatorname{tg} \rho_r \sin \varphi_r} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - A}{B - A};$$
(7)

$$\operatorname{ctg} \varphi_{x} = \frac{r \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{\frac{\sin \varphi_{p} \left[p \operatorname{tg} \rho_{u} \sin \varphi_{u} + (r - p) \operatorname{tg} \rho_{r} \sin \varphi_{r} \right]}{\left| - \frac{r \cdot C}{\sin \varphi_{p} \left[p \cdot B + (r - p) A \right]} + \operatorname{ctg} \varphi_{p}};$$

$$(8)$$

$$\operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{x}} = \frac{\left| \frac{1}{\operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{r}} \sin \left(\boldsymbol{\varphi}_{\boldsymbol{p}} - \boldsymbol{\varphi}_{\boldsymbol{r}} \right)}{\sin \left(\boldsymbol{\varphi}_{\boldsymbol{p}} - \boldsymbol{\varphi}_{\boldsymbol{x}} \right)} \right|}{\frac{C}{\sin \left(\boldsymbol{\varphi}_{\boldsymbol{p}} - \boldsymbol{\varphi}_{\boldsymbol{x}} \right)}}, \qquad (9a)$$

или

$$\operatorname{tg} \rho_{x} = \frac{p \operatorname{tg} \rho_{u} \sin \varphi_{u} + (r - p) \operatorname{tg} \rho_{r} \sin \varphi_{r}}{r \sin \varphi_{x}} = \frac{p \cdot B + (r - p) \cdot A}{r \sin \varphi_{x}}.$$
(9b)

101

Подставляя в предыдущие формулы
$$p = r = 1$$
, получим:

$$\operatorname{ctg} \varphi_{x} = \frac{\frac{\operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{\sin \varphi_{p} \operatorname{tg} \rho_{u} \sin \varphi_{u}} + \operatorname{ctg} \varphi_{p}}{\operatorname{tg} \rho_{x} = \frac{\operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{\sin (\varphi_{p} - \varphi_{x})}} = \frac{C}{\sin (\varphi_{p} - \varphi_{x})},$$
$$\operatorname{tg} \rho_{x} = \frac{\frac{\operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{\sin (\varphi_{p} - \varphi_{x})}}{\operatorname{tg} \rho_{x} = \frac{\operatorname{tg} \rho_{u} \sin \varphi_{u}}{\sin \varphi_{x}}} = \frac{B}{\sin \varphi_{x}}.$$

или

Подставляя в те же формулы p = -1 и r = 1, получим:

илн

oqr

101

X-в зоне [100]; p=0.

Подставляя в те же формулы (1b), (2) и (3), получим:

$$\frac{q}{r} = \frac{\operatorname{tg}\,\rho_x\sin\left(\varphi_p - \varphi_x\right) - \operatorname{tg}\,\rho_r\sin\left(\varphi_p - \varphi_r\right)}{\operatorname{tg}\,\rho_u\sin\left(\varphi_p - \varphi_u\right) - \operatorname{tg}\,\rho_r\sin\left(\varphi_p - \varphi_r\right)} = \frac{\operatorname{tg}\,\rho_x\sin\left(\varphi_p - \varphi_x\right) - C}{D - C}; \quad (10)$$

$$\operatorname{ctg} \varphi_{x} = \frac{q \operatorname{tg} \rho_{u} \sin (\varphi_{p} - \varphi_{u}) + (r - q) \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{r \sin \varphi_{p} \operatorname{tg} \rho_{r} \sin \varphi_{r}} + \operatorname{ctg} \varphi_{p} = \frac{q \cdot D + (r - q) C}{r \sin \varphi_{p} A} + \operatorname{ctg} \varphi_{p}, \qquad (11)$$

$$\operatorname{tg} \rho_{x} = \frac{\overline{\operatorname{tg} \rho_{r} \sin \varphi_{r}}}{\sin \varphi_{x}} = \frac{A}{\sin \varphi_{x}}, \qquad (12a)$$

илн

$$\operatorname{tg} \boldsymbol{\rho}_{x} = \frac{q \operatorname{tg} \boldsymbol{\rho}_{u} \sin (\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{u}) + (r - q) \operatorname{tg} \boldsymbol{\rho}_{r} \sin (\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{r})}{r \sin (\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{x})} = \frac{q \cdot D + (r - q) \cdot C}{r \sin (\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{x})}. \quad (12b)$$

011

Подставляя в предыдущие формулы q = r = 1, получим:

$$\operatorname{ctg} \varphi_{x} = \frac{\left| \overbrace{\operatorname{sin} \varphi_{p} \operatorname{sin} (\varphi_{p} - \varphi_{u})}{\operatorname{sin} \varphi_{p} \operatorname{tg} \rho_{r} \operatorname{sin} \varphi_{p}} + \operatorname{ctg} \varphi_{p} = \frac{D}{\operatorname{sin} \varphi_{p} \cdot A} + \operatorname{ctg} \varphi_{p} \cdot \frac{D}{\operatorname{sin} (\varphi_{p} - \varphi_{n})} = \frac{D}{\operatorname{sin} (\varphi_{p} - \varphi_{n})} \cdot \frac{D}{\operatorname{sin} (\varphi_{n} - \varphi_{n})} \cdot \frac{D}{\operatorname{sin} (\varphi_{n}$$

011

$$\operatorname{ctg} \varphi_{x} = \frac{2 \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r}) - \operatorname{tg} \rho_{u} \sin (\varphi_{p} - \varphi_{u})}{\sin \varphi_{p} \cdot \operatorname{tg} \rho_{r} \sin \varphi_{r}} + \operatorname{ctg} \varphi_{p} = \frac{2C - D}{\sin \varphi_{p} \cdot A} + \operatorname{ctg} \varphi_{p};$$

$$\operatorname{tg} \rho_{x} = \frac{\operatorname{tg} \rho_{r} \sin \varphi_{r}}{\sin \varphi_{x}} = \frac{A}{\sin \varphi_{x}},$$

$$\operatorname{tg} \rho_{x} = \frac{2 \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r}) - \operatorname{tg} \rho_{u} \sin (\varphi_{p} - \varphi_{u})}{\sin (\varphi_{p} - \varphi_{x})} = \frac{2C - D}{\sin (\varphi_{p} - \varphi_{x})}.$$

X-в зоне граней (001) и (111), т. е. в зоне $[\bar{1}10]; q = p$ (стр. 56).

ppr

Подставляя в формулы (1b), (2) и (3) р вместо q, получим:

$$\frac{p}{r} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - \operatorname{tg} \rho_r \sin \varphi_r}{\operatorname{tg} \rho_u \sin \varphi_u - \operatorname{tg} \rho_r \sin \varphi_r} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - A}{B - A};$$
(13)

$$\operatorname{ctg} \varphi_{x} = \frac{p \operatorname{tg} \rho_{u} \sin (\varphi_{p} - \varphi_{u}) + (r - p) \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{\sin \varphi_{p}} + \operatorname{ctg} \varphi_{p} = \frac{p \operatorname{tg} \rho_{u} \sin \varphi_{u} + (r - p) \operatorname{tg} \rho_{r} \sin \varphi_{r}}{\left| \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{i=1}^{p} \sum_{j=1}^{p$$

Эту формулу можно преобразовать в следующую, более простую:

$$\operatorname{ctg}\varphi_{x} = \frac{p \operatorname{tg}\rho_{u} \cos\varphi_{u} + (r-p) \operatorname{tg}\rho_{r} \cos\varphi_{r}}{p \operatorname{tg}\rho_{u} \sin\varphi_{u} + (r-p) \operatorname{tg}\rho_{r} \sin\varphi_{r}} = \frac{p \operatorname{tg}\rho_{u} \cos\varphi_{u} + (r-p) \operatorname{tg}\rho_{r} \cos\varphi_{r}}{p \cdot B + (r-p) \cdot A}$$
(14b)

Формулой (14b) выгоднее пользоваться в том случае, если нет граней, для вычисления которых необходимы величины C, D, $\sin \varphi_p$ и $\operatorname{ctg} \varphi_p$. Формула показывает также, что при данной юстировке сферические коор-

Формула показывает также, что при данной юстировке сферические координаты граней данной зоны определяются по координатам трех граней: $\varphi_q = 0^\circ$; $\rho_q = 90^\circ$, φ_r , ρ_r , φ_u и ρ_u .

$$\operatorname{tg} \rho_{x} = \frac{p \operatorname{tg} \rho_{u} \sin \varphi_{u} + (r-p) \operatorname{tg} \rho_{r} \sin \varphi_{r}}{r \sin \varphi_{x}} = \frac{p \cdot B + (r-p) \cdot A}{r \sin \varphi_{x}}, \quad (15a)$$

$$\operatorname{tg} \rho_{x} = \frac{p \operatorname{tg} \rho_{u} \sin \left(\varphi_{p} - \varphi_{u}\right) + (r - p) \operatorname{tg} \rho_{r} \sin \left(\varphi_{p} - \varphi_{r}\right)}{r \sin \left(\varphi_{p} - \varphi_{x}\right)} = \frac{p \cdot D + (r - p) \cdot C}{r \sin \left(\varphi_{p} - \varphi_{x}\right)}.$$
 (15b)

$$\operatorname{ctg} \varphi_{\mathbf{x}} = \frac{\frac{1}{2} \operatorname{tg} \rho_{r} \sin(\varphi_{p} - \varphi_{r}) - \operatorname{tg} \rho_{\mu} \sin(\varphi_{p} - \varphi_{\mu})}{\sin \varphi_{p} \left(2 \operatorname{tg} \rho_{r} \sin \varphi_{r} - \operatorname{tg} \rho_{\mu} \sin \varphi_{\mu}\right)} + \operatorname{ctg} \varphi_{p} = \frac{2C - D}{\sin \varphi_{p} \left(2A - B\right)} + \operatorname{ctg} \varphi_{p},$$

$$\operatorname{tg} \varphi_{\mathbf{x}} = \frac{\frac{2 \operatorname{tg} \rho_{r} \cos \varphi_{r} - \operatorname{tg} \rho_{\mu} \cos \varphi_{\mu}}{2 \operatorname{tg} \rho_{r} \sin \varphi_{r} - \operatorname{tg} \rho_{\mu} \cos \varphi_{\mu}}}{\frac{2 \operatorname{tg} \rho_{r} \cos \varphi_{r} - \operatorname{tg} \rho_{\mu} \sin \varphi_{\mu}}{2}} = \frac{\frac{2 \operatorname{tg} \rho_{r} \cos \varphi_{r} - \operatorname{tg} \rho_{\mu} \cos \varphi_{\mu}}{2A - B}}{\operatorname{tg} \rho_{\mathbf{x}}};$$

X-в зоне граней (010) и (111), т. е. в зоне [101]; r=p (стр. 56).

pqp

111

$$\frac{p}{q} = \frac{\frac{1}{\operatorname{tg} \rho_{u} \sin(\varphi_{p} - \varphi_{u})} - \frac{1}{\operatorname{tg} \rho_{r} \sin(\varphi_{p} - \varphi_{r})}}{\frac{1}{\operatorname{tg} \rho_{r} \sin(\varphi_{p} - \varphi_{r})} - \frac{1}{\operatorname{tg} \rho_{r} \sin(\varphi_{p} - \varphi_{r})}} = \frac{\frac{1}{D-C}}{\operatorname{tg} \rho_{x} \sin(\varphi_{p} - \varphi_{x}) - C}; \quad (16)$$

1

$$\operatorname{ctg} \varphi_{x} = \frac{q \operatorname{tg} \rho_{u} \sin(\varphi_{p} - \varphi_{u}) + (p - q) \operatorname{tg} \rho_{r} \sin(\varphi_{p} - \varphi_{r})}{p \cdot \sin\varphi_{p} \cdot \operatorname{tg} \rho_{u} \sin\varphi_{u}} + \operatorname{ctg} \varphi_{p} = \frac{q D \left| + (p - q) \cdot C}{p \sin\varphi_{p} \cdot B} + \operatorname{ctg} \varphi_{p}; \qquad (17)$$

$$\operatorname{tg} \rho_{x} = \frac{\frac{|\overline{\operatorname{tg}} \rho_{\mu} \sin \varphi_{\mu}|}{\sin \varphi_{x}}}{\frac{B}{\sin \varphi_{x}}} = \frac{B}{\sin \varphi_{x}}, \qquad (18a)$$

$$\operatorname{tg} \rho_{x} = \frac{q \operatorname{tg} \rho_{u} \sin (\varphi_{p} - \varphi_{u}) + (p - q) \operatorname{tg} \rho_{r} \sin (\varphi_{p} - \varphi_{r})}{p \sin (\varphi_{p} - \varphi_{x})} = \frac{q D + (p - q) C}{p \sin (\varphi_{p} - \varphi_{x})}; \quad (18b)$$

$$\frac{\operatorname{ctg}\varphi_{x} = \frac{2\operatorname{tg}\varphi_{r}\sin(\varphi_{p}-\varphi_{r})-\operatorname{tg}\varphi_{u}\sin(\varphi_{p}-\varphi_{u})}{\sin\varphi_{p}\operatorname{tg}\varphi_{u}\sin\varphi_{u}} + \operatorname{ctg}\varphi_{p}}{\operatorname{tg}\varphi_{p}\cdot B} + \operatorname{ctg}\varphi_{p};}{\operatorname{tg}\varphi_{x} = \frac{\operatorname{tg}\varphi_{u}\sin\varphi_{u}}{\sin\varphi_{x}}} = \frac{B}{\sin\varphi_{x}},}$$

илн

$$\operatorname{tg} \rho_{x} = \frac{\left|\frac{2\operatorname{tg} \rho_{r} \sin\left(\varphi_{p} - \varphi_{r}\right) - \operatorname{tg} \rho_{u} \sin\left(\varphi_{p} - \varphi_{u}\right)}{\sin\left(\varphi_{p} - \varphi_{x}\right)}\right|}{\sin\left(\varphi_{p} - \varphi_{x}\right)} = \frac{\left|\frac{2C - D}{\sin\left(\varphi_{p} - \varphi_{x}\right)}\right|}{\sin\left(\varphi_{p} - \varphi_{x}\right)}.$$

X—в зоне граней (100) и (111), т. е. в зоне $[0\overline{11}]$; r = q (стр. 56).

pqq

Из формул (1b), (2) и (3) получим:

$$\frac{p}{q} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - \operatorname{tg} \rho_r \sin \varphi_r}{\operatorname{tg} \rho_u \sin \varphi_u - \operatorname{tg} \rho_r \sin \varphi_r} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - A}{B - A};$$
(19)

$$\operatorname{ctg} \varphi_{x} = \frac{q \operatorname{tg} \rho_{\mu} \sin (\varphi_{p} - \varphi_{\mu})}{\frac{\sin \varphi_{p} \left[p \operatorname{tg} \rho_{\mu} \sin \varphi_{n} + (q - p) \operatorname{tg} \rho_{r} \sin \varphi_{r} \right]}{q \cdot D} + \operatorname{ctg} \varphi_{p}} = \frac{q \cdot p}{\sin \varphi_{p} \left[p \cdot B + (q - p) \cdot A \right]} + \operatorname{ctg} \varphi_{p}; \qquad (20)$$

$$\operatorname{tg} \rho_{x} = \frac{\operatorname{tg} \rho_{u} \sin \left(\varphi_{p} - \varphi_{u}\right)}{\sin \left(\varphi_{p} - \varphi_{x}\right)} = \frac{D}{\sin \left(\varphi_{p} - \varphi_{x}\right)}, \qquad (21a)$$

или

$$\operatorname{tg} \rho_{x} = \frac{p \operatorname{tg} \rho_{u} \sin \varphi_{u}) + (q-p) \operatorname{tg} \rho_{r} \sin \varphi_{r}}{q \sin \varphi_{x}} = \frac{p \cdot B + (q-p) \cdot A}{q \sin \varphi_{x}}.$$
 (21b)

$$\boxed{\boxed{111}} \quad \operatorname{ctg} \varphi_{x} = \frac{\operatorname{tg} \varphi_{\mu} \sin (\varphi_{p} - \varphi_{\mu})}{\sin \varphi_{p} (2 \operatorname{tg} \varphi_{r} \sin \varphi_{r} - \operatorname{tg} \varphi_{\mu} \sin \varphi_{\mu})} + \operatorname{ctg} \varphi_{p} = \frac{D}{\sin \varphi_{p} (2A - B)} + \operatorname{ctg} \varphi_{p};$$

$$\operatorname{tg} \dot{\boldsymbol{\rho}}_{\boldsymbol{x}} = \frac{\operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{u}} \sin \left(\boldsymbol{\varphi}_{\boldsymbol{p}} - \boldsymbol{\varphi}_{\boldsymbol{u}}\right)}{\sin \left(\boldsymbol{\varphi}_{\boldsymbol{p}} - \boldsymbol{\varphi}_{\boldsymbol{x}}\right)} = \frac{D}{\sin \left(\boldsymbol{\varphi}_{\boldsymbol{p}} - \boldsymbol{\varphi}_{\boldsymbol{x}}\right)},$$

или

$$\operatorname{tg} \rho_{x} = \frac{\left| \frac{2\operatorname{tg} \rho_{r} \sin \varphi_{r} - \operatorname{tg} \rho_{u} \sin \varphi_{u}}{\sin \varphi_{x}} \right|}{\sin \varphi_{x}} = \frac{\left| \frac{2A - B}{\sin \varphi_{x}} \right|}{\sin \varphi_{x}}.$$

Пример (фиг. 61). Родонит (Гольдшмидт, Winkeltabellen, стр. 287). Дано:

a (001) $\varphi_a = 80^\circ 27$, $\rho_a = 21^\circ 43.5$ c (010) $\varphi_c = 0^\circ$, $\rho_c = 90^\circ$ b (100) $\varphi_b = 92^\circ 21$, $\rho_b = 90^\circ$ μ (111) $\varphi_{\mu} = 48^\circ 48$, $\rho_{\mu} = 70^\circ 15.5$

Вычислить сферические координаты граней

Т

g (320), k (011) н
$$\vartheta$$
 (113).

91

1

g (320).

Подставляя в формулы (4) и (6), получаем:

k (011).

По формуле для (011) (стр. 89) имеем:

$$\operatorname{ctg} \varphi_k = \frac{2C - D}{\cos 2^\circ 21 \cdot A} - \operatorname{tg} 2^\circ 21$$

Все величины, входящие в формулу, уже вычислены выше; каждая соответствующая величина или ее логарифм заключены в рамки. Подставляем эти величины:

$$\operatorname{ctg} \varphi_{k} = \frac{2 \cdot 0.08216 - 1.91990}{\cos 2^{\circ}21 \cdot A} - 0.04104 = -\frac{1.75558}{\cos 2^{\circ}21 \cdot A} - 0.04104.$$

$$+ \frac{\lg \cos 2^{\circ}21 = \overline{1}.99963}{\lg A = \overline{1}.59431}$$

$$= \frac{1.59394}{\overline{1}.59394}$$

$$- \frac{\lg 1.75558 = 0.24442}{\overline{1}.59394}$$

$$= \frac{4.47180}{0.65048}$$

$$+ \frac{4.47180}{4.51284}$$

$$\operatorname{ctg} \varphi_{k} = -4.51284; \quad \operatorname{ctg} (180 - \varphi_{k}) = 4.51284$$

$$\operatorname{tg} \varphi_{k} = \frac{A}{\sin \varphi_{k}} = \frac{A}{\sin 12^{\circ}30}$$

$$\operatorname{tg} \varphi_{k} = \frac{A}{\sin \varphi_{k}} = \frac{A}{\sin 12^{\circ}30}$$

$$= \frac{\overline{1}.59431}{\overline{1}.33534} \quad \underline{\rho_{k}} = 61^{\circ}09$$

$$\operatorname{lg} \operatorname{tg} \varphi_{k} = 0.25897$$

θ (113).

Пользуемся формулами (14a) и (15a):

$$tg \varphi_{\vartheta} = \frac{D+2C}{\cos 2^{\circ}21} (B+2A) - tg 2^{\circ}21 = \frac{1,91990 + 0,16432}{\cos 2^{\circ}21} (2,0966 + 0,78586)} - 0,04104 = \frac{2,08422}{\cos 2^{\circ}21 \cdot [2,88246]} - 0,04104$$

$$+ \frac{\lg \cos 2^{\circ}21 = \overline{1},99963}{[\lg 2,88246 = 0,46022]} - \lg 2,08422 = 0,31894$$

$$+ \frac{\lg \cos 2^{\circ}21 = \overline{1},99963}{0,45985} - \frac{\lg 2,08422 = 0,31894}{\overline{1},85909}$$

$$- \frac{0,72292}{0,04104}$$

$$ctg \varphi_{\vartheta} = \overline{0,68188} \quad \underline{\varphi_{\vartheta}} = \overline{55^{\circ}43}$$

$$tg \rho_{\vartheta} = \frac{B+2A}{3\sin 55^{\circ}43} = \frac{2,88246}{3\sin 55^{\circ}43}$$

$$+ \frac{\lg 3 = 0,47712}{\lg \sin 55^{\circ}43} = \frac{\lg 2,88246 = 0,46022}{0,39424}$$

$$\lg tg \rho_{\vartheta} = 49^{\circ}20$$

.

§ 4. Триклинная (агирная) сингония

Юстировка по грани R-(001)

$$\varphi_q = 0^\circ; \quad \varphi_r = \frac{0}{0}; \quad \mathsf{p}_r = 0^\circ.$$

pqr

Подставляя р_r = 0° в формулу (2а) (стр. 82), найдем:

p:q:r =

 $=\frac{\operatorname{tg}\,\rho_x\sin\varphi_x}{\operatorname{tg}\,\rho_u\sin\varphi_u}:\frac{\operatorname{tg}\,\rho_x\sin(\varphi_p-\varphi_x)}{\operatorname{tg}\,\rho_u\sin(\varphi_p-\varphi_u)}:\frac{\operatorname{tg}\,\rho_q\operatorname{tg}\,\rho_x\sin\varphi_x-\operatorname{tg}\,\rho_q\operatorname{tg}\,\rho_p\sin\varphi_p+\operatorname{tg}\,\rho_x\operatorname{tg}\,\rho_p\sin(\varphi_p-\varphi_x)}{\operatorname{tg}\,\rho_q\operatorname{tg}\,\rho_u\sin\varphi_u-\operatorname{tg}\,\rho_q\operatorname{tg}\,\rho_p\sin\varphi_p+\operatorname{tg}\,\rho_u\operatorname{tg}\,\rho_p\sin(\varphi_p-\varphi_u)}$

В числителе третьей дроби выносим за скобки $tg \rho_q tg \rho_x tg \rho_p$, а в знаменателе — $tg \rho_q tg \rho_u tg \rho_p$. После сокращений получим:

$$p:q:r = \frac{\sin\varphi_x}{\sin\varphi_u}: \frac{\sin(\varphi_p - \varphi_x)}{\sin(\varphi_p - \varphi_u)}: \frac{\frac{|\overline{tg}\rho_p \sin\varphi_x - \operatorname{ctg}\rho_x \sin\varphi_p + \operatorname{ctg}\rho_q \sin(\varphi_p - \varphi_x)}{\operatorname{ctg}\rho_p \sin\varphi_u - \operatorname{ctg}\rho_u \sin\varphi_p + \operatorname{ctg}\rho_q \sin(\varphi_p - \varphi_u)}.$$
 (1)

Величинам, повторяющимся при вычислении, дадим особые буквенные обозначения:

$$\operatorname{ctg} \rho_{p} \sin \varphi_{u} = A;$$

$$\operatorname{ctg} \rho_{u} \sin \varphi_{p} = B;$$

$$\operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u}) = C.$$

Подчеркнем также более простые величины, повторяющиеся при вычислении. Формула (1) принимает следующий вид:

$$p:q:r = \frac{\sin\varphi_x}{\sin\varphi_u}: \frac{\sin(\varphi_p - \varphi_x)}{\sin(\varphi_p - \varphi_u)}: \frac{\frac{\cos\varphi_p}{\sin\varphi_p}\sin\varphi_x - \cos\varphi_x}{A - B + C}$$

Из формулы (1) найдем:

$$p:q = \frac{\sin\left(\varphi_p - \varphi_u\right)}{\sin\varphi_u}: \frac{\sin\left(\varphi_p - \varphi_x\right)}{\sin\varphi_x}.$$

Умножив знаменателей дробей на sin φ_{ρ} , получим:

$$p:q = (\operatorname{ctg} \varphi_u - \operatorname{ctg} \varphi_p) : (\operatorname{ctg} \varphi_x - \operatorname{ctg} \varphi_p),$$

а отсюда:

$$\operatorname{ctg} \varphi_{x} = \frac{q}{p} \operatorname{ctg} \varphi_{u} + \left(1 - \frac{q}{p}\right) \operatorname{ctg} \varphi_{p}$$
(2)

При пользовании таблицей II натуральных котангенсов (стр. 215) вычисление углов φ по данной простейшей формуле сводится лишь к умножению и делению на индексы искомых граней раз для всего комплекса найденных величин сtg φ_n и сtg φ_p .

К сожалению, формулы для вычисления углов р сложнее, чем при юстировке по зоне [001].

Из формулы (1) берем отношения p:r и q:r и решаем их совместно относительно ρ_x . Получим:

$$\operatorname{ctg} \rho_{x} = \frac{\sin \varphi_{x}}{p} \left\{ \frac{(p-r)\operatorname{ctg} \rho_{p}}{\sin \varphi_{p}} + \frac{r \operatorname{ctg} \rho_{u}}{\sin \varphi_{u}} + \operatorname{ctg} \rho_{q} \left[-r \operatorname{ctg} \varphi_{u} + p \operatorname{ctg} \varphi_{x} + (r-p) \operatorname{ctg} \varphi_{p} \right] \right\}.$$
94

Подставляя сюда значение ctg φ_x из формулы (2), после соответствующих преобразований окончательно получаем:

$$\operatorname{ctg} \rho_{x} = \frac{\sin \varphi_{x}}{p \sin \varphi_{p} \sin \varphi_{u}} [(p-r) \operatorname{ctg} \rho_{p} \sin \varphi_{u} + r \operatorname{ctg} \rho_{u} \sin \varphi_{p} + (q-r) \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})] = \frac{\sin \varphi_{x}}{p \sin \varphi_{p} \sin \varphi_{u}} [(p-r) \cdot A + r \cdot B + (q-r) \cdot C)].$$
(3a)

Или, подставляя $\frac{\sin(\varphi_p - \varphi_x)}{q\sin(\varphi_p - \varphi_u)}$ вместо $\frac{\sin \varphi_x}{p\sin \varphi_u}$, получим:

$$\operatorname{ctg} \rho_{x} = \frac{\sin\left(\varphi_{p} - \varphi_{x}\right)}{q \sin \varphi_{p} \sin\left(\varphi_{p} - \varphi_{u}\right)} \left[(p-r) \operatorname{ctg} \rho_{p} \sin \varphi_{u} + r \operatorname{ctg} \rho_{u} \sin \varphi_{p} + \left[(p-r) \operatorname{ctg} \rho_{q} \sin \varphi_{p} + \left[(p-r) \operatorname{ctg} \rho_{q} \sin \varphi_{p} + \left[(p-r) \operatorname{ctg} \rho_{q} \sin \varphi_{p} + \left[(p-r) \operatorname{ctg} \rho_{u} \sin \varphi_{p} + \left[(p-r) \operatorname{ctg} \rho_{u} \sin \varphi_{u} + r \operatorname{ctg} \rho_{u} \sin \varphi_{u} + \left[(p-r) \operatorname{ctg} \varphi_{u} + \left[(p-r$$

X-в зоне [001]; r=0.

Подставляем в формулы (1) и (3)
$$r = 0$$
:

$$p: q = \frac{\sin \varphi_x}{\sin (\varphi_p - \varphi_x)} : \frac{\sin \varphi_p}{\sin (\varphi_p - \varphi_u)}.$$
(4)

Вторая дробь постоянна для всех граней данной зоны.

$$\operatorname{ctg} \varphi_{x} = \frac{q}{p} \operatorname{ctg} \varphi_{u} + \left(1 - \frac{q}{p}\right) \operatorname{ctg} \varphi_{p}; \qquad (5)$$

$$\operatorname{ctg} \varphi_{x} = \frac{\sin \varphi_{x}}{p \sin \varphi_{p} \sin \varphi_{u}} \left[p \operatorname{ctg} \varphi_{p} \sin \varphi_{u} + q \operatorname{ctg} \varphi_{q} \sin (\varphi_{p} - \varphi_{u}) \right] = \frac{\sin \varphi_{x}}{p \sin \varphi_{p} \sin \varphi_{u}} \left(p \cdot A + q \cdot C \right). \qquad (6a)$$

.

Так как r = 0, то числитель третьей дроби формулы (1) равен нулю. Отсюда также найдем:

$$\operatorname{ctg} \rho_x = \frac{\operatorname{ctg} \rho_p \sin \varphi_x + \operatorname{ctg} \rho_q \sin (\varphi_p - \varphi_x)}{\operatorname{sin} \varphi_p}.$$
(6b)

Этой формулой выгодно пользоваться, если нет других граней, в вычисление индексов и сферических координат которых входят постоянные A, B, C и др.

$$\varphi_{x} = \varphi_{u}$$

$$\operatorname{ctg} \rho_{x} = \frac{\left| \frac{\varphi_{x} = \varphi_{u}}{\operatorname{ctg} \rho_{p} \sin \varphi_{u} + \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})}{\operatorname{sin} \varphi_{p}} \right|}{\varphi_{\overline{1} \overline{10}} = \frac{\varphi_{u}}{\varphi_{u}} + 180^{\circ}} = \frac{\left| \frac{A+C}{\varphi_{u}} \right|}{\varphi_{u}}$$

Для р₁₁₀ в предыдущей формуле числитель отрицателен.

$$\frac{1\overline{10}}{\operatorname{ctg} \varphi_{x} = 2 \operatorname{ctg} \varphi_{p} - \operatorname{ctg} \varphi_{u};} \operatorname{ctg} \varphi_{x} = \frac{\sin \varphi_{x}}{\sin \varphi_{p} \sin \varphi_{u}} \left[\operatorname{ctg} \varphi_{p} \sin \varphi_{u} - \operatorname{ctg} \varphi_{q} \sin (\varphi_{p} - \varphi_{u}) \right] = \frac{\sin \varphi_{x} (A - C)}{\sin \varphi_{p} \sin \varphi_{u}};}{\varphi_{110} = \varphi_{1\overline{10}} + 180^{\circ}.}$$

Для р₁₁₀ в предыдущей формуле числитель отрицателен.

X-в зоне [010]; q=0.

por

Из формулы (1) найдем:

$$p:r = \frac{\sin\varphi_{x}}{\sin\varphi_{u}}: \frac{\operatorname{ctg}\varphi_{p}\sin\varphi_{x} - \operatorname{ctg}\varphi_{x}\sin\varphi_{p}}{\operatorname{ctg}\varphi_{p}\sin\varphi_{u} - \operatorname{ctg}\varphi_{u}\sin\varphi_{p} + \operatorname{ctg}\varphi_{q}\sin(\varphi_{p} - \varphi_{u})} = \frac{\sin\varphi_{x}}{\sin\varphi_{u}}: \frac{\operatorname{ctg}\varphi_{p}\sin\varphi_{x} - \operatorname{ctg}\varphi_{x}\sin\varphi_{p}}{A - B + C}.$$
(7)

Так как числитель второй дроби формулы (1) $\sin(\varphi_p - \varphi_x) = 0$, то

 $\varphi_x' = \varphi_p; \qquad \varphi_x'' = \varphi_p + 180^\circ.$ (8)

Подставив в формулу (За) q = 0, получим:

oqr

$$\operatorname{ctg} \rho_{x} = \frac{\frac{\operatorname{ctg} \rho_{u} \sin \varphi_{p} - \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})}{\sin \varphi_{u}}}{\varphi_{x} = \varphi_{p} + 180^{\circ}} = \frac{\frac{B - C}{\sin \varphi_{u}}}{|\varphi_{x}|}.$$

$$\operatorname{ctg} \rho_{x} = \frac{\operatorname{ctg} \rho_{u} \sin \varphi_{p} - 2 \operatorname{ctg} \rho_{p} \sin \varphi_{u} - \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})}{\sin \varphi_{u}} = \frac{B - 2A - C}{\sin \varphi_{u}}.$$

X-в зоне [100]; p=0.

Числитель первой дроби формулы (1) $\sin \varphi_x = 0$. Отсюда

$$\varphi_x' = 0^\circ \quad \varphi_x'' = 180^\circ.$$
 (10)

$$q: r = \frac{\sin(\varphi_p - \varphi_x)}{\sin(\varphi_p - \varphi_u)} : \frac{\cot \varphi_q \sin(\varphi_p - \varphi_x) - \cot \varphi_x \sin \varphi_p}{\cot \varphi_p \sin \varphi_u - \cot \varphi_u \sin \varphi_p + \cot \varphi_q \sin(\varphi_p - \varphi_u)} = \frac{\sin(\varphi_p - \varphi_x)}{\sin(\varphi_p - \varphi_u)} : \frac{\cot \varphi_q \sin(\varphi_p - \varphi_x) - \cot \varphi_x \sin \varphi_p}{A - B + C}.$$
(11)

Подставляя в формулу (3b) p = 0, получим:

$$\operatorname{ctg} \rho_{x} = \frac{\sin(\varphi_{2} - \varphi_{x})}{q \sin \varphi_{p} \sin(\varphi_{p} - \varphi_{u})} [(q - r) \operatorname{ctg} \rho_{q} \sin(\varphi_{p} - \varphi_{u}) - r (\operatorname{ctg} \rho_{p} \sin \varphi_{u} - \frac{1}{|Q|} - \frac{1}{|$$

X—в зоне $[\bar{1}10]$, т. е. в зоне граней (001) и (111); q=p.

ppr Из формул (1) (2) и (3а) получаем:

$$p: r = \frac{\sin \varphi_x}{\sin \varphi_u} : \frac{|\overrightarrow{\operatorname{ctg}} \rho_p \sin \varphi_x - \operatorname{ctg} \rho_x \sin \varphi_p + \operatorname{ctg} \rho_q \sin (\varphi_p - \varphi_x)}{|\overrightarrow{\operatorname{ctg}} \rho_p \sin \varphi_u - \operatorname{ctg} \rho_u \sin \varphi_p + \operatorname{ctg} \rho_q \sin (\varphi_p - \varphi_u)}| = \frac{\sin \varphi_x}{\sin \varphi_u} : \frac{|\overrightarrow{\operatorname{ctg}} \rho_p \sin \varphi_x - \operatorname{ctg} \rho_x \sin \varphi_p + \operatorname{ctg} \rho_q \sin (\varphi_p - \varphi_x)}{A - B + C}; \quad (13)$$

$$\varphi_x' = \varphi_u, \quad \varphi_x'' = \varphi_u + 180^\circ. \tag{14}$$

$$\operatorname{ctg} \rho_{x} = \frac{\left| \underbrace{\operatorname{ctg} \rho_{\mu} \sin \varphi_{p}}{2} - 2 \left[\operatorname{ctg} \rho_{p} \sin \varphi_{\mu} + \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u}) \right]}{\left| \underbrace{\operatorname{sin} \varphi_{p}}{2} \right|} = \frac{B - 2 \left(\overline{A + C} \right)}{\left| \underbrace{\operatorname{sin} \varphi_{p}}{2} \right|}$$

X-в зоне [101], т. е. в зоне граней (010) и (111); r=p.

$$p:q = \frac{\sin \varphi_x}{\sin (\varphi_p - \varphi_x)} : \frac{\sin \varphi_u}{\sin (\varphi_p - \varphi_u)}; \qquad (16)$$

$$\operatorname{ctg} \varphi_{x} = \frac{q}{p} \operatorname{ctg} \varphi_{u} + \left(1 - \frac{q}{p}\right) \operatorname{ctg} \varphi_{p}; \qquad (17)$$

$$\operatorname{ctg} \rho_{x} = \frac{\sin \varphi_{x}}{p \cdot \sin \varphi_{p} \cdot \sin \varphi_{n}} [p \operatorname{ctg} \rho_{u} \sin \varphi_{p} + (q - p) \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})] = \frac{\sin \varphi_{x} [p \cdot B + (q - p) \cdot C]}{p \cdot \sin \varphi_{p} \cdot \sin \varphi_{u}}.$$
(18a)

Последняя формула может быть преобразована в более простую, но выгодную лишь в том случае, если уже раньше не вычислены величины B, C и sin $\varphi_p \sin \varphi_n$:

$$\operatorname{ctg} \rho_{x} = \frac{\frac{\operatorname{ctg} \rho_{u} \sin \varphi_{x} + \operatorname{ctg} \rho_{q} \sin (\varphi_{u} - \varphi_{x})}{\sin \varphi_{u}}; \quad (18b)$$

7 Аншелес — 700

$$\operatorname{ctg} \rho_{x} = \frac{\sin \varphi_{x} \left[(p-q) \operatorname{ctg} \rho_{p} \sin \varphi_{u} + q \operatorname{ctg} \rho_{u} \sin \varphi_{p} \right]}{p \sin \varphi_{p} \sin \varphi_{u}} = \frac{\sin \varphi_{x} \left[(p-q) \cdot A + q \cdot B \right]}{p \sin \varphi_{p} \sin \varphi_{u}}. (21a)$$

Подставляя сюда $\frac{q}{p}$ из формулы (19), получим более простую, но менее выгодную в общем ходе вычисления формулу.

$$\operatorname{ctg} \rho_{\boldsymbol{x}} = \frac{\sin \varphi_{\boldsymbol{x}} (\operatorname{ctg} \rho_{\boldsymbol{\mu}} \sin \varphi_{\boldsymbol{p}} - 2 \operatorname{ctg} \rho_{\boldsymbol{p}} \sin \varphi_{\boldsymbol{\mu}})}{\lim_{\substack{i = \dots, \dots, n \\ i = \dots, n$$

Пример (фиг. 62). Родонит. Дано:

a (001)	$\varphi_a = \frac{0}{0};$	$\rho_a = 0^\circ$
c (010)	$\varphi_c = 0^{\circ};$	$\rho_c = 86^{\circ} 29$
b(100)	$\varphi_b = 93^\circ 54;$	$p_b = 68^{\circ} 46$
բ(111)	$\varphi_{\mu} = 42^{\circ} 32;$	$\rho_{\mu} = 52^{\circ} 22$

Вычислить сферические координаты граней:

g (320), k (011) и ϑ (113).

<u>g (320).</u>

По формуле (5) имеем:

$$\begin{aligned} \operatorname{ctg} \varphi_{\mathcal{E}} &= -\frac{2}{3} \operatorname{ctg} \varphi_{\mu} + \frac{5}{3} \operatorname{ctg} \varphi_{\mu} = -\frac{2 \operatorname{ctg} 42^{2}32 + 5 \operatorname{ctg} 93^{5}4}{3} = \\ &= -\frac{(2 \operatorname{ctg} 42^{2}32 + 5 \operatorname{tg} 3^{5}4)}{3} \cdot \\ &= -\frac{(2 \operatorname{ctg} 42^{2}32 + 5 \operatorname{tg} 3^{5}4)}{3} \cdot \\ &= -\frac{(2 \operatorname{ctg} 42^{2}32 + 5 \operatorname{tg} 3^{5}4)}{3} \cdot \\ &= -\frac{(2 \operatorname{ctg} 2^{2}3^{2} + 5 \operatorname{tg} 3^{5}4)}{2} \cdot \\ &= -\frac{2 \operatorname{ctg} 2^{2}3^{2} + 5 \operatorname{tg} 3^{5}4}{2} \cdot \\ &= -\frac{2 \operatorname{ctg} 2^{2}3^{2} + 5 \operatorname{tg} 3^{5}4}{2} \cdot \\ &= -\frac{2 \operatorname{ctg} 2^{2}3^{2} + 5 \operatorname{tg} 3^{5}4}{2} \cdot \\ &= -\frac{2 \operatorname{ctg} 2^{2}3^{2} + 5 \operatorname{tg} 3^{5}4}{2} \cdot \\ &= -\frac{2 \operatorname{ctg} 2^{2}3^{2} - 2 \operatorname{ctg} 3^{2} + 5 \operatorname{tg} 3^{2}54}{2} \cdot \\ &= -\frac{2 \operatorname{ctg} 2^{2}3^{2} - 2 \operatorname{ctg} 2^{2}}{2} \cdot \\ &= -\operatorname{ctg} 2^{2} - 2 \cdot \operatorname{ctg} 2^{2} \cdot \\ &= -\operatorname{ctg} 2^{2} \cdot \\ &= \operatorname{ctg} 2^{2} \cdot \\ &= -\operatorname{ctg} 2^{2} \cdot \\ &= \operatorname{ctg} 2^{2} \cdot \\ &$$

$$\underline{\rho_g = 75^\circ 19}$$

к (011).

÷

По формулам для (011) на стр. 97 получаем:

$$\varphi_k = 180^\circ$$

-9**9**

$$\operatorname{ctg} \mathbf{p}_{k} = \frac{\operatorname{ctg} \mathbf{p}_{\mu} \sin \mathbf{\varphi}_{b} - \operatorname{ctg} \mathbf{p}_{b} \sin \mathbf{\varphi}_{\mu} - 2 \operatorname{ctg} \mathbf{p}_{c} \sin (\mathbf{\varphi}_{b} - \mathbf{\varphi}_{\mu})}{\sin (\mathbf{\varphi}_{b} - \mathbf{\varphi}_{\mu})} = \frac{B}{\operatorname{ctg} 52^{\circ}22 \sin 93^{\circ}45 - \operatorname{ctg} 68^{\circ}46 \sin 42^{\circ}32 - 2 \operatorname{ctg} 86^{\circ}29 \sin 51^{\circ}22}{\sin 51^{\circ}22}.$$

Величины А и С уже вычислены выше:

$$+\frac{\lg \operatorname{ctg} 52^{\circ}22 = \overline{1,88707}}{|\lg \cos 3^{\circ}54 = \overline{1,99899}|} + A = 0,26266 + 2C = 0,09601 + 0,09601 + 0,09601 + 0,09601 +$$

<u>∛ (113).</u>

По формулам (14) и (15) найдем:

$$\varphi_{\mathfrak{g}} = \varphi_{\mu} = 42^{\circ} 32$$

$$\operatorname{ctg} \rho_{\vartheta} = \frac{-2\left[\operatorname{ctg} \rho_b \sin \varphi_{\mu} + \operatorname{ctg} \rho_c \sin (\varphi_b - \varphi_{\mu})\right] + 3\operatorname{ctg} \rho_{\mu} \sin \varphi_b}{\sin \varphi_b} = \frac{-2(A+C) + 3B}{\cos 3^5 54}.$$

Величины А, В, С и lg cos 3°54 уже вычислены выше.

$$+ \underbrace{\substack{A = 0,26266\\C = 0,048006}}_{2(A + C) = 0,310666 \cdot 2 = 0,621332}$$
$$- \underbrace{\substack{3B = 2,30769\\2(A + C) = 0,62133}}_{1g \ cos \ 3^{\circ}54 = \overline{1},99899}$$
$$+ \underbrace{\substack{1g \ cos \ 3^{\circ}54 = \overline{1},99899}}_{1g \ ctg \ P_{\vartheta} = 0,22795} \underline{P_{\vartheta} = 30^{\circ} \ 36,5}$$

§ 5. Моноклинная (моногирная) сингония

Юстировка по зоне [001]; $\varphi_p = \varphi_r = 90^\circ$

Вычисление сферических координат (φ и ρ) производим только для граней (*pqr*) и (\overline{pqr}), так как

$$\begin{aligned} \varphi_{p\bar{q}r} &= 180^{\circ} - \varphi_{pqr}, \ \rho_{p\bar{q}r} = \rho_{pqr} \\ \varphi_{p\bar{q}r} &= -(180^{\circ} - \varphi_{pqr}), \ \rho_{p\bar{q}r} = \rho_{pqr}, \end{aligned}$$

тде p, q и r числа положительные; одно из них может равняться нулю. 100 pqr

При подстановке указанных значений φ_p и φ_r в соответствующие формулы для триклинной сингонии [форм. (1b), (2) и (3) (стр. 86—87)] получим:

$$p:q:r = \frac{\operatorname{tg} \rho_x \sin \varphi_x - \operatorname{tg} \rho_r}{\operatorname{tg} \rho_u \sin \varphi_u - \operatorname{tg} \rho_r} : \frac{\operatorname{tg} \rho_x \cos \varphi_x}{\operatorname{tg} \rho_u \cos \varphi_u} : 1.$$
(1a)

Величинам, повторяющимся при вычислении, дадим особые буквенные обозначения:

$$tg \rho_{\mu} = A$$

$$tg \rho_{\mu} \sin \varphi_{\mu} = B$$

$$tg \rho_{\mu} \cos \varphi_{\mu} = C.$$

Таким образом

$$p:q:r = \frac{\operatorname{tg} \rho_x \sin \varphi_x - A}{|| - - -||} : \frac{\operatorname{tg} \rho_x \cos \varphi_x}{C} : 1.$$

Числитель и знаменатель первой дроби правой части можно привести к логарифмическому виду. Для этого примем:

$$tg \rho_x \sin \varphi_x = tg \theta_1, tg \rho_u \sin \varphi_u = B = tg \theta_2$$

Окончательно получим:

$$p:q:r = \frac{\cos \theta_2 \sin (\theta_1 - \rho_r)}{\cos \theta_1 \sin (\theta_2 - \rho_r)}: \frac{\lg \rho_x \sin \varphi_x}{C}:1;$$
(1b)

$$\operatorname{tg} \varphi_{x} = \frac{p \operatorname{tg} \rho_{u} \sin \varphi_{u} + (r-p) \operatorname{tg} \rho_{r}}{q \operatorname{tg} \rho_{u} \cos \varphi_{u}} = \frac{p \cdot B + (r-p) \cdot A}{q \cdot C}; \qquad (2)$$

$$tg \rho_x = \frac{q tg \rho_u \cos \varphi_u}{r \cos \varphi_x} = \frac{q \cdot C}{r \cos \varphi_x}, \qquad (3a)$$

$$\lg \rho_x = \frac{p \lg \rho_u \sin \varphi_u + (r-p) \lg \rho_r}{r \sin \varphi_x} = \frac{pB + (r-p)A}{r \sin \varphi_x}.$$
 (3b)

X-в зоне [001]; r=0.

pqo

Из формулы (3) найдем:

$$\rho_x = 90^\circ. \tag{4}$$

Формулы (1) и (2) принимают вид:

$$p:q:=\operatorname{tg}\varphi_{x}:\frac{\operatorname{tg}\rho_{u}\sin\varphi_{u}-\operatorname{tg}\rho_{r}}{\operatorname{tg}\rho_{u}\cos\varphi_{u}}=\operatorname{tg}\varphi_{x}:\frac{B-A}{C};$$
(5)

$$\operatorname{tg} \varphi_{x} = \frac{p\left(\operatorname{tg} \rho_{u} \sin \varphi_{u} - \operatorname{tg} \rho_{r}\right)}{q\operatorname{tg} \rho_{u} \cos \varphi_{u}} = \frac{p}{q} \cdot \frac{B-A}{C}; \qquad (6)$$

$$tg \varphi_{x} = \frac{\frac{tg \rho_{u} \sin \varphi_{u} - tg \rho_{r}}{tg \rho_{u} \cos \varphi_{u}}}{\frac{tg \rho_{u} \cos \varphi_{u}}{tg \rho_{u} \cos \varphi_{u}}} = \frac{B-A}{C}.$$
101

-!

$$\begin{bmatrix} \overline{1}10 \\ \mathbf{x}_{m} = -\varphi_{110}, \ \mathbf{p}_{x} = 90^{\circ}. \\ \hline \mathbf{x}_{m} = \mathbf{s} \text{ some [010]; } q = \mathbf{0}. \\ \hline \begin{bmatrix} por \\ \mathbf{p}_{m} \end{bmatrix} \qquad p_{m} = \operatorname{tg} \mathbf{p}_{x} \sin \mathbf{p}_{x} - \operatorname{tg} \mathbf{p}_{r} = \operatorname{tg} \mathbf{p}_{x} \sin \mathbf{p}_{x} - \mathbf{A}$$

$$\frac{p}{r} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - \operatorname{tg} \rho_r}{\operatorname{tg} \rho_u \sin \varphi_u - \operatorname{tg} \rho_r} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - A}{B - A}.$$
(7)

Или в логарифмическом виде:

$$\frac{p}{r} = \frac{\cos \theta_2 \sin \left(\theta_1 - \rho_r\right)}{\cos \theta_1 \sin \left(\theta_2 - \rho_r\right)}; \tag{7b}$$

$$\varphi_x' = 90^\circ, \ \varphi_x'' = 270^\circ = -90^\circ;$$
 (8)

$$\operatorname{tg} \rho_{x} = \frac{p \operatorname{tg} \rho_{u} \sin \varphi_{u} + (r-p) \operatorname{tg} \rho_{r}}{r \sin \varphi_{x}} = \frac{p \cdot B + (r-p) \cdot A}{r \sin \varphi_{x}}; \qquad (9)$$

$$\frac{\operatorname{tg} \rho_x = \operatorname{tg} \rho_u \sin \varphi_u}{\left| 101 \right|} = B;$$

....

$$\operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{x}} = \operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{u}} \sin \boldsymbol{\varphi}_{\boldsymbol{u}} - 2 \operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{r}} = B - 2A.$$

X—в зоне [100];
$$p = 0$$
.

$$\frac{q}{r} = \frac{\operatorname{tg} \rho_x \cos \varphi_x}{\operatorname{tg} \rho_u \cos \varphi_u} = \frac{\operatorname{tg} \rho_x \cos \varphi_x}{C}; \qquad (10)$$

$$\operatorname{tg} \varphi_{x} = \frac{r \operatorname{tg} \varphi_{r}}{q \operatorname{tg} \varphi_{u} \cos \varphi_{u}} = \frac{r}{p} \cdot \frac{|\overline{A}|}{C}; \qquad (11)$$

$$tg \rho_x = \frac{q tg \rho_u \cos \varphi_u}{r \cos \varphi_x} = \frac{q \cdot C}{r \cos \varphi_x}; \qquad (12a)$$

$$\operatorname{tg} \rho_{x} = \frac{\overset{|--|}{\operatorname{tg} \rho_{r}}}{\sin \varphi_{x}} = \frac{A}{\sin \varphi_{x}} \quad . \tag{12b}$$

$$\operatorname{tg} \varphi_{\mathbf{x}} = \frac{\operatorname{tg} \rho_{\mathbf{r}}}{\operatorname{tg} \rho_{u} \cos \varphi_{u}} = \frac{\left| \begin{array}{c} - \\ A \end{array} \right|}{\left| \begin{array}{c} - \\ - \end{array} \right|};$$
$$\operatorname{tg} \rho_{\mathbf{x}} = \frac{\left| \begin{array}{c} \frac{1}{\operatorname{tg} \rho_{u} \cos \varphi_{u}} \\ \cos \varphi_{x} \end{array} \right|}{\cos \varphi_{x}} = \frac{C}{\cos \varphi_{x}};$$

.....

$$\operatorname{tg} \mathbf{p}_{\mathbf{x}} = \frac{\operatorname{tg} \mathbf{p}_{\mathbf{r}}}{\sin \varphi_{\mathbf{x}}} = \frac{A}{\sin \varphi_{\mathbf{x}}}.$$

X—в зоне [110], т. е. в зоне граней (001) и (111); q = p.

ppr |

Подставляя q = p в формулах (1), (2) и (3), получим:

$$\frac{p}{r} = \frac{\operatorname{tg} \rho_x \cos \varphi_x}{\operatorname{tg} \rho_u \cos \varphi_u} = \frac{\operatorname{tg} \rho_x \cos \varphi_x}{C}; \qquad (13)$$

$$\operatorname{tg} \varphi_{x} = \frac{p \operatorname{tg} \rho_{u} \sin \varphi_{u} + (r-p) \operatorname{tg} \rho_{r}}{p \operatorname{tg} \rho_{u} \cos \varphi_{u}} = \frac{p \cdot B + (r-p) \cdot A}{p \cdot C} ; \qquad (14)$$

$$\operatorname{tg} \rho_{x} = \frac{p \operatorname{tg} \rho_{u} \cos \varphi_{u}}{r \cos \varphi_{x}} = \frac{p \cdot C}{r \cos \varphi_{x}}; \qquad (15a)$$

$$\operatorname{tg} \rho_{x} = \frac{p \operatorname{tg} \rho_{u} \sin \varphi_{u}}{r \sin \varphi_{x}} + (r - p) \operatorname{tg} \rho_{r}}{r \sin \varphi_{x}} = \frac{p \cdot B + (r - p) A}{r \sin \varphi_{x}} .$$
(15b)

X—в зоне [101], т. е. в зоне граней (010) и (111); r = p.

pqp

pq

Из формулы (1), подставляя r = p, получим:

$$\frac{p}{q} = \frac{\frac{1}{\log \rho_u \cos \varphi_u}}{\frac{1}{\log \rho_x \cos \varphi_x}} = \frac{C}{\frac{1}{\log \rho_x \cos \varphi_x}}.$$
(16a)

Или из следующей ниже формулы (17) будем иметь:

$$p: q = \operatorname{tg} \varphi_{x}: \operatorname{tg} \varphi_{u}. \tag{16b}$$

Отношение индексов определяем непосредственно по табл. IV (стр. 250). Формулы (17) и (18) получаем из формул (2) и (3):

$$\operatorname{tg} \varphi_{x} = \frac{p}{q} \operatorname{tg} \varphi_{n} = \frac{p}{q} \cdot \frac{B}{C} \,. \tag{17}$$

Угол φ_x можно определить без вычислений по табл. III (стр. 234):

$$tg \rho_x = \frac{\frac{1}{tg \rho_a \sin \varphi_a}}{\sin \varphi_x} = \frac{B}{\sin \varphi_x}, \qquad (18a)$$

$$tg \rho_{x} = \frac{q tg \rho_{u} \cos \varphi_{u}}{p \cos \varphi_{x}} = \frac{q \cdot C}{p \cos \varphi_{x}}.$$
 (18b)

X—в зоне [011], т. е. в зоне граней (100) и (111); r = q.

$$\frac{q}{q} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - \operatorname{tg} \rho_r}{\operatorname{tg} \rho_u \sin \varphi_u - \operatorname{tg} \rho_r} = \frac{\operatorname{tg} \rho_x \sin \varphi_x - A}{B - A}.$$
(19a)

Или в логарифмическом виде:

$$\frac{p}{q} = \frac{\cos \theta_2 \sin \left(\theta_1 - \rho_r \right)}{\cos \theta_1 \sin \left(\theta_2 - \rho_r \right)} ; \qquad (19b)$$

$$tg \varphi_x = \frac{p tg \rho_u \sin \varphi_u + (q-p) tg \rho_r}{q tg \rho_u \cos \varphi_u} = \frac{pB + (q-p)A}{qC}; \qquad (20)$$

Пример (фиг. 63). Диопсид (Гольдшмидт, Winkeltabellen, стр. 287). Дано:

 $\begin{array}{lll} c & (001) & \varphi_c = 90^{\circ} & \rho_c = 15^{\circ} 51 \\ b & (010) & \varphi_b = 0^{\circ} & \rho_b = 90^{\circ} \\ a & (100) & \varphi_a = 90^{\circ} & \rho_a = 90^{\circ} \\ u & (111) & \varphi_u = 55^{\circ} 04,5 & \rho_u = 45^{\circ} 50 \end{array}$

Вычислить сферические координаты граней:

$$f$$
 (310), p ($\overline{101}$) II v ($\overline{311}$).

f (310).

По формулам (4) и (6) имеем:

$$\frac{p_{f} = 90^{\circ}00}{\text{tg } \varphi_{f} = \frac{3(\text{tg } \rho_{\mu} \sin \varphi_{\mu} - \text{tg } \rho_{c})}{\text{tg } \rho_{\mu} \cos \varphi_{\mu}} = \frac{3(\text{tg } 45^{\circ}50 \sin 55^{\circ}04, 5 - \text{tg } 15^{\circ}51)}{(\text{tg } 45^{\circ}50 \cos 55^{\circ}04, 5 - \text{tg } 15^{\circ}51)} \\ + \frac{|\text{Ig } \text{tg } 45^{\circ}50 = 0,01263|}{|\text{Ig } \sin 55^{\circ}04, 5 = \overline{1},913765} \\ |\text{Ig } B = \overline{1},926395 \\ |B = 0,84411| \\ |B = 0,84411| \\ |B = -A = 0,56020| \\ + \frac{|\text{Ig } \text{tg } 45^{\circ}50 = 0,01263}{|\text{Ig } 2 = \overline{1},75778} \\ - \frac{|\text{Ig } 3(B - A)| = |\text{Ig } 1,68060 = 0,225478}{|\text{Ig } C = \overline{1},770410} \\ |\text{Ig } c = \overline{1},77041| \\ |\text{Ig } c = 1,77041| \\ |\text{Ig } tg \varphi_{f} = 70^{\circ}40,5 \\ \end{array}$$

<u>p (101)</u>.

По формулам на стр. 102 имеем:

$$\frac{\varphi_p = -90^\circ}{\operatorname{tg} \rho_p = \operatorname{tg} \rho_u \sin \varphi_u - 2 \operatorname{tg} \rho_c = B - 2 A.}$$

По найденным уже величинам, обведенным выше рамками, находим:

$$\begin{array}{c}
B = 0,84411 \\
2A = 2 \cdot 0,28391 = 0,56782 \\
& tg \rho_p = 0,27629 \\
\underline{\rho_p = 15^{\circ}27}
\end{array}$$

v (311).

Пользуемся формулой (20):

$$\operatorname{tg} \varphi_v = \frac{-3B+4A}{C} = -\frac{3B-4A}{C}.$$

По вычисленным уже величинам А, В и 1g С находим:

$$\begin{array}{c}
3B = 3 \cdot 0,84411 = 2,53233 \\
4A = 4 \cdot 0,28391 = 1,13564 \\
1,39669
\end{array} \qquad \begin{array}{c}
\lg 1,39669 = 0,145107 \\
\lg C = \overline{1},770410 \\
\lg \operatorname{tg} \varphi_v = 0,374697 \\
\varphi_v = -67^\circ 07
\end{array}$$

По формуле (21а) получаем:

$$tg \rho_{v} = \frac{C}{\cos \varphi_{v}} = \frac{C}{\cos 67^{\circ}07} \cdot \frac{1g C = \overline{1},77041}{\cos 67^{\circ} 07 = \overline{1},58979}$$
$$lg tg \rho_{v} = 0,18062$$
$$\rho_{v} = 56^{\circ}35$$

§ 6. Моноклинная (моногирная) сингония

Юстировка по грани R (001)

$$\varphi_p = 90^\circ; \ \varphi_q = 0^\circ; \ \rho_q = 90^\circ; \ \varphi_r = \frac{0}{0}; \ \rho_r = 0^\circ.$$

Углы _{Фх} могут определяться без вычислений по табл. III (стр. 235).

Индексы в формулах (4), (16) н (19) определяем по табл. IV (стр. 250).

рат Подставляем указанные величины в формулы (1), (2) и (3) для триклинной сингонии той же установки (стр. 94-95). Получаем:

$$p:q:r = \frac{\sin\varphi_x}{\sin\varphi_u}: \frac{\cos\varphi_x}{\cos\varphi_u}: \frac{\operatorname{ctg} \rho_x - \operatorname{ctg} \rho_p \sin\varphi_x}{\operatorname{ctg} \rho_u - \operatorname{ctg} \rho_p \sin\varphi_u}.$$
(1)

Введем следующие обозначения:

$$\operatorname{ctg} \boldsymbol{\rho}_p \sin \boldsymbol{\varphi}_u = A$$
$$\operatorname{ctg} \boldsymbol{\rho}_u = B.$$
$$p:q:r = \frac{\sin\varphi_x}{\sin\varphi_u}: \frac{\cos\varphi_x}{\cos\varphi_u}: \frac{\operatorname{ctg}\varphi_p - \operatorname{ctg}\varphi_p \sin\varphi_x}{B-A};$$

$$\operatorname{ctg}\varphi_x = \frac{q}{p} \operatorname{ctg}\varphi_u; \qquad (2)$$

$$\operatorname{ctg}\varphi_x = \frac{\sin\varphi_x}{p \sin\varphi_u} \left[(p-r) \operatorname{ctg}\varphi_p \sin\varphi_u + r \operatorname{ctg}\varphi_u \right] = \frac{\sin\varphi_x}{p \sin\varphi_u} \left[(p-r) \cdot A + r \cdot B \right].$$

X-в зоне [001]; r=0.

pqo Из формул (1), (2) и (3) получаем: ŀ

$$p:q = \operatorname{tg} \varphi_x : \operatorname{tg} \varphi_u. \tag{4}$$

,

(6)

Индексы определяем по табл. IV (стр. 250).

$$\operatorname{ctg} \varphi_x = \frac{q}{p} \operatorname{ctg} \varphi_u; \qquad (5)$$

φ_x определяем по табл. III (стр. 235).

$$\operatorname{ctg} \rho_x = \operatorname{ctg} \rho_p \sin \varphi_x ;$$
$$\varphi_x = \varphi_u;$$
$$\operatorname{ctg} \rho_x = \operatorname{ctg} \rho_x \sin \varphi_x = A$$

$$ctg \rho_x = -ctg \rho_p \sin \frac{1}{2}$$

X—в зоне [010]; $q = 0$.

por

110

$$p: \mathbf{r} = \frac{\sin\varphi_x}{\operatorname{ctg}\,\rho_x - \operatorname{ctg}\,\rho_p\,\sin\varphi_x} : \frac{\sin\varphi_u}{\operatorname{ctg}\,\rho_u - \operatorname{ctg}\,\rho_p\,\sin\varphi_u} = \frac{\sin\varphi_x}{\operatorname{ctg}\,\rho_x - \operatorname{ctg}\,\rho_p\,\sin\varphi_x} : \frac{\sin\varphi_u}{B - A}.$$
 (7)

(Вторая дробь постоянна для всех граней зоны.)

$$\varphi_{x}' = 90^{\circ}; \ \varphi_{x}'' = -90^{\circ};$$
 (8)

$$\operatorname{ctg} \rho_{x} = \frac{\frac{|--|}{\operatorname{ctg} \rho_{u}} - 2\operatorname{ctg} \rho_{p} \sin \varphi_{u}}{\frac{\sin \varphi_{u}}{|--|}} = \frac{B - 2A}{\frac{\sin \varphi_{u}}{|--|}}.$$

X-в зоне [100]; p=0.

oqr

011

pqp

$$q:r = \frac{\frac{\operatorname{ctg} \rho_{\mu} - \operatorname{ctg} \rho_{p} \sin \varphi_{u}}{\operatorname{ctg} \rho_{x} \cos \varphi_{u}}: 1 = \frac{1}{\operatorname{ctg} \rho_{x}} \cdot \frac{|B-A|}{|C-A|}: 1; \quad (10)$$

$$\varphi_x = 0^\circ. \tag{11}$$

Решая уравнение (10) относительно р_x, находим:

$$\operatorname{ctg} \rho_{x} = \frac{r}{q} \cdot \frac{\operatorname{ctg} \rho_{\mu} - \operatorname{ctg} \rho_{p} \sin \varphi_{\mu}}{|\underline{\qquad}|} = \frac{r}{q} \cdot \frac{\underline{B-A}}{\cos \varphi_{\mu}}, \quad (12)$$

$$\varphi_{x} = 0^{\circ}.$$

$$\operatorname{ctg} \rho_{x} = \frac{\operatorname{ctg} \rho_{\mu} - \operatorname{ctg} \rho_{p} \sin \varphi_{\mu}}{|\underline{\qquad}|} = \frac{\underline{B-A}}{\cos \varphi_{\mu}}.$$

$$X-$$
в зоне [110], т. е. в зоне граней (001) и (111); $q=p$.

$$\frac{|ppr|}{p:r} = \frac{\sin\varphi_x}{\operatorname{ctg}\,\rho_x - \operatorname{ctg}\,\rho_p\sin\varphi_x} : \frac{|\overline{\operatorname{sin}\,\varphi_u}|}{\operatorname{ctg}\,\rho_u - \operatorname{ctg}\,\rho_p\sin\varphi_u} = \frac{\sin\varphi_x}{\operatorname{ctg}\,\rho_x - \operatorname{ctg}\,\rho_p\sin\varphi_x} : \frac{|\overline{\operatorname{sin}\,\varphi_u}|}{|\overline{B-A}|}; \quad (13)$$

$$\varphi_x' = \varphi_u; \quad \varphi_x'' = \varphi_u + 180^\circ; \tag{14}$$

$$\operatorname{ctg} \rho_{x} = \frac{\sin \varphi_{x}}{p \sin \varphi_{u}} = [(p-r) \operatorname{ctg} \rho_{p} \sin \varphi_{u} + r \operatorname{ctg} \rho_{u}] = \frac{\sin \varphi_{x}}{p \cdot \sin \varphi_{u}} [(p-r) \cdot A + r \cdot B]. \quad (15)$$

X-в зоне [101], т. е. в зоне граней (010) и (111); r=p.

$$p:q = \operatorname{ctg} \varphi_{u}: \operatorname{ctg} \varphi_{x}; \tag{16}$$

$$\operatorname{ctg} \varphi_x = \frac{q}{p} \operatorname{ctg} \varphi_u; \tag{17}$$

$$\operatorname{ctg} \rho_{x} = \sin \varphi_{x} \cdot \frac{\left| \frac{\operatorname{ctg} \rho_{u}}{\sin \varphi_{u}} \right|}{\left| \frac{\sin \varphi_{u}}{\sin \varphi_{u}} \right|} = \sin \varphi_{x} \cdot \frac{B}{\sin \varphi_{u}}. \tag{18}$$

X—в зоне [011], т. е. в зоне граней (100) и (111); r = q. $p:q = \operatorname{ctg} \varphi_u : \operatorname{ctg} \varphi_x;$

$$p: q = \operatorname{ctg} \varphi_{u} : \operatorname{ctg} \varphi_{x}; \tag{19}$$

$$\operatorname{ctg} \varphi_{x} = \frac{q}{p} \operatorname{ctg} \varphi_{u}; \qquad (20)$$

 $\operatorname{ctg} \boldsymbol{\rho}_{x} = \overline{\operatorname{ctg} \boldsymbol{\rho}_{u}} - 2 \operatorname{ctg} \boldsymbol{\rho}_{p} \sin \boldsymbol{\varphi}_{u}^{\dagger} = B - 2A.$

Пример (фиг. 64). Диопсид. Дано:

$$c(001) \quad \varphi_{c} = \frac{0}{0}; \qquad \rho_{c} = 0^{\circ} 00$$

$$b(010) \quad \varphi_{b} = 0^{\circ} 00; \qquad \rho_{b} = 90^{\circ} 00$$

$$a(100) \quad \varphi_{a} = 90^{\circ} 00; \qquad \rho_{a} = 74^{\circ} 09$$

$$u(111) \quad \varphi_{u} = 42^{\circ} 26; \qquad \rho_{u} = 33^{\circ} 48.5$$

Вычислить сферические координаты граней:

Подставляем исходные величины в формулу (5):

Подставляем исходные величины в формулу для (101) на стр. 106:

v (311).

По формуле (20) имеем:

ctg
$$\varphi_v = -\frac{1}{3}$$
 ctg $\varphi_u = -0,36462$ (см. выше φ_f).
 $\underline{\varphi_v = -69^\circ 58}$

По формулс (21) имеем:

$$\operatorname{ctg} \rho_{v} = \frac{\sin \varphi_{v}}{-3 \sin \varphi_{u}} (-4A + B) = \frac{\sin 69^{\circ}58}{3 \sin 42^{\circ}26} (1,49331 - 4 \cdot 0,19157);$$

$$\operatorname{ctg} \rho_{v} = \frac{\sin 69^{\circ}58 \cdot 0,72713}{3 \sin 42^{\circ}26}.$$

$$+ \frac{\lg \sin 69^{\circ}58 = \overline{1},97289}{\lg 0,72713 = \overline{1},86161}$$

$$- \frac{\overline{1},83450}{0,30625}$$

$$\lg \operatorname{ctg} \rho_{v} = \overline{\overline{1},52825} \qquad \underline{\rho_{v} = 71^{\circ}21}$$

§ 7. Моноклинная (моногирная) сингония

Юстировка по грани Q (010) или по зоне [010]

Отсчеты углов ф производим от меридиана с гранью R (001)

$$\varphi_q = \frac{0}{0}; \quad \rho_q = 0; \quad \varphi_r = 0^\circ \quad \rho_p = \rho_r = 90^\circ$$

Почти все формулы при данной юстировке кристаллов моноклинной сингонии так же просты, как и в ромбической сингонии. Поэтому такая юстировка особенно выгодна.

В формулы (1), (2) н (3) § 5 (стр. 100) подставляем *r* вместо *q* н, обратно, *q* вместо *r*, ρ_r вместо ρ_q , а также $\rho_p = \rho_r = 90^\circ$. Получаем:

$$p:q:r = \frac{\sin\varphi_x}{\sin\varphi_u}: \frac{\operatorname{ctg}\varphi_x}{\operatorname{ctg}\varphi_u}: \frac{\sin(\varphi_p - \varphi_x)}{\sin(\varphi_p - \varphi_u)};$$
(1)

$$\operatorname{ctg}\varphi_{x} = \frac{r}{p} \operatorname{ctg}\varphi_{\mu} + \left(1 - \frac{r}{p}\right) \operatorname{ctg}\varphi_{p}; \qquad (2)$$

$$\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{x}} = \frac{q}{p} \sin \varphi_{\boldsymbol{x}} \frac{|\overrightarrow{\operatorname{ctg}} \boldsymbol{\rho}_{\boldsymbol{u}}|}{|\overrightarrow{\operatorname{sin}} \boldsymbol{\varphi}_{\boldsymbol{u}}|} = \frac{q}{r} \sin (\varphi_{p} - \varphi_{x}) \frac{|\overrightarrow{\operatorname{ctg}} \boldsymbol{\rho}_{\boldsymbol{u}}|}{|\overrightarrow{\operatorname{sin}} (\varphi_{p} - \varphi_{\boldsymbol{u}})|}.$$
(3)

X-в зоне [001]; r=0.

pqo

$$p: q = \frac{\sin \varphi_x}{\operatorname{ctg} \varphi_x} : \frac{|\overline{\sin \varphi_u}|}{|\overline{\operatorname{ctg} \varphi_u}|};$$
(4)

$$\varphi_{\mathbf{x}}' = \varphi_{\mathbf{p}}; \quad \varphi_{\mathbf{x}}'' = \varphi_{\mathbf{p}} + 180^{\circ}; \tag{5}$$

_ .

$$\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{x}} = \frac{q}{\rho} \sin \varphi_{\boldsymbol{x}} \cdot \frac{|\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{u}}|}{\sin \varphi_{\boldsymbol{u}}}.$$
 (6)

$$\begin{vmatrix} 110 \\ \varphi_x = \varphi_p, \\ \operatorname{ctg} \varphi_x = \sin \varphi_p \cdot \frac{\left| \frac{\operatorname{ctg} \varphi_{\alpha}}{\sin \varphi_{\alpha}} \right|}{\left| 110 \right|}.$$

$$\varphi_x = \varphi_p + 180^{\circ}$$

$$\operatorname{ctg} \rho_x = \sin \varphi_p \cdot \frac{\operatorname{ctg} \rho_u}{\sin \varphi_u}.$$

X-в зоне [010]; q=0.

por

ī

$$p: r = \frac{\sin \varphi_x}{\sin (\varphi_p - \varphi_x)} : \frac{\sin \varphi_u}{\frac{\sin (\varphi_p - \varphi_u)}{1 - \frac{1}{2}}}.$$
(7)

$$\operatorname{ctg}\varphi_{x} = \frac{r}{p}\operatorname{ctg}\varphi_{u} + \left(1 - \frac{r}{p}\right)\operatorname{ctg}\varphi_{p}. \tag{8}$$

$$\rho_x = 90^\circ. \tag{9}$$

$$|101| \qquad \qquad \varphi_x = \varphi_u; \quad \rho_x = 90^\circ.$$

$$\boxed{101} \qquad \operatorname{ctg} \varphi_{x} = 2 \operatorname{ctg} \varphi_{p} - \operatorname{ctg} \varphi_{u};$$

$$\rho_x = 90^{\circ}$$
.

$$X - в$$
 зоне [100]; $p = 0$.

$$q: r = \frac{\operatorname{ctg} \rho_x}{\sin(\varphi_p - \varphi_x)} : \frac{\operatorname{ctg} \rho_u}{\sin(\varphi_p - \varphi_u)}; \qquad (10)$$

$$\varphi_x' = 0^\circ; \quad \varphi_x'' = 180^\circ;$$
 (11)

$$\operatorname{ctg} \rho_{x} = \frac{q}{r} \sin \left(\varphi_{p} - \varphi_{x} \right) \cdot \frac{\operatorname{ctg} \rho_{u}}{\sin \left(\varphi_{p} - \varphi_{u} \right)}; \qquad (12)$$
$$\varphi_{x} = 0^{\circ}.$$

 $\begin{array}{||c||}\hline 011 & \varphi \\ ctg \, \rho_x = \sin \theta_x = \sin \theta_x = \sin \theta_x = \sin \theta_x = 0 \\ ctg \, \rho_x = \sin \theta_x = \sin \theta_x = 0 \\ ctg \, \rho_x = \sin \theta_x = 0 \\ ctg \, \rho_x = 0 \\$

$$\operatorname{ctg} \boldsymbol{\rho}_{x} = \underline{\sin \varphi_{p}} \cdot \frac{\operatorname{ctg} \boldsymbol{\rho}_{u}}{\underline{\sin (\varphi_{p} - \varphi_{u})}}.$$

X—в зоне [110], т. е. в зоне граней (001) и (111); q = p.

$$p: \mathbf{r} = \frac{\sin \varphi_{\mathbf{x}}}{\sin (\varphi_{\mathbf{p}} - \varphi_{\mathbf{x}})} : \frac{\sin \varphi_{\mathbf{u}}}{\sin (\varphi_{\mathbf{p}} - \varphi_{\mathbf{u}})};$$
(13)

$$\operatorname{ctg} \varphi_{x} = \frac{r}{p} \operatorname{ctg} \varphi_{\mu} + \left(1 - \frac{r}{p}\right) \operatorname{ctg} \varphi_{p} ; \qquad (14)$$

$$\operatorname{ctg} \mathbf{p}_{\mathbf{x}} = \sin \varphi_{\mathbf{x}} \cdot \frac{\operatorname{ctg} \mathbf{p}_{u}}{\sin \varphi_{u}} = \frac{p}{r} \sin (\varphi_{p} - \varphi_{\mathbf{x}}) \cdot \frac{\operatorname{ctg} \mathbf{p}_{u}}{\sin (\varphi_{p} - \varphi_{u})} \quad (15)$$

X—в зоне [101], т. е. в зоне граней (010) и (111); r = p.

pqp

$$p: q = \frac{\sin \varphi_x}{\operatorname{ctg} \varphi_x} : \frac{\sin \varphi_u}{\operatorname{ctg} \varphi_u}; \tag{16}$$

$$\varphi_x' = \varphi_u; \quad \varphi_x'' = \varphi_u + 180^\circ; \tag{17}$$

$$\operatorname{ctg} \rho_{x} = \frac{q}{p} \sin \varphi_{x} \frac{\operatorname{ctg} \rho_{y}}{\sin \varphi_{u}}.$$
(18)

X—в зоне $[0\bar{1}1], \bar{T}$ т. е. в зоне граней (100) и (111); r = q. pqq

$$p:q = \frac{\sin \varphi_x}{\operatorname{ctg} \rho_x} : \frac{\sin \varphi_u}{\operatorname{ctg} \rho_u}; \qquad (19)$$

$$\operatorname{ctg}\varphi_{x} = \frac{q}{p}\operatorname{ctg}\varphi_{n} + \left(1 - \frac{q}{p}\right)\operatorname{ctg}\varphi_{p}; \qquad (20)$$

$$\operatorname{ctg} \rho_x = \frac{q}{p} \sin \varphi_x \cdot \frac{\operatorname{ctg} \rho_u}{\sin \varphi_u} = \sin \left(\varphi_p - \varphi_x\right) \cdot \frac{\operatorname{ctg} \rho_u}{\sin \left(\varphi_p - \varphi_u\right)}.$$
(21)

<u>p(101).</u>

По формулам для (101) на стр. 110 имеем:

$$\operatorname{ctg} \varphi_{p} = 2 \operatorname{ctg} \varphi_{a} - \operatorname{ctg} \varphi_{u} = 2 \operatorname{ctg} 74^{\circ}09 - \operatorname{ctg} 24^{\circ}19$$

v(311).

По формулам (20) и (21) имеем:

$$\operatorname{ctg} \varphi_{v} = -\frac{1}{3} \operatorname{ctg} \varphi_{u} + \frac{4}{3} \operatorname{ctg} \varphi_{a} = -\frac{1}{3} \cdot 2,21304 + \frac{4}{3} \cdot 0,28391.$$

$$-\frac{0,73768}{0,37855}$$

$$-\operatorname{ctg} \varphi_{v} = 0,35913 \qquad \underline{\varphi_{v} = -70^{\circ}15}$$

$$\operatorname{ctg} \rho_{v} = -\frac{1}{3} \sin \varphi_{v} \cdot \frac{\operatorname{ctg} \rho_{u}}{\sin \varphi_{u}} = \frac{\sin 70^{\circ}15 \operatorname{ctg} \rho_{u}}{3 \sin \varphi_{u}}.$$

Логарифмы всех величин, кроме sin 70°15, вычислены выше (поставлены в рамки).

+
$$\frac{\lg \sin 70^{\circ}15 = 1,97367}{\lg \operatorname{ctg} \rho_{u} = \overline{1,65366}}$$

- $\overline{1,62733}$
- $\lg 3 \sin \varphi_{u} = 0,09178$
- $\lg \operatorname{ctg} \rho_{v} = \overline{1,53555}$ $\varphi_{v} = 71^{\circ}03.5$

§ 8. Ромбическая (дигирная) сингония

Юстировка по зоне [001] или по грани (001)

$$\varphi_{\rho} = 90^{\circ}; \ \rho_{\rho} = 90^{\circ}; \ \varphi_{q} = 0^{\circ}; \ \rho_{q} = 90^{\circ}; \ \varphi_{r} = \frac{0}{0}; \ \rho_{r} = 0^{\circ}.$$

Все вычисления ведем только для граней с положительными индексами (1 четверти), так как

$$\varphi_{pqr} = 180^{\circ} - \varphi_{pqr}; \ \varphi_{pqr} = -(180^{\circ} - \varphi_{pqr}); \ \varphi_{pqr} = -\varphi_{pqr}$$

р для граней с отрицательными индексами равно р для граней с такими же положительными индексами.

Углы Ф. могут определяться без вычислений по табл. III (стр. 235). Индексы в формулах (4), (13), (16) и (19) определяем по табл. IV (стр. 250). Подставляя $\rho_p = 90^\circ$ в формулы (1), (2) н (3) § 6 (стр. 105) или $\rho_r = 0$ в те же формулы § 5 (стр. 100), получим:

$$p:q:r = \frac{\sin \varphi_x}{\sin \varphi_u}: \frac{\cos \varphi_x}{\cos \varphi_u}: \frac{\operatorname{ctg} \varphi_x}{\operatorname{ctg} \varphi_u}; \qquad (1)$$

$$\operatorname{ctg} \varphi_x = \frac{q}{p} \operatorname{ctg} \varphi_u ; \qquad (2)$$

$$\operatorname{ctg} \rho_{x} = \frac{r}{p} \sin \varphi_{x} \frac{\operatorname{ctg} \rho_{u}}{\sin \varphi_{u}} = \frac{r}{q} \cos \varphi_{x} \frac{\operatorname{ctg} \rho_{u}}{\cos \varphi_{u}}.$$
 (3)

$$\frac{X-\mathbf{B}}{|\mathbf{p}|^2} \quad some \quad [001]; \ \mathbf{r} = \mathbf{0}.$$

$$p:q = \operatorname{ctg} \varphi_u: \operatorname{ctg} \varphi_x; \quad (4)$$

por

$$\operatorname{ctg}\varphi_{x} = \frac{q}{p}\operatorname{ctg}\varphi_{u}; \qquad (5)$$

$$\boldsymbol{\rho}_{\boldsymbol{x}} = 90^{\circ}; \tag{6}$$

$$\begin{array}{c|c} \hline 110 \\ \hline \\ \psi_x = \varphi_u \\ \varphi_x = \varphi_u \\ \varphi_x = 90^\circ. \end{array}$$

X—в зоне [010]; q = 0.

$$\varphi_{x} = 90^{\circ}; \qquad (7)$$

$$p: r = \frac{1}{\operatorname{ctg} \rho_{x}} : \frac{\sin \varphi_{u}}{\operatorname{ctg} \rho_{u}} = \frac{\operatorname{ctg} \rho_{u}}{\sin \varphi_{u}} : \operatorname{ctg} \rho_{x} ; \qquad (8)$$

$$\operatorname{ctg} \operatorname{p}_{x} = \frac{r}{p} \cdot \frac{\operatorname{ctg} \operatorname{p}_{u}}{\sin \operatorname{q}_{u}}; \qquad (9)$$

$$\begin{array}{c} 101 \\ \hline \\ 101 \\ \hline \\ ctg \rho_x = \frac{ctg \rho_u}{\sin \varphi_u}. \end{array}$$

X—в зоне [100]; p = 0. \boxed{oqr} $q: r = \frac{1}{\operatorname{ctg} \rho_x} : \frac{\cos \varphi_u}{\operatorname{ctg} \rho_u} = \frac{\operatorname{ctg} \rho_u}{\cos \varphi_u} : \operatorname{ctg} \rho_x;$ (10)
(11)

$$\operatorname{ctg} \mathfrak{p}_{x} = \frac{r}{q} \cdot \frac{\operatorname{ctg} \mathfrak{p}_{u}}{\cos \mathfrak{p}_{u}}; \qquad (12)$$

$$\begin{array}{|c|c|} \hline 011 \\ \hline 011 \\ \hline \\ ctg \rho_x = \frac{ctg \rho_u}{cos \varphi_u}. \end{array}$$

X—в зоне [110], т. е. в зоне граней (001) и (111);
$$q = p$$
.
 pr $p:r = ctgp_u: ctg p_x;$

$$\varphi_x = \varphi_\mu; \tag{14}$$

$$\operatorname{ctg} \rho_x = \frac{r}{p} \operatorname{ctg} \rho_u; \tag{15}$$

р_х можно определить без вычислений, по табл. III.

8 Аншелес — 706

113

(13)

X—в зоне [101], т. е. в зоне граней (010) и (111); r = p.

$$p: q = \operatorname{ctg} \varphi_{u}: \operatorname{ctg} \varphi_{x}; \tag{16}$$

$$\operatorname{ctg} \varphi_x = \frac{q}{p} \operatorname{ctg} \varphi_u ; \qquad (17)$$

$$\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{x}} = \sin \varphi_{\boldsymbol{x}} \cdot \frac{\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{\mu}}}{\sin \varphi_{\boldsymbol{\mu}}} = \frac{p}{q} \cos \varphi_{\boldsymbol{x}} \cdot \frac{\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{\mu}}}{\cos \varphi_{\boldsymbol{\mu}}}.$$
 (18)

X— в зоне [011], т. е. в зоне граней (100) и (111); r = q. $p: q = \operatorname{ctg} \varphi_{u}: \operatorname{ctg} \varphi_{r};$

$$p: q = \operatorname{ctg} \varphi_n : \operatorname{ctg} \varphi_x; \tag{19}$$

$$\operatorname{ctg} \varphi_{x} = \frac{q}{p} \operatorname{ctg} \varphi_{u}; \qquad (20)$$

$$\operatorname{ctg} \rho_{x} = \cos \varphi_{x} \cdot \frac{\operatorname{ctg} \rho_{u}}{\cos \varphi_{u}} = \frac{q}{p} \sin \varphi_{x} \cdot \frac{\operatorname{ctg} \rho_{u}}{\sin \varphi_{u}}.$$
 (21)

Пример. Топаз. (Гольдшмидт, Winkeltabellen, стр. 346). Даны сферические координаты граней:

	Символы граней	ب	p
с	001	0 0	0°00
b	010	0°00	90°00
a	100	90°00	90°00
0	111	6 2°0 8,5	63°54
		1	

Вычислить индексы граней по следующим сферическим координатам, полученным непосредственным измерением (второй и третий столбцы):

	Измеренные		Crimony	Вычисленные	
	۴	ρ	Символы	ဖု	P
m	51°50	90°00	230	51°35,5	90°00
ſ	0°00	43°50	011	0°00	43°39
d	90°00	61°30	101	90°00	61°00,5
е	62°30	76°00	221	62°08,5	76°14
\$	32°30	29°00	136	32°14,5	29°25

По полученным символам (четвертый столбец) вычислить сферические координаты данных граней (пятый и шестой столбцы).

m

pqp

Так как третий индекс грани равен нулю ($\rho_m = 90^\circ$) и, следовательно, грань находится в зоне [001], пользуемся формулой (4):

$$p:q = \operatorname{ctg} \varphi_{\mathbf{0}} : \operatorname{ctg} \varphi_{\mathbf{m}} = \operatorname{ctg} 62^{\circ}08,5 : \operatorname{ctg} 51^{\circ}50.$$

По таблице II натуральных котангенсов (стр. 227 и 226) находим:

$$p:q=0,528:0,786=0,672:1.$$

По таблице десятичных эквивалентов (табл. I, стр. 214) находим:

$$p:q = \frac{2}{3}:1 = 2:3$$

Те же индексы проще всего найти непосредственно по табл. IV (стр. 250). По формуле (5) находим:

$$\operatorname{ctg} \varphi_{m} = \frac{3}{2} \overline{|\operatorname{ctg} \varphi_{o}|} = \frac{3}{2} |\operatorname{ctg} 62^{\circ}08,5| = \frac{3}{2} \cdot |0,528545|$$
$$\operatorname{ctg} \varphi_{m} = 0,79282 \qquad \underline{\varphi_{m} = 51^{\circ}35,5}$$

Тот же угол непосредственно пайдем в табл. III на стр. 240. f

Так как $\varphi_f = 0^\circ$, грань находится в зоне [100] и первый индекс се равси нулю.

Пользуемся формулой (11):

$$q: r = \frac{\operatorname{ctg} \rho_o}{\cos \varphi_o} : \operatorname{ctg} \rho_f = \frac{\operatorname{ctg} 63^\circ 54}{\cos 62^\circ 08,5} : \operatorname{ctg} 43^\circ 50$$

$$| \lg \operatorname{ctg} \rho_o = \overline{1,69010} |$$

$$| \lg \cos \varphi_o = \overline{1,66958} |$$

$$| \lg \frac{\operatorname{ctg} \rho_o}{\cos \varphi_o} = 0,02052 |$$

$$q: r = 1,4084: 1,0416 = 1:1.$$

Для вычисления р₁ пользуемся формулой для (011) (стр. 113).

$$\operatorname{ctg} \rho_{f} = \left| \frac{\operatorname{ctg} \rho_{o}}{\cos \varphi_{o}} = 1,0484 \right|$$
$$\rho_{f} = 43^{\circ}39$$

d

*

Так как $\varphi_d = 90^\circ$, грань d находится в зоне [010] и второй индекс се равен нулю.

По формуле (8) находим:

.115

$$p: r = 0.5541: 0.5496 = 1:1$$

ctg $\rho_{d} = \frac{\text{ctg } \rho_{o}}{\sin \varphi_{o}} = 0,5541$ (только что вычислено).

$$\underline{\rho_d=61^\circ00,5}$$

e

По формуле (1) находим:

$$-\frac{\lg \operatorname{ctg} 76^{\circ}00 = 1,39677}{\lg \operatorname{ctg} \rho_{o} = \overline{1,69010}}{\overline{1,70667}}$$

p:q:r=1,003:0,9882:0,5089; $p:q:r=1:1:\frac{1}{2}=2:2:1.$

По формулам (14) и (15) имеем:

$$\frac{\varphi_{e} = \varphi_{o} = 62^{\circ}08,5}{\operatorname{ctg} \rho_{e} = \frac{1}{2} \operatorname{ctg} \rho_{o} = \frac{1}{2} \cdot 0,48989 = 0,244945}$$

$$\rho_{e} = 76^{\circ}14$$

S

По формуле (1) находим:

$$p:q:r = \frac{\sin 32^{\circ}30}{\sin \varphi_o} : \frac{\cos 32^{\circ}30}{\cos \varphi_o} : \frac{\operatorname{ctg} 29^{\circ}00}{\operatorname{ctg} \rho_o}.$$

$$- \frac{\lg \sin 32^{\circ}30 = \overline{1},73022}{\lg \sin \varphi_o = \overline{1},94650} \qquad - \lg \cos 32^{\circ}30 = \overline{1},92603$$

$$\lg \sin \varphi_o = \overline{1},94650 \qquad - \lg \cos 32^{\circ}30 = \overline{1},66958$$

$$- \lg \operatorname{ctg} 29^{\circ}00 = 0,25625 \qquad - \overline{1},78372 \qquad 0,25645$$

$$- \lg \operatorname{ctg} \varphi_o = \overline{1},69010 \qquad - \overline{0},56615 \qquad - \overline{0},56615$$

$$- \lg \operatorname{ctg} \varphi_o = \overline{1},69010 \qquad - \overline{0},56615 \qquad - \overline{1},21757 \qquad \overline{1},69030$$

$$p:q:r=0,165:0,490:1$$

По таблице десятичных эквивалентов находим (табл. I, стр. 214):

$$p:q:r = \frac{1}{6}:\frac{1}{2}:1 = 1:3:6.$$

По формулам (2) и (3) получаем:

$$\operatorname{ctg} \varphi_s = 3 \operatorname{ctg} \varphi_o = 3 \cdot 0,528545 = 1,585635$$

$$\varphi_s = 32^{\circ}14,5$$

Тот же угол найдем без вычислений по табл. III (стр. 240):

$$\operatorname{ctg} \rho_{s} = 6 \sin 32^{\circ} 14, 5 \frac{\operatorname{ctg} \rho_{o}}{\sin \varphi_{o}}.$$

$$\operatorname{lg} 6 = 0,77815$$

$$\operatorname{lg} \sin 32^{\circ} 14' = \overline{1},72713$$

$$\operatorname{lg} \frac{\operatorname{ctg} \rho_{o}}{\sin \varphi_{o}} = \overline{1},74359$$

$$\frac{\rho_{s} = 29^{\circ} 25}{\operatorname{lg} \operatorname{ctg} \rho_{s} = 0,24887}$$

§ 9. Тетрагональная (тетрагирная) сингония Юстировка по зоне [001] или по грани (001)

$$\varphi_{p} = 90^{\circ}; \ \varphi_{p} = 90^{\circ}; \ \varphi_{q} = 0^{\circ}; \ \varphi_{q} = 90^{\circ}; \ \varphi_{r} = \frac{0}{0}; \ \varphi_{r} = 0^{\circ}; \ \varphi_{u} = 45^{\circ}.$$

$$\lg \sin 45^{\circ} = \lg \cos 45^{\circ} = \boxed{\lg \frac{1}{\sqrt{2}} = \overline{1,84949}}$$

$$\sin 45^{\circ} = \cos 45^{\circ} = \boxed{\frac{1}{\sqrt{2}} = 0,7071}$$

$$\boxed{\lg \sqrt{2} = 0,15052}; \ |\sqrt{2} = 1,4142}$$

Формулы даем только для граней с положительными индексами (см. замечание для ромбической сингонии, стр. 112).

Подставляя $\varphi_u = 45^\circ$ в формулы (1), (2) и (3) для ромбической сингонии и принимая во внимание, что $\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$ и ctg $\varphi_u = 1$, получим:

$$p:q:r = \sin \varphi_x: \cos \varphi_x: \frac{\lg \varphi_u}{\sqrt{2}} \cdot \frac{1}{\lg \varphi_x}; \qquad (1)$$

$$tg \varphi_x = \frac{p}{q}; \qquad (2)$$

$$\operatorname{ctg} \rho_x = \frac{r}{p} \cdot \sqrt{2} \operatorname{ctg} \rho_u \cdot \sin \varphi_x = \frac{r}{q} \sqrt{2} \operatorname{ctg} \rho_u \cdot \cos \varphi_x.$$

Подставляя сюда из предыдущей формулы (2)

$$\sin \varphi_x = rac{p}{\sqrt{p^2 + q^2}},$$
 или $\cos \varphi_x = rac{q}{\sqrt{p^2 + q^2}},$

получим:

pqr

$$tg \rho_x = \frac{\sqrt{p^2 + q^2}}{r} \cdot \frac{tg \rho_u}{\sqrt{2}}.$$
(3)

При помощи таблиц V (стр. 253) и VIII (стр. 256) вычисление углов φ и р, а также индексов упрощается, если индексы не превышают 9.

Взяв отношение первого н второго индексов (сократив это отношение, если оно сокращается), по таблице V находим угол φ на пересечении горизонтальной колонны, отвечающей первому индексу, с вертикальной колонной, отвечающей второму.

Например, для грани (863) $\varphi = 53^{\circ}08$.

В табл. VIII вычислены $\lg \frac{\sqrt{p^2 + q^2}}{r\sqrt{2}}$, так что при определении остается лишь найти $\lg \rho_u$, сложить и найти ρ по получившемуся $\lg \lg \rho$. Для нашего примера $\lg \frac{\sqrt{p^2 + q^2}}{r\sqrt{2}}$ находим в табл. VIII на пересечении горизонтальной колонны, с цифрами 68 (в данном случае то же, что и 86), с вертикальной — под цифрой 3. Это будет 0,37236.

Таблица V облегчает также определение индексов по сферическим координатам. Так, для нашего примера, найдя в таблице угол, равный или близкий к 53°08, мы прочитываем слева и наверху отношение p:q=4:3. Остается вычислить по формуле только отношение p:r (или q:r); p:r=8:3. Первый индекс удвоен сравнительно с найденным по углам φ ; следовательно, надо удвоить и второй индекс, чтобы сохранилось отношение p:q=4:3. Таким образом получается символ (863).

$$X - B$$
 зоне [001]; $r = 0$.

X - B зоне [010]; q = 0.

pqo

por

101

$$p: q = \operatorname{tg} \varphi_x: 1; \tag{4}$$

$$tg \,\varphi_x = \frac{p}{q}; \tag{5}$$

$$\rho_x = 90^\circ; \tag{6}$$

 $\varphi_x = 90^\circ; \tag{7}$

$$p: r = \operatorname{tg} \rho_{x} : \frac{\operatorname{tg} \rho_{u}}{\sqrt{2}}; \qquad (8)$$

$$\operatorname{tg} \rho_{x} = \frac{p}{r} \cdot \frac{\overset{|--|}{\operatorname{tg}}}{\overset{|--|}{\operatorname{V2}}}; \qquad (9)$$

$$\varphi_{x} = 90^{\circ};$$

$$\operatorname{tg} \rho_{x} = \frac{|\overline{\operatorname{tg}} \rho_{\mu}|}{|V_{2}|}$$

X—в зоне [100]; p = 0.

$$\varphi_x = 0^{\circ}. \tag{10}$$

$$q: r = \operatorname{tg} \rho_{x}: \frac{|\overline{\operatorname{tg}} \rho_{u}|}{\sqrt{2}}; \qquad (11)$$

$$\operatorname{tg} \rho_{x} = \frac{q}{r} \cdot \frac{|\overline{\operatorname{tg}} \rho_{a}|}{\sqrt{2}}; \qquad (12)$$

X-в зоне [110], т. е. в зоне граней (001) и (111); r=p.

ppr

pqt

$$\varphi_x = 45^{\circ}$$
. (13)

$$p: r = \operatorname{tg} \rho_x : \operatorname{tg} \rho_u . \tag{14}$$

Отношение индексов находим по табл. IV (стр. 250)

$$\operatorname{tg} \mathbf{p}_{x} = \frac{p}{r} \cdot \operatorname{tg} \mathbf{p}_{u}; \tag{15}$$

р_х можно найти без вычислений по табл. III (стр. 235).

X—в зоне [101], т. е. в зоне граней (010) и (111); r = p.

$$p : q = \operatorname{tg} \varphi_x : 1. \tag{16}$$

$$\operatorname{tg} \varphi_{x} = \frac{p}{q}; \qquad (17)$$

$$\operatorname{tg} \rho_{x} = \sqrt{\left(\frac{q}{p}\right)^{2} + 1} \cdot \frac{\operatorname{tg} \rho_{u}}{\sqrt{\frac{2}{2}}}.$$
(18)

X—в зоне [011], т. е. в зоне граней (100) и (111); r = q. $p:q = \operatorname{tg} \varphi_x : 1$.

$$p:q = \operatorname{tg} \varphi_{\mathbf{x}}: 1. \tag{19}$$

$$tg \varphi_{x} = \frac{p}{q};$$
(20)

$$\operatorname{tg} \mathfrak{p}_{x} = \sqrt{\left(\frac{p}{q}\right)^{2} + 1} \cdot \frac{\operatorname{tg} \mathfrak{p}_{u}}{\sqrt{2}}.$$
(21)

§ 10. Кубическая (полигирная) сингония

Юстировка по зоне [001] или по грани (001)

$$\varphi_{p} = 90^{\circ}; \quad \rho_{p} = 90^{\circ}; \quad \varphi_{q} = 0^{\circ}; \quad \rho_{q} = 90^{\circ}; \quad \varphi_{r} = \frac{0}{0}; \quad \rho_{r} = 0^{\circ};$$

$$\varphi_{u} = 45^{\circ}; \quad \rho_{u} = 54^{\circ}44'08''; \quad \sin 45^{\circ} = \cos 45^{\circ} = \operatorname{ctg} 54^{\circ}44'08'' = \boxed{\frac{1}{\sqrt{2}} = 0,7071}$$

$$\boxed{\lg \frac{1}{\sqrt{2}} = \overline{1},84949}; \qquad \boxed{\sqrt{2} = 1,4142}; \qquad \boxed{\lg \sqrt{2} = 0,15052}$$

Формулы даются только для граней с положительными индексами (см. замечание для ромбической сингонии, стр. 112).

Подставляем в формулы (1), (2) и (3) для тетрагональной сингонии (стр. 117): $\rho_{\mu} = 54^{\circ}44'08''$.

$$p:q:r = \sin \varphi_x : \cos \varphi_x : \operatorname{ctg} \varphi_x; \tag{1}$$

$$tg \varphi_x = \frac{p}{q};$$
 (2)

$$\operatorname{tg} \rho_{x} = \frac{\sqrt{p^{2} + q^{2}}}{r}.$$
(3)

Если индексы грани не превышают 9, то определения как сферических координат по индексам, так и индексов по сферическим координатам быстрее делать не по формулам, а по таблицам V (стр. 253) и VII (стр. 254).

Определение углов φ производится по табл. V, углов ρ — по табл. VII и индексов — совместно по обеим таблицам.

Как пользоваться таблицами, лучше всего показать на примере.

Найти сферические координаты грани (365). p:q=3:6=1:2. В табл. V на пересечении горизонтальной колонны с цифрой 1 с вертикальной колонной под цифрой 2 находим $\varphi = 26^{\circ}34$.

В табл. VII на пересечении горизонтальной колонны с цифрами 36 и вертикальной колонны под цифрой 5 находим р = 53°18.

Обратно по координатам $\varphi = 26^{\circ}30$ н $\rho = 53^{\circ}00$ (полученным при недостаточно точном измерении) найти символ грани. В табл. V отыскиваем наиболее близкий угол к 26°30; он отвечает отношению p:q=1:2. В табл. VII отыскиваем в горизонтальной колонне, отвечающей 1:2, угол близкий к 53°. Его нет. В колонне с удвоенными индексами 2:4 — также нет. Наконец, в колонне с утроенными индексами 3:6 находим угол 53°18 под цифрой 5; следовательно, символ грани (365).

X-в зоне [001]; r=0.

$$pqo \qquad p:q = \operatorname{tg} \varphi_x : 1. \tag{4}$$

$$tg \varphi_x = \frac{p}{q}; \tag{5}$$

$$\rho_x = 90^\circ; \tag{6}$$

X—в зоне [010]; q = 0.

 $\varphi_x = 90^\circ; \tag{7}$

$$p:r = \operatorname{tg} \rho_x: 1; \tag{8}$$

$$tg \rho_x = \frac{p}{r}; \tag{9}$$

 $\varphi_x = 90^\circ;$ $\rho_x = 45^\circ.$

X—в зоне [100]; p = 0.

$$\varphi_x = 0^{\circ}. \tag{10}$$

$$q: r = \operatorname{tg} \rho_x: 1; \tag{11}$$

$$tg \rho_x = \frac{q}{r}; \tag{12}$$

$$011 \qquad \qquad \varphi_x = 0;$$

$$\rho_x = 45^{\circ}$$

X—в зоне [110], т. е. в зоне граней (001) и (111); q = p.

ppr

$$\varphi_x = 45^{\circ}$$
. (13)

$$p: r = \operatorname{tg} p_{x} : \sqrt{2} ; \qquad (14)$$

$$\operatorname{tg} \rho_x = \frac{p}{r} \sqrt{2}. \tag{15}$$

X—в зоне [101], т. е. в зоне граней (010) н (111); r = p. $p:q: tg \varphi_r: 1.$

$$q: \operatorname{tg} \varphi_x: 1. \tag{16}$$

$$\operatorname{tg} \varphi_x = \frac{p}{q}; \tag{17}$$

$$\lg \rho_x = \sqrt{\left(\frac{q}{p}\right)^2 + 1}. \tag{18}$$

X—в зоне [011], т. е. в зоне граней (100) и (111); r = q.

$$pqq \qquad p:q = \operatorname{tg} \varphi_x : 1. \tag{19}$$

$$\operatorname{tg} \varphi_x = \frac{p}{q}; \tag{20}$$

$$\operatorname{tg} \rho_{x} = \sqrt{\left(\frac{p}{q}\right)^{2} + 1}.$$
(21)

§ 11. Гексагональная (гексагирная) сингония. Установка Браве

"Горизонтальные" кристаллографические оси — 1-я, 2-я и 3-я — проводятся. через 120° против часовой стрелки (фиг. 34).

P (1010); Q (0110); R (0001); U (1121).

Отсчеты углов φ ведем по часовой стрелке от меридиана с гранью Q (0110). p-1-й индекс; q-2-й индекс; r-4-й индекс.

3-й индекс — равный сумме 1-го и 2-го с обратным знаком — в формулы. не входит. Он находится по вычисленным 1-му и 2-му индексам.

Формулы даны только для граней с положительными 1-м, 2-м и 4-м индексами. Положение и индексы остальных граней ср. фиг. 34 и 53.

Юстировка по зоне [0001], или, что то же, по грани (0001)

$$\varphi_p = 60^\circ; \ \ \rho_p = 90^\circ; \ \ \varphi_q = 0^\circ; \ \ \rho_q = 90^\circ; \ \ \varphi_r = \frac{0}{0}; \ \ \rho_r = 0^\circ; \ \ \varphi_n = 30^\circ.$$

Подставляя эти значения в формулы (1), (2) и (3) для триклинной сингонин (стр. 86)

$$p:q:r = \frac{\sin \varphi_x}{\sin 30^\circ}: \frac{\sin (60^\circ - \varphi_x)}{\sin 30^\circ}: \frac{\operatorname{tg} \varphi_u}{\sin 30^\circ}:$$

так как sin $30^{\circ} = \frac{1}{2}$, получим окончательно:

$$p:q:r = \sin \varphi_{x}: \sin (60^{\circ} - \varphi_{x}): \frac{\operatorname{tg} \rho_{u}}{2 \operatorname{tg} \rho_{x}};$$

$$\operatorname{ctg} \varphi_{x} = \frac{q}{p} \operatorname{ctg} 30^{\circ} + \left(1 - \frac{q}{p}\right) \operatorname{ctg} 60^{\circ}.$$
(1)

1

12£

Подставляя значения ctg $30^\circ = \sqrt{3}$ и ctg $60^\circ = \frac{1}{3}\sqrt{3}$, получим

$$\operatorname{ctg} \varphi_{x} = \frac{p + 2q}{p \sqrt{3}}; \qquad (2)$$
$$\operatorname{tg} \rho_{x} = \frac{p \cdot \sin 30^{\circ} \cdot \operatorname{tg} \rho_{u}}{r \cdot \sin \varphi_{x}}.$$

: (3)

Подставляя сюда из предыдущей формулы (2)

$$\sin \varphi_{x} = \frac{p \sqrt{3}}{2 \sqrt{p^{2} + pq + q^{2}}},$$

$$\operatorname{tg} \varphi_{x} = \frac{\sqrt{p^{2} + pq + q^{2}}}{r} \cdot \frac{|\overline{\operatorname{tg}}|_{\mu}}{\sqrt{3}}.$$

лолучим:

$$\frac{1 \text{g } 2 = 0,30103}{1 \text{g } \sqrt{3} = 0,23856}$$
$$\sqrt{3} = 1,732$$

Кроме того, если индексы не превышают 9, пользуемся таблицей VI и та-Блицей IX как для определения индексов по сферическим координатам, так и обратно — для определения сферических координат по индексам. Таблицами VI и IX знользуемся, как для тетрагональной сингонии таблицами V и VIII (пример на стр. 124).

 $\rho_{x} = 90^{\circ}$.

-

X-в зоне [0001]; r=0.

$$p:q = \sin \varphi_x : \sin (60^\circ - \varphi_x). \tag{4}$$

$$\operatorname{ctg}\varphi_{x} = \frac{p+2q}{p\sqrt{3}}; \tag{5}$$

$$\rho_x = 90^\circ. \tag{6}$$

$$\begin{array}{c} 110 \\ \varphi_x = 30^\circ, \end{array}$$

K — в зоне [1210], т. е. в зоне граней (0001) и (1010);
$$q = 0$$

$$\varphi_x = 60^{\circ}. \tag{7}$$

$$p: r = \operatorname{tg} \rho_{x} : \frac{\operatorname{tg} \rho_{\mu}}{\sqrt{3}}; \qquad (8)$$

$$\lg \rho_x = \frac{p}{r} \cdot \frac{\lg \rho_u}{\sqrt{3}} . \tag{9}$$

122

X

$$\boxed{101} \qquad \qquad \varphi_x = 60^\circ.$$

$$\operatorname{tg} \rho_x = \frac{\left| \frac{\operatorname{tg} \rho_u}{\sqrt{3}} \right|}{\sqrt{3}}$$

$$q: \mathbf{r} = \operatorname{tg} \mathbf{\rho}_{\mathbf{x}} : \frac{\operatorname{tg} \mathbf{\rho}_{\mathbf{u}}}{\sqrt{3}}; \tag{11}$$

$$\operatorname{tg} \rho_{x} = \frac{q}{r} \cdot \frac{|\overline{\operatorname{tg}} \rho_{u}|}{|V_{a}|}; \qquad (12)$$

$$\begin{aligned} \phi_x &= 0^\circ. \\ tg \,\rho_x &= \frac{tg \,\rho_u}{\sqrt{3}}. \end{aligned}$$

X—в зоне [1100], т. е. в зоне граней (0001) и (1121); p = q. ppr $\varphi_x = 30^{\circ}$.

$$p: r = \operatorname{tg} \rho_{x} : \operatorname{tg} \rho_{u}. \tag{14}$$

Отношение индексов находим по табл. IV (стр. 249).

$$\operatorname{tg} \rho_x = \frac{p}{r} \operatorname{tg} \rho_u \,. \tag{15}$$

р, находим без вычислений по табл. III (стр. 234).

pqq

X—в зоне [2113], т. е. в зоне граней (0110) и (1121); г=р.

$$p:q = \sin \varphi_x : \sin (60^\circ - \varphi_x). \tag{16}$$

$$\cot g \varphi_x = \frac{p+2q}{p\sqrt{3}}; \qquad (17)$$

$$\operatorname{tg} \rho_{x} = \frac{\sqrt{p^{2} + pq + q^{2}}}{p} \cdot \frac{\operatorname{tg} \rho_{u}}{\sqrt{3}}.$$
(18)

X—в зоне [1213], т. е. в зоне граней (1010) и (1121); r = q.

$$p:q = \sin \varphi_x : \sin (60^\circ - \varphi_x). \tag{19}$$

$$\cot g \varphi_x = \frac{p + 2q}{p \sqrt{3}}; \qquad (20)$$

$$\operatorname{tg} \rho_{x} = \frac{\sqrt{p^{2} + pq + q^{2}}}{q} \cdot \frac{\operatorname{tg} \rho_{u}}{\sqrt{3}}.$$
(21)

123

(10)

(13)

Пример. Апатит¹ (Гольдшмидт, Winkeltabellen, стр. 50). Даны сферические координаты исходных для вычисления граней:

	ј Символы	φ.	p
a	0110	0°00	90°00
S	1121	30°00	55°43,5

Вычислить индексы граней по следующим сферическим координатам, полученным измерением (второй и третий столбцы).

ф р
1 1
230 19°06,5 90°00
334 0°00 32°26
241 30°00 71°11
342 13°54 56°47

По полученным символам (четвертый столбец) вычислить сферические координаты данных граней (пятый и шестой столбцы).

Вычисляем 1-й, 2-й и 4-й индексы. З-й индекс находим как сумму двух первых с обратным знаком.

h

р_h = 90°. Следовательно, грань лежит в зоне [0001] и 4-й индекс равен нулю. Отношение 1-го и 2-го индексов находим по таблице VI (стр. 253).

Находим во втором столбце и первой строке координату 19°06,5 наиболее близкую к нашей — 19°30. Отсюда находим, что p:q=1:2. Следовательно, символ грани h = (1230). Отсюда также следует, что

$$\varphi_h = 19^{\circ}06,5$$

ε

Так как $\varphi_{\varepsilon} = 0^{\circ}$, то 1-й индекс равен нулю (фиг. 34, стр. 36). Пользуемся формулой (11):

$q: r = \operatorname{tg} p_{\varepsilon}: \frac{\operatorname{tg}}{V}$	$\frac{\rho_s}{3} = \text{tg } 32^{\circ}45 : \frac{\text{tg } 55^{\circ}43,5}{\sqrt{3}}$
$\lg tg \mathbf{p}_s = 0,166525$	$\lg tg 32^{\circ}45 = \overline{1},80836$
 $\log \sqrt{3} = 0,238560$	$\lg \frac{\lg \rho_s}{\sqrt{3}} = \overline{1},92796$
$\lg \frac{\lg P_s}{\sqrt{3}} = \overline{1},927965$	1,88040

q: r = 0,7593: 1

¹ В. Гольд III мидт располагает 1-ю, 2-ю и 3-ю кристаллографические оси через 120° не против часовой стрелки, а по часовой стрелке. Кроме того, за нулевой меридиан принимается не меридиан с гранью (0110), как принято у нас, а меридиан с гранью (1010). Таким образом, сферические координаты граней в таблицах Гольд III мидта для кристаллов гексагональной сингонии отвечают при нашей ориентировке граням с теми же символами, но лишь с переставленными первым и вторым индексами.

По таблице десятичных эквивалентов (табл. I, стр. 214) находим:

$$q:r=\frac{3}{4}:1=3:4.$$

Символ грани $\varepsilon - (03\overline{3}4)$. По формуле (12) имеем:

$$\operatorname{tg} \rho_{\varepsilon} = \frac{3}{4\sqrt{3}} \operatorname{tg} \rho_{s}$$

 $lg \frac{3}{4\sqrt{3}}$ находим в табл. IX, стр. 258, в графе (03) и в столбце под циф-

$$+ \frac{\lg \frac{3}{4\sqrt{3}} = \overline{1},636500}{\lg \lg \wp = 0,166525} \qquad \underline{\rho_{\varepsilon} = 32^{\circ}26}$$

d

По табл. VI (стр. 253) находим, что при $\varphi = 30^{\circ} p : q = 1 : 1$. По формуле (14) находим:

$$p: r = tg \rho_d: tg \rho_s = tg 71^{\circ}00: tg 55^{\circ}43,5$$

По табл. IV (стр. 250) находим: p:r=8:4=6:3=4:2=2:1. Символ грани $d = (22\overline{4}1)$. По формуле (15) имеем:

 $\operatorname{tg} \rho_d = 2 \operatorname{tg} \rho_s = 2 \operatorname{tg} 55^{\circ} 43, 5 = 2 \cdot 1,46732 = 2,93464.$

$$\rho_d = 71^\circ 11$$

0

По формуле (1) имеем:

$$p:q:r = \sin 13^{\circ}25: \sin 46^{\circ}35: \frac{\lg \rho_s}{2 \lg 56^{\circ}30}.$$

 $\frac{\sin 13^{\circ}25 = 0,233}{\sin 46^{\circ}35 = 0,725} + \frac{\lg 2 = 0,30103}{\lg tg 56^{\circ}30 = 0,17922} - \frac{\lg tg \rho_s = 0,16652}{0,48025}$

$$p:q:r=0,233:0,725:0,486,$$

$$p:q:r=1:3:2.$$

Символ грани $o - (13\overline{42}).$

ГІо табл. VI (стр. 253) находим в 1-й строке, в колонке под цифрой 3 угол $\varphi_o = 13^{\circ}54$, которому отвечает отношение p:q = 1:3.

По формуле (3) получаем:

$$\operatorname{tg} \boldsymbol{\rho}_{o} = \frac{\sqrt{1+3+9}}{2\sqrt{3}} \operatorname{tg} \boldsymbol{\rho}_{s} = \frac{\sqrt{13}}{2\sqrt{3}} \operatorname{tg} \boldsymbol{\rho}_{s}.$$

По табл. ІХ (стр. 258) находим:

$$+ \frac{\lg \frac{\sqrt{13}}{2\sqrt{3}} = 0,01738}{\lg \lg \rho_{s} = 0,166525}_{\lg \lg \rho_{s} = 0,183905} \qquad \frac{\rho_{o} = 56^{\circ}47}{\rho_{o} = 0,183905}$$

§ 12. Гексагональная (гексагирная) сингония. Установка Федорова

1-я кристаллографическая ось — "вертикальна". "Горизонтальные" оси — 2-я, 3-я и 4-я — проводятся через 60° по часовой стрелке (фиг. 35).

Отсчеты углов φ ведем по часовой стрелке от меридиана с гранью Q (0101). *p*, *q* и *r* — 1-й, 2-й и 3-й индексы; 4-й индекс, равный *r* — *q*, в формулы не входит.

Юстировка по зоне [1000] или по грани Р (1000)

$$\varphi_p = \frac{0}{0}; \ \rho_p = 0^\circ; \ \varphi_q = 0^\circ; \ \rho_q = 90^\circ; \ \varphi_r = 120^\circ; \ \rho_r = 90^\circ; \ \varphi_u = 60^\circ.$$

Подставляем в формулы (1), (2) и (3) (стр. 82—83) p, φ_p и ρ_p соответственно вместо r, φ_r и ρ_r и обратно: r, φ_r и ρ_r — вместо p, φ_p и ρ_p ; подставляя затем указанные выше значения φ и ρ , получим:

$$p:q:r = \frac{\operatorname{ctg} \rho_x}{\operatorname{ctg} \rho_u} : \frac{\sin (60^\circ + \varphi_x)}{\sin 60^\circ} : \frac{\sin \varphi_x}{\sin 60^\circ}.$$
(1)

$$\operatorname{ctg} \varphi_{x} = \frac{q}{r} \operatorname{ctg} 60^{\circ} + \left(1 - \frac{q}{r}\right) \operatorname{ctg} 120^{\circ} = \frac{2q - r}{r\sqrt{3}}; \qquad (2)$$

$$\operatorname{tg} \boldsymbol{\rho}_{x} = \frac{r \cdot \sin 60^{\circ} \cdot \operatorname{tg} \boldsymbol{\rho}_{n}}{p \cdot \sin \boldsymbol{\varphi}_{x}} = \frac{\sqrt{q^{2} - qr + r^{2}}}{p} \cdot \operatorname{tg} \boldsymbol{\rho}_{n}.$$
(3)

§ 13. Тригональная (тригирная, ромбоэдрическая) сингония, или гипосингония

Юстировка по зоне [111] или по грани (111)

$$\varphi_q = 0^\circ$$
; $\varphi_p = 120^\circ$; $\varphi_r = -120^\circ$; $\varphi_u = \frac{0}{0}$; $\rho_u = 0$; $\rho_p = \rho_q = \rho_r$

Подставляем эти значения о и р в общую формулу (2a) (стр. 82).

.-----

$$\frac{p}{q} = \frac{\operatorname{tg} \rho_x \sin \varphi_x + \operatorname{tg} \rho_p \sin 60^\circ - \operatorname{tg} \rho_x \sin (60^\circ - \varphi_x)}{\operatorname{tg} \rho_x \sin (60^\circ + \varphi_x) + \operatorname{tg} \rho_p \sin 60^\circ + \operatorname{tg} \rho_x \sin (60^\circ - \varphi_x)} - \operatorname{tg} \rho_x \sin \varphi_x + \operatorname{tg} \rho_p \sin 60^\circ - \operatorname{tg} \rho_x \sin (60^\circ + \varphi_x)}$$

После соответствующих преобразований получим:

$$\frac{p}{r} = \frac{\operatorname{tg} \rho_p + 2 \operatorname{tg} \rho_x \sin (\varphi_x - 30^\circ)}{\operatorname{tg} \rho_p + 2 \operatorname{tg} \rho_x \cos \varphi_x}$$

$$(1a)$$

Приведем формулу к логарифмическому виду. Для этого примем:

2 tg
$$\rho_x \sin(\varphi_x - 30^\circ) = \text{tg } \theta_1$$
,
2 tg $\rho_x \cos\varphi_x = \text{tg } \theta_2$,
2 tg $\rho_x \sin(\varphi_x + 30^\circ) = \text{tg } \theta_3$.

Получим:

$$p:q:r = \frac{\sin\left(\rho_{p} + \theta_{1}\right)}{\cos\theta_{1}}: \frac{\sin\left(\rho_{p} - \theta_{2}\right)}{\cos\theta_{2}}: \frac{\sin\left(\rho_{p} - \theta_{3}\right)}{\cos\theta_{3}'}.$$
 (1b)

Из формулы (1а) нмеем:

$$\frac{p-q}{q} = \frac{2 \operatorname{tg} \rho_x \left[\sin \left(\varphi_x - 30^\circ \right) - \cos \varphi_x \right]}{\operatorname{tg} \rho_p + 2 \operatorname{tg} \rho_x \cos \varphi_x} ,$$

$$\frac{q-r}{q} = \frac{2 \operatorname{tg} \rho_x \left[\cos \varphi_x + \sin \left(\varphi_x + 30^\circ \right) \right]}{\operatorname{tg} \rho_p + 2 \operatorname{tg} \rho_x \cos \varphi_x} .$$

Разделив первое на второе и произведя соответствующие преобразования. получим:

$$\frac{p-q}{q-r} = \frac{\lg \varphi_x - \sqrt{3}}{\lg \varphi_x + \sqrt{3}}$$

Отсюда

$$\operatorname{tg} \varphi_{x} = \frac{(p-r)\sqrt{3}}{2q-(p+r)}.$$
(2)

Из отношення $\frac{p}{q}$ формулы (1а) найдем:

$$\operatorname{tg} \rho_{x} = \frac{(q-p)\operatorname{tg} \rho_{p}}{2\left[p\cos\varphi_{x}-q\sin\left(\varphi_{x}-30^{\circ}\right)\right]} = \frac{(q-p)\operatorname{tg} \rho_{p}}{(2p+q)\cos\varphi_{x}-q\sqrt{3}\sin\varphi_{x}}.$$

Подставляем сюда значения $\sin \varphi_x$ и $\cos \varphi_x$ из формулы (2). Окончательно получаем:

$$\lg \rho_x = \frac{\sqrt{p^3 + q^2 + r^2 - pq - pr - qr}}{p + q + r} \cdot \lg \rho_p. \tag{3}$$

X - B зоне [001]; r = 0.

pqo

$${}^{p}_{q} = \frac{\overline{\operatorname{tg}} \, \rho_{p} + 2 \operatorname{tg} \, \rho_{x} \sin \left(\varphi_{x} - 30^{\circ} \right)}{\operatorname{tg} \, \rho_{p} + 2 \operatorname{tg} \, \rho_{x} \cos \varphi_{x}} \,. \tag{4a}$$

$$\frac{p}{q} = \frac{\cos \theta_2 \sin \left(\rho_p + \theta_1\right)}{\cos \theta_1 \sin \left(\rho_p + \theta_2\right)} ; \qquad (4b)$$

$$tg \varphi_x = \frac{p \sqrt{3}}{2q - p}; \qquad (5)$$

$$\operatorname{tg} \boldsymbol{\rho}_{x} = \frac{\sqrt{p^{a} + q^{2} - pq}}{p + q} \cdot \operatorname{tg} \boldsymbol{\rho}_{p}. \tag{6}$$

$$tg \varphi_{x} = \sqrt{3};$$

$$\varphi_{x} = 60^{\circ};$$

$$tg \rho_{x} = \frac{1}{2} tg \rho_{p}.$$

р, можно определить без вычислений, по табл. III (стр. 235). X—в зоне [010]; q = 0. por

$$r = \frac{\operatorname{tg} \rho_{p} + 2 \operatorname{tg} \rho_{x} \sin \left(\varphi_{x} - 30^{\circ}\right)}{\operatorname{gt} \rho_{p} - 2 \operatorname{tg} \rho_{x} \sin \left(\varphi_{x} + 30^{\circ}\right)}.$$
(7a)

$$\frac{p}{r} = \frac{\cos \theta_a \sin \left(\rho_p + \theta_1 \right)}{\cos \theta_1 \sin \left(\rho_p + \theta_3 \right)} ;$$
(7b)

$$tg \varphi_x = \frac{(r-p)\sqrt{3}}{p+r}; \qquad (8)$$

$$\operatorname{tg} \rho_{x} = \frac{\sqrt{p^{2} + r^{2} - pr}}{p + r} \cdot \operatorname{tg} \rho_{y}. \tag{9}$$

 $\varphi_x = 180^{\circ}.$

$$\operatorname{tg} \rho_x = \frac{1}{2} \operatorname{tg} \rho_p$$

 $\frac{X - B \text{ some [100]; } p = 0.}{\left| oqr \right|}$

$$\frac{q}{r} = \frac{\frac{\operatorname{tg} \rho_p}{p} + 2 \operatorname{tg} \rho_x \cos \varphi_x}{\frac{\operatorname{tg} \rho_p}{p} - 2 \operatorname{tg} \rho_x \sin (\varphi_x + 30^\circ)}.$$
(10a)

$$\frac{q}{r} \frac{\cos \theta_3 \sin \left(\rho_p + \theta_3\right)}{\cos \theta_3 \sin \left(\rho_p + \theta_3\right)}; \qquad (10b)$$

$$\operatorname{tg}\varphi_{x} = \frac{r\sqrt{3}}{r-2q}; \qquad (11)$$

$$\operatorname{tg} \mathbf{p}_{x} = \frac{\sqrt{q^{3} + r^{3} - qr}}{q + r} \cdot \operatorname{tg} \mathbf{p}_{p}.$$
(12)

$$\begin{array}{|c|c|} \hline 011 & \varphi_x = -60^{\circ}. \\ tg \, \rho_x = \frac{1}{2} tg \, \rho_p. \end{array}$$

Э_х можно найти без вычислений, по табл. Ш.

X—в зоне [110], т. е. в зоне граней (001) и (111); q = p.

$$\varphi_x' = 60^\circ; \ \varphi_x'' = -120^\circ.$$
 (13)

$$\frac{p}{r} = \frac{\operatorname{tg} \rho_p \pm \operatorname{tg} \rho_x}{\operatorname{tg} \rho_p \mp 2 \operatorname{tg} \rho_x}; \qquad (14a)$$

$$\frac{p}{r} = \frac{\cos \theta_4 \sin \left(\rho_p \pm \rho_x\right)}{\cos \rho_x \sin \left(\rho_p \pm \theta_4\right)},$$
(14b)

где $\theta_{s} = 2 \operatorname{tg} \rho_{x}$; верхние знаки в дробях — при $\varphi_{x} = 60^{\circ}$ и нижние — при $\varphi_{x} = -120^{\circ}$.

$$\operatorname{tg} \rho_{x} = \frac{p-r}{2p+r} \cdot \underline{\operatorname{tg}} \rho_{p}; \tag{15}$$

р, можно определить без вычислений, по табл. III.

р, можно найти без вычислений, по табл. III.

X—в зоне [101], т. е. в зоне граней (010) и (111); p = r.

 $\varphi_x' = 0^\circ; \quad \varphi_x'' = 180^\circ.$ (16)

pqp

ppr

$$\frac{p}{q} = \frac{\overline{\operatorname{tg}}\,\rho_p \mp \operatorname{tg}\,\rho_x}{\operatorname{tg}\,\rho_p \pm 2\,\operatorname{tg}\,\rho_x}; \qquad (17a)$$

$$\frac{p}{q} = \frac{\cos \theta_4 \sin \left(\rho_p \pm \rho_x\right)}{\cos \rho_x \sin \left(\rho_p \pm \theta_4\right)}, \qquad (17b)$$

где $\theta_4 = 2 \operatorname{tg} \rho_x$. Верхние знаки в дробях — при $\varphi_x = 0^\circ$ и нижние — при $\varphi_x = 180^\circ$.

$$\operatorname{tg} \boldsymbol{\rho}_{x} = \pm \frac{q-p}{2p+q} \cdot \underline{\operatorname{tg}} \boldsymbol{\rho}_{p}, \tag{18}$$

р, можно определить без вычислений, по табл. III.

$$\begin{array}{c} 1 \overline{11} \\ \hline \\ tg \rho_x = 180^{\circ}; \\ tg \rho_x = 2 tg \rho_p. \end{array}$$

X—в зоне [011], т. е. в зоне граней (100) и (111); r = q. pqq $\varphi_{x'} = -60^{\circ}; \varphi_{x''} = 120^{\circ};$

$$\varphi_{x}' = -60^{\circ}; \ \varphi_{x}'' = 120^{\circ};$$
 (19)

$$\frac{p}{q} = \frac{\cos \rho_x \cdot \sin \left(\rho_p \mp \theta_4\right)}{\cos \theta_4 \cdot \sin \left(\rho_p \pm \theta_4\right)},$$
(20b)

где $\theta_4 = 2 \lg \rho_x$. Верхнис знаки в дробях — при $\varphi_x = -60^\circ$, нижние — при $\varphi_x = 120^\circ$.

$$\operatorname{tg} \rho_{x} = \frac{p-q}{p+2q} \cdot \operatorname{tg} \rho_{p}; \qquad (21)$$

ρ_x можно определить без вычислений, по табл. III.

X—в зоне [111] (вертикальная зона); p+q+r=0.

Из формулы (3):

$$\rho_{\rm x} = 90^{\circ}.$$
 (22)

В формуле (1а) выносим за скобку и сокращаем tg ρ_x . Подставляя затем $\rho_x = 90^\circ$, получаем:

$$\frac{\frac{p}{q}}{r} = \frac{\frac{\sin\left(\varphi_{x} - 30^{\circ}\right)}{\cos\varphi_{x}}}{-\sin\left(\varphi_{x} + 30^{\circ}\right)}$$
(23)

$$\operatorname{tg} \varphi_{x} = \frac{(p-r) \cdot \sqrt{3}}{3q} \,. \tag{24}$$

9 Аншелес — 706

Пример. Кальцит. Дано: _{Ро10} == 44°36,5.

Вычислить сферические координаты граней:

(110), (111), (011), (021) и (131).

(110)

По формулам для (110) (стр. 127) имеем:

$$\frac{\varphi_{110} = 60^{\circ}}{\operatorname{tg} \rho_{110} = \frac{1}{2} |\overline{\operatorname{tg} \rho_{010}}| = \frac{1}{2} \operatorname{tg} 44^{\circ} 36, 5 = \frac{1}{2} \cdot \boxed{0,98642} = 0,49321.$$

$$\underline{\rho_{110} = 26^{\circ} 15}$$

То же самое проще найти по табл. III (стр. 239). (111)

По формулам на стр. 128 для (111) имеем:

$$\frac{\varphi_{11\bar{1}} = 60^{\circ}}{\text{tg }\rho_{11\bar{1}} = 2 \text{ tg }\rho_{010} = 2 \cdot 0,98642 = 1,9728.}$$

Еще проще то же самое найдем по табл. III (стр. 242). (011)

По стр. 129 и формуле (22) находим:

$$\varphi_{01\overline{1}} \doteq 30^{\circ}; \qquad \rho_{01\overline{1}} = 90^{\circ}.$$

(131)

По формулам (16) и (18) получаем:

 $\varphi_{\bar{1}3\bar{1}}=\mathbf{0}^{\circ}$

tg $p_{131} = 4 \cdot tg p_{010} = 4 \cdot 0,98642 = 3,94568.$

pī3ī=75°47

То же найдем без вычислений, по табл. III (стр. 242).

§ 14. Путь уточнения вычислений координат граней по их индексам

Для вычисления сферических координат граней кроме их символов должны быть даны сферические координаты четырех исходных' граней, из которых три ие лежат в одной зоне. Наиболее просто вычисление тогда, когда этими гранями являются основные и единичная.

Основные и единичная грани могут отсутствовать на кристаллах или давать плохие сигналы. Кроме того в измеряемых кристаллах данного вещества может оказаться не четыре, а большее количество граней с хорошими сигналами и точно замеряемых. В последнем случае желательно использовать для вычисления все достаточно точно замеренные координаты, чтобы получить наиболее точно вычисленные координаты граней и, что особенно важно, наиболее точные значения геометрических констант кристаллов (гл. IX). Чтобы использовать эти грани, мы вычисляем по их координатам координаты каждой основной грани (100), (010), (001) и единичной грани (111). Делаем это и в том случае, если основные и единичная грани присутствуют на кристаллах и хорошо замеряются. В зависимости от количества точно замеренных граней на кристаллах получим несколько значений координат для основных и единичной граней. Каждой вычисленной величине может быть приписан определенный вес. Ради упрощения за вес вычисленных величин принимаем наименьший из вссов исходных величин. Вычисляем затем весовое среднее.

Средние значения координат основных и единичной граней будут служить исходными для вычисления. Пользуясь основными формулами настоящей главы, вычисляем по этим координатам координаты всех остальных граней. По ним же вычисляются и геометрические константы кристаллов (глава IX). В следующей главе, а также в гл. VIII, § 3 и 4, изложено, как вычисляются координаты основных и единичной граней в общем случае, и даны формулы их вычисления для различных частных случаев.

глава седьмая

ВЫЧИСЛЕНИЕ СФЕРИЧЕСКИХ КООРДИНАТ ОСНОВНЫХ И ЕДИНИЧНОЙ ГРАНЕЙ ПО КООРДИНАТАМ ДРУГИХ ГРАНЕЙ

§ 1. Предварительные замечания

Вычислять координаты основных граней (100), (010), (001) и единичной грани (111) по символам и координатам других граней приходится в следующих случаях: 1) основные и единичная грани дают плохие сигналы и неточно замеряются на гоннометре; 2) все эти грани или часть из них отсутствуют; чаще всего наиболее выгодно даже при их отсутствии вычислить все же их координаты, чтобы затем по этим координатам, пользуясь основными формулами предыдущей главы, вычислить координаты остальных граней. Это вычисление тем более необходимо, что по координатам основных и единичной граней чаще всего и наиболее просто вычисляются геометрические константы кристаллов (гл. IX); 3) вычисление координат основных и единичной граней желательно делать и тогда, когда хотят получить наиболее точные результаты вычисления, как это указано в предыдущем параграфе.

Для вычисления сферических координат основных и единичной граней необходимо выбрать четырс грани, координаты которых замеряются наиболее точно. Три из этих грансй не должны находиться в одной зоне. В противном случае необходимо пять исходных для вычисления граней (§ 13—17). В тех случаях, когда в каких-либо зонах, проходящих через основные или единичную грани, проходят зоны, в которых имеются по три хорошо замеряемых грани, или координаты которых уже вычислены, для вычисления координат основных и единичной граней можно воспользоваться формулами зонального вычисления (гл. VIII, § 3 и 4).

В кристаллах ромбнческой, тетрагональной и гексагональной сингоний вопрос о точном положении основных граней решается при первоначальной обработке результатов измерения кристаллов (§ 4, гл. V). Таким образом, для этих сингоний необходимо лишь вычисление координат единичной грани. Формулы для вычисления φ_{111} и ρ_{111} даны в §§ 12 и 15—17 настоящей главы. В кристаллах кубической сингонии по символам вычисляются координаты всех граней, в том числе — координаты основных и единичной граней (§ 10, гл VI). В кристаллах ромбоэдрической (тригональной) сингонии может оказаться необходимым вычисление ρ_{100} . Формула для этого дана в § 11 настоящей главы. Во всех этих случаях необходима, конечно, соответствующая юстировка кристаллов при измерении, а именно по оси [001] в кристаллах ромбической, тетрагональной, кубической и гексагональной сингоний и по оси [111] — в тригональной сингонии.

В кристаллах моноклинной сингонии при юстировке по зоне [001] или по грани (100) координаты граней (100) н (010), а также φ_{001} точно устанавливается в процессе первоначальной обработки результатов измерения. Формулы для вычисления в этом случае ρ_{001} даны в § 8 и для вычисления координат единичной грани — в § 12 и 14.

При юстировке моноклинных кристаллов по грани (001) или по зоне [100] необходимо вычислить, кроме координат единичной грани, лишь ρ_{100} (соответствующую формулу см. § 9.

Наконец, при юстировке моноклинных кристаллов по зоне (010), или, что то же, по грани (010), приходится вычислять, кроме φ_{111} и ρ_{111} (§ 12), также φ_{100} (§ 10). Только в тех редких случаях, когда моноклинные кристаллы приходится юстировать при измерении по каким-либо другим зонам или граням, необходимо прибегать к более сложному способу, изложенному в следующем параграфе.

Чаще всего приходится пользоваться общим способом вычисления, изложенным в § 2, для кристаллов триклинной сингонии, но и здесь — только в тех случаях, когда нужно вычислить координаты двух или всех трех основных граней. Если две из основных граней замеряются точно или координаты их уже вычислены, например зональным методом (§ 4, гл. VIII), то для вычисления координат третьей основной грани пользуемся формулами § 4—7 данной главы. Во всех указанных формулах данными величинами являются координаты двух основных граней, координаты какой-либо третьей грани V ($p_v q_v r_v$), ни один из индексов которой не равен нулю, и координаты четвертой грани W ($p_w q_w r_w$), индексы которой могут иметь различные частные значения.

В § 12 даны формулы для вычисления координат единичной грани U (111) по координатам трех основных граней и четвертой грани V ($p_v q_v r_v$), не лежащей в зонах основных граней.

Если четвертая грань V находится в одной из зон основных граней, т. е. имеет символ (p_vq_vo) , (p_vor_v) или (oq_vr_v) , можно вычислить только одну из координат единичной грани U, т. е. либо φ_u , либо ρ_u . Для вычисления той и другой координат необходимы, кроме координат основных граней, координаты ,двух из указанных граней. Соответствующие формулы для этого случая даны в § 13—17.

Сферические координаты основных и единичной граней могут быть вычислены при помощи зонального метода вычисления (§ 3 и 4, гл. VIII). Для этого необходимо, чтобы в какой-либо зоне, проходящей через одну или две из этих граней, были даны три грани, координаты которых уже вычислены. Могут быть случаи, когда одна или две, а иногда и все три из этих граней приняты с самого иачала за исходные для вычислений.

Как обычно, во избежание ошибок, при вычислении сферических координат их положение должно быть определено тем или другим из графических методов. В большинстве случаев положение основных и единичной граней наиболсе просто определяется методом развития зон (§ 1, гл. IV).

§ 2. Общий метод вычисления

Общий метод вычисления сферических координат основных и единичной граней заключается в соответствующем временном изменении установки кристаллов. За основные грани (100), (010) и (001) временно принимаются три точно замеренные на гониометре грани, какие бы первоначальные символы они ни имели. Четвертая, точно замеряемая, необходимая для вычислений грань может получить символ (111). При этом первоначальные основные и единичная грани получают, конечно, новые символы. Их новые временные символы должны быть определены.

Это определение должно быть произведено любым вычислительным и графическим методом по неточным хотя бы координатам или методом преобразования символов по § 3. По найденным временным символам этих граней и по координатам указанных выше четырех граней вычисляем координаты основных и единичной граней по основным формулам. Затем временные символы отбрасываем и ведем вычисление обычным порядком.

Можно, конечно, определить временные символы всех граней, вычислить координаты последних и затем уже временные символы отбросить.

При временной установке может оказаться в том или ином отношении удобнее приписать четвертой исходной грани символ не (111), а какой-либо другой

 $(v_1v_2v_3)$ (пример ниже). В этом случае при вычислении необходимо принять во внимание § 1, гл. VI, стр. 81—83.

Если кристаллы юстировались при измерении по какой-либо зоне, тогда по крайней мере две грани (или две пары граней) этой зоны нанболее точно замеряются. Эти две грани мы и принимаем за исходные для вычисления и приписываем им временные символы (100) и (010). Две другие, уже "косые", грани, точно замеряемые, принимаем за остальные две исходные грани И приписываем им временные символы (001) и (111) (или вместо последнего какой-либо другой символ). Если какая-либо одна из граней комплекса резко отличается по своему совершенству от других, юстировка производится по этой грани. В таком случае ее принимаем за одну из исходных граней и приписываем ей временный символ (001). Трем дру-

гим граням, наиболее точно замеряемым, приписываем временные символы (100), (010) и (111). В дальнейшем поступаем так же, как это только что описано для юстировок по зонам. Отличие заключается лишь в том, что в этом случае пользуемся формулами для вычисления при юстировках по граням.

Пример	(фиг.	66).
Дано:		

Символы граней	အ်	ρ	Временные символы	Буквенные обозначения
(110)	0°00	90°00	010	Q
(110)	83°04,5	90°00	100	Р
(121)	64°20	55°16	001	R
(301)	34°20,5	69°40	311	V

Вычислить сферические координаты основных граней (100), (010), (001) и единичной грани (111).

Припишем граням (110), (110) и (121) временные символы (010), (100) и (001). (На фиг. 66 первоначальные символы поставлены в скобках, временные — без скобок.) Находим детерминант преобразования (см. ниже, § 3).

$$\frac{1}{1} \begin{vmatrix} 1 & 0 & 1 & 1 \\ 1 & \times & \times & \times \\ \hline 1 & 2 & 1 & 1 & 2 \\ \hline 1 & 2 & 1 & 1 & 2 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 &$$

Временный символ грани (301) получается следующий:

$$\frac{3 \cdot 1 + 0 \cdot \overline{1} + 1 \cdot 3}{3 \cdot 1 + 0 \cdot 1 + 1 \cdot \overline{1}} = \frac{6}{2} = \frac{3}{1}$$
(311)

Основные и единичные грани получают по стр. 140 следующие временные символы:

Основные	Временные	Вычисленные		
и единичные грани	символы	Ŷ	p	
(100)	110	34°23	90°00	
(010)	110	— 3 9°22,5	90°00	
(001)	312	33°50	11°17,5	
(111)	3 12	4°23,5	55°34	

Пользуемся далее основными формулами § 3, гл. VI. В виду того, что во временной установке вместо единичной грани дана грань V (311), при вычислениях во все формулы вместо индекса p следует подставлять $\frac{p}{3}$ и вместо координат φ_{n} и φ_{n1} и φ_{311} .

110

По формуле (6) находим:

$$\operatorname{ctg} \varphi_{110} = \frac{D-C}{\frac{1}{2} \sin 83^{\circ} 04,5} (B-A)} + \operatorname{ctg} 83^{\circ} 04,5.$$

$$D = \text{tg } 69^{\circ}40 \sin 48^{\circ}44 + \frac{|\text{1g tg } 69^{\circ}40 = 0,43113|}{|\text{1g sin } 48^{\circ}44 = \overline{1},87601}$$
$$|D = 2,0283|$$
$$|\text{1g } D = \overline{0,30714}|$$

 $C = tg 55^{\circ}16 \sin 147^{\circ}24, 5 = tg 55^{\circ}16 \cos 57^{\circ}24, 5.$

$$+ \frac{|\lg tg 55^{\circ}16 = 0,15908|}{|\lg \cos 57^{\circ}24,5 = \overline{1},73130} - \frac{2,02830}{0,77693}$$

$$\frac{|\lg C = \overline{1},89038}{|C = 0,77693|} |D - C = 1,25137|$$

 $B = tg 69^{\circ}40 \sin 34^{\circ}20,5$

$$+ \frac{\lg \lg 69^{\circ}40 = 0,43113}{\lg \sin 34^{\circ}20,5 = \overline{1,75138}}$$

$$\lg B = 0,18251$$

$$A = -\lg 55^{\circ}16 \sin 64^{\circ}20 + \lg \lg 55^{\circ}16 = 0,15908 \\ \lg \sin 64^{\circ}20 = \overline{1,95488} \\ \lg (-A) = \overline{0,11396} + \frac{1,5223}{1,3000} \\ + \frac{1,5223}{1,3000} \\ \hline B - A = 2,8223 \end{bmatrix}$$

$$ctg \varphi_{110} = \frac{3 \cdot 1,25137}{\sin 83^{\circ}04,5 \cdot 2,8223} + ctg 83^{\circ}04,5.$$

$$+ \frac{[\lg \sin 83^{\circ}04,5 = \overline{1,99682}]}{\lg 2,8223 = 0,45060} - \lg 3,75411 = 0,57450 \\ 0,44741 \\ \hline 0,12708 + \frac{[1,34000]}{0,44742} \\ \hline 0,12708 + \frac{[1,34000]}{ctg \varphi_{110} = \overline{1,46146.}} \\ \underline{\varphi_{110} = 34^{\circ}23} \\ \underline{\varphi_{110} = 34^{\circ}$$

По той же формуле (6) имеем:

$$\operatorname{ctg} \varphi_{\bar{1}10} = -\frac{D-C}{\frac{1}{3} \sin 83^{\circ}04,5}(B-A)} - \operatorname{ctg} 83^{\circ}04,5$$

- 1,34000
$$\operatorname{ctg} 83^{\circ}04,5 = 0,12146$$

$$\operatorname{ctg} \varphi_{\bar{1}10} = -\overline{1,21854}$$

$$\underline{\varphi_{\bar{1}10}} = -39^{\circ}22,5$$

312

По формуле (2) получим:

_

$$\operatorname{ctg} \varphi_{3\overline{1}2} = \frac{-D+3C}{\sin 83^{\circ}04,5} + \operatorname{ctg} 83^{\circ}04,5$$

$$-\frac{3C=2,3308}{D=2,0283} - \frac{B=1,5223}{A=1,3000}$$

$$3C-D=\overline{0,3025} + A=\overline{0,2223}$$

$$+\frac{\operatorname{lg}\sin 83^{\circ}04,5=\overline{1},99682}{|\overline{1g}(B+A)=\overline{1},34696|} - \operatorname{lg}(3C-D)=\overline{1},48071$$

$$\overline{1,34378} + \overline{1,34378} + \overline{1,34378}$$

$$\begin{array}{c} 1,37070 \\ ctg \ 83^{\circ}04,5 = 0,12146 \\ ctg \ \varphi_{3\overline{12}} = 1,49216 \end{array} \qquad \underline{\varphi_{3\overline{12}} = 33^{\circ}50} \\ \end{array}$$

По формуле (3*b*): $\lg \rho_{3\bar{1}2} = \frac{B+A}{2\sin 33^{\circ}50}$ + $\lg 2 = 0,30103$ $\lg \sin 30^{\circ}50 = \bar{1},74568$ $\lg 2 \sin \varphi_{3\bar{1}2} = 0,04671$ $\lg \rho_{3\bar{1}2} = 0,04671$ $\lg \rho_{3\bar{1}2} = 1,30025$ $\rho_{3\bar{1}2} = 11^{\circ}17,5$

По тем же формулам (2) и (3b) получим:

312

$\operatorname{ctg}\varphi_{312} = \frac{L}{\sin 83^\circ 0}$	$\frac{O+C}{4,5(B+A)}$ + ctg 83°04,5
$+ {\substack{D = 2,02830 \\ C = 0,77693}}$	$-\frac{\lg (D+C)=0,44797}{\bar{1},34378}$
D + C = 2,80523	1,10419
$+ \begin{array}{c} 12,89500 \\ \text{ctg } 83^{\circ}04,5 = 0,12146 \\ \text{ctg } \varphi_{312} = 1\overline{3,01646} \end{array}$	$\frac{\varphi_{312} = 4^{\circ}23,5}{1-2}$
tg $p_{312} = \frac{B+A}{2\sin 4^{\circ}23,5}$	$ \frac{\lg 2 = 0,30103}{\lg \sin 4^{\circ} 23,5 = \frac{2,88408}{\overline{1,18511}}} $
	$\rho = 55^{\circ}34$

После того как сферические координаты основных и единичной граней вычислены, вычисляем по ним координаты других граней, если они имеются, возвратившись снова к первоначальной установке. Углы φ в дальнейшем отсчитываем от меридиана с гранью (010), прибавив ко всем углам φ 39°22,5.

§ 3. Преобразование символов граней при изменении установки кристаллов

Выясним сначала, как меняются символы граней при изменении только одной единичной грани (111).

Предположим, что нам даны грани: P(100), Q(010), R(001), U(111), $V(v_1v_2v_3)$ и $X(x_1x_2x_3)$.

Пусть параметры единичной грани U, т. е. единицы измерения по 1-й, 2-й и 3-й кристаллографическим осям, будут соответственно a_0 , b_0 и c_0 , параметры грани $V - A_v$, B_v и C_v и, наконец, параметры грани $X - A_x$, B_x и C_x . Тогда можем написать (§ 1, гл. I):

$$\frac{a_0}{A_v}: \frac{b_0}{B_v}: \frac{c_0}{C_v} = v_1: v_2: v_3; \tag{1}$$

$$\frac{a_0}{A_x}: \frac{b_0}{B_x}: \frac{c_0}{C_x} = x_1: x_2: x_3.$$
(2)

Изменим теперь установку кристалла, приняв за единичную вместо грани U грань $V(v_1v_2v_3)$, приписав ей символ (111) и оставляя те же самые основные грани, иначе говоря, оставляя ту же систему кристаллографических осей. При этом изменяются символы всех граней (кроме основных). Пусть символ грани X после указанной перемены установки будет $(x_1'x_2'x_3')$. Так как на единичную грань принята теперь грань V, то единицами измерения по каждой оси при новой установке будут параметры A_n , B_n и C_n . Отсюда следует, что:

$$x_{1}': x_{2}': x_{3}' = \frac{A_{v}}{A_{x}}: \frac{B_{v}}{B_{x}}: \frac{C_{v}}{C_{x}}.$$
(3)

Разделим теперь почленно (2) на (1). Получаем:

$$\frac{A_{\boldsymbol{v}}}{A_{\boldsymbol{x}}} : \frac{B_{\boldsymbol{v}}}{B_{\boldsymbol{x}}} : \frac{C_{\boldsymbol{v}}}{C_{\boldsymbol{x}}} = \frac{x_1}{v_1} : \frac{x_2}{v_2} : \frac{x_3}{v_3}.$$

Подставляя в (3), получаем

$$x_1': x_2': x_3' = \frac{x_1}{v_1}: \frac{x_2}{v_2}: \frac{x_3}{v_3}.$$
(4)

Таким образом, при перемене единичной грани отношение новых индексов граней будет равно отношению первоначальных индексов, разделенных на первоначальные индексы грани, принятой за единичную. В частности, для прежней единичной грани получим отношение индексов — $\frac{1}{v_1}: \frac{1}{v_2}: \frac{1}{v_3}$.

Перейдем теперь к полному изменению установки.

Пусть в некоторой первоначальной установке кристалла какие-либо грани P, Q, R, U и X (фиг. 67) имеют соответственно символы $(p_1p_2p_3), (q_1q_2q_3), (r_1r_2r_3), (u_1u_2u_3)$ и $(x_1x_2x_3)$.

Для упрощения формулы, связывающей символы граней в первоначальной и новой установках, введем сначала условие, что отношение индексов грани U равно отношению сумм индексов граней P, Q и R, т. е.:

$$\frac{u_1}{u_2} = \frac{p_1 + q_1 + r_1}{p_2 + q_3 + r_2}$$
(5)

Фиг. 67.

или условно:

или

$$(u_1u_2u_3) = (p_1p_2p_3) + (q_1q_2q_3) + (r_1r_2r_3)$$

Проведем (фиг. 67) прямую через точки R и U до пересечения с прямой QP. На пересечении получаем возможную грань $A(a_1a_2a_3)$. Определим символы грани A, выразив его индексы через индексы граней P, Q и R. Это можно сделать либо по § 4 гл. III перекрестным умножением, либо по § 6. В том и другом случае, вместо индексов грани $U - (u_1u_2u_3)$, берем их отношение из формулы (5). Проще всего сделать это по § 6. В зоне PQ имеется грань, индексы которой относятся как суммы индексов P и Q, т. е. как:

$$(p_1 + q_1): (p_2 + q_2): (p_3 + q_3).$$

В зоне RU также имеется грань с тем же отношением индексов. Убеждаемся в этом вычитанием индексов грани R из величин, пропорциональных индексам грани U (формула 5).

$$\frac{p_1 + q_1 + r_1 - r_1}{p_2 + q_2 + r_2 - r_2} = \frac{p_1 + q_1}{p_2 + q_2}$$

$$\frac{p_1 + q_1}{p_3 + q_3 + r_3 - r_3} = \frac{p_1 + q_1}{p_3 + q_3}$$

Отсюда следует, что отношение индексов грани А, находящейся на пересечении указанных зон, равно именно полученному отношению, т. е.

$$a_{1}:a_{2}:a_{3} = (p_{1} + q_{1}):(p_{2} + q_{2}):(p_{3} + q_{3})$$

$$(a_{1}a_{2}a_{3}) = (p_{1}p_{2}p_{3}) + (q_{1}q_{2}q_{3}).$$
(6)

Проведем теперь зону PU и на пересечении с зоной QR найдем возможную грань $B(b_1b_2b_3)$. Тем же способом, как и для грани A, найдем:

$$b_1: b_2: b_3 = (q_1 + r_1): (q_2 + r_2): (q_3 + r_3)$$
(7)

 $(b_1b_2b_3) = (q_1q_2q_3) + (r_1r_2r_3).$

Проведем зоны RX и PX и на пересечении их с зонами PQ и QR найдем возможные грани L и M. Пусть их символы будут соответствению $(l_1 l_2 l_3)$ и $(m_1 m_2 m_3)$. Изменим теперь установку кристалла.

Примем в новой установке грани P, Q и R за основные грани с символами (100), (010) и (001) и грань U— за единичную — с символом (111). Пусть символ грани X во второй установке будет $(x_1'x_2'x_3')$.

Задача заключается в выводе формулы, которая связывала бы индексы грани X при второй установке с индексами граней P, Q, R и той же грани X при первоначальной установке. Формула должна дать возможность вычислять новые индексы грани $X(x_1'x_2'x_3')$ по первоначальным индексам граней P, Q, R и X.

Она имеет такой вид:

$$\frac{x_1}{x_2} = \frac{x_1'p_1 + x_2'q_1 + x_3'r_1}{x_1'p_2 + x_2'q_2 + x_3'r_2}$$

Выведем эту формулу следующим образом.

Символ грани A в новой установке будет (110) и грани $L = (x_1' x_2' 0)$. Во второй установке зональный символ грани L относительно граней P и Q будет $(x_1' x_2')$, так как (§ 5, гл. III):

$$(x_1'x_2'0) = x_1'(100) + x_2'(010).$$

Так как индексы грани A находятся простым суммированием индексов граней P и Q как при первой, так и при второй установках, — эта грань единичная относительно P и Q в той и другой установке (§ 5, гл. III). Отсюда следует, что зональный символ грани L в первоначальной установке также будет $(x_1'x_2')$. Это следует хотя бы из того, что в том и другом случае отношение зональных индексов грани L равно отношению отрезков: $\frac{QL}{QA}: \frac{PL}{PA}$ (§ 7 гл. III).

Отсюда следует, что

алли, точнее:

$$(l_1 l_2 l_3) = x_1' (p_1 p_2 p_3) + x_2' (q_1 q_2 q_3),$$

$$l_1 : l_2 : l_3 = (x_1' p_1 + x_2' q_1) : (x_1' p_2 + x_2' q_2) : (x_1' p_3 + x_2' q_3).$$
(8)

Подобным же образом найдем:

$$m_1: m_2: m_3 = (x_1'q_1 + x_2'r_1): (x_1'q_2 + x_2'r_2): (x_1'q_3 + x_2'r_3).$$
(9)

Если теперь умножить первоначальные индексы грани $R - (r_1 r_2 r_3)$ на x_3' и сполученные произведения сложить почленно с величинами, пропорциональными первоначальным индексам грани L [формула (8)], получим следующее отношение индексов одной из граней, находящихся в зоне RL:

$$\frac{x_1'p_1 + x_2'q_1 + x_3'r_1}{x_1'p_2 + x_2'q_2 + x_3'r_2}$$
$$\frac{x_1'p_3 + x_2'q_3 + x_3'r_3}{x_1'p_3 + x_2'q_3 + x_3'r_3}$$

Грань с таким же отношением индексов мы найдем и в зоне PM, умножив первоначальные индексы грани $P - (p_1 p_2 p_3)$ на x_1' и сложив почленно полученные произведения с величинами, пропорциональными первоначальным индексам грани M [формула (9)]. Отсюда следует, что указанное отношение равно отношению первоначальных индексов грани X, лежащей на пересечении дапных зон. Таким образом получаем:

$$\frac{x_1}{x_2} = \frac{x_1'p_1 + x_2'q_1 + x_3'r_1}{x_1'p_2 + x_2'q_2 + x_3'r_2}$$
(10)

ито и требовалось доказать.

мли

Чтобы найти отношение неизвестных $x_1':x_3':x_3'$, можем разбить формулу (10) на два уравнения с двумя неизвестными $\frac{x_1'}{x_3'}$ и $\frac{x_2'}{x_3'}$:

$$\begin{split} x_1 : & x_3 = \left(\frac{x_1'}{x_3'}p_1 + \frac{x_2'}{x_3'}q_1 + r_1\right) : \left(\frac{x_1'}{x_3'}p_3 + \frac{x_2'}{x_3'}q_3 + r_3\right); \\ & x_2 : x_3 = \left(\frac{x_1'}{x_3'}p_2 + \frac{x_2'}{x_3'}q_2 + r_2\right) : \left(\frac{x_1'}{x_3'}p_3 + \frac{x_2'}{x_3'}q_3 + r_3\right). \end{split}$$

Решаем совместно эти два уравнения относительно указанных неизвестных и затем находим искомое отношение $x_1': x_2': x_3'$.

Отношение $x_1': x_2': x_3'$ проще всего находится при помощи детерминантов:

$$x_{1}': x_{2}': x_{3}' = \begin{vmatrix} x_{1}x_{2}x_{3} \\ q_{1}q_{2}q_{3} \\ r_{1}r_{2}r_{3} \end{vmatrix} : \begin{vmatrix} p_{1}p_{2}p_{3} \\ x_{1}x_{2}x_{3} \\ r_{1}r_{2}r_{3} \end{vmatrix} : \begin{vmatrix} p_{1}p_{2}p_{3} \\ q_{1}q_{2}q_{3} \\ x_{1}x_{2}x_{3} \end{vmatrix}$$

Тем или другим путем окончательно найдем:

$$\frac{x_1'}{x_2'} = \frac{x_1 (q_2 r_3 - q_3 r_2) + x_2 (q_3 r_1 - q_1 r_3) + x_3 (q_1 r_2 - q_2 r_1)}{x_1 (p_3 r_2 - p_2 r_3) + x_2 (p_1 r_3 - p_3 r_1) + x_3 (p_2 r_1 - p_1 r_2)}$$
(11a)

Величины, стоящие в скобках, постоянны при вычислении новых индексов любых граней данного кристаллического комплекса. Нетрудно убедиться, что эти величины не что иное, как величины, пропорциональные индексам ребра пересечения граней P, Q и R, принятых нами в новой установке за основные грани. Пусть $[g_1g_2g_3]$ величины, пропорциональные индексам ребра пересечения граней Q и R, $[h_1h_2h_3]$ — ребра пересечения граней R и P и $[k_1k_2k_3]$ — ребра пересечения граней P и Q. Символы этих ребер находим обычным способом перекрестного умножения (§ 2, гл. III). Формула (11а) принимает следующий вид:

$$\frac{x_1'}{x_2'} = \frac{x_1g_1 + x_2g_2 + x_3g_3}{x_1h_1 + x_2h_2 + x_3h_3}$$
(11b)
$$(11b)$$

Получаемые перекрестным умножением величины, пропорциональные индексам указанных ребер, выписываются обычно в виде столбца, который называется "детерминантом преобразования" символов.

$$\begin{array}{c} g_{1}g_{2}g_{3} \\ h_{1}h_{2}h_{3} \\ k_{1}k_{2}k_{3} \end{array}$$
(12)

При преобразовании символов каждая из этих величин по формуле (11b) множится на первоначальные индексы грани X и затем полученные произведения суммируются. Необходимо принять к сведению, что получаемые перекрестным умножением величины каждой строки детерминанта преобразования нельзя сокращать на общих множителей.

Кроме того, для получения каждой строчки детерминанта необходимо при перекрестном умножении брать индексы граней, принятых за основные, обязательно в следующем порядке:

$$\begin{vmatrix} q_1 q_2 q_3 \\ r_1 r_2 r_2 \end{vmatrix}, \begin{vmatrix} r_1 r_2 r_3 \\ p_1 p_2 p_3 \end{vmatrix} = \begin{vmatrix} p_1 p_2 p_3 \\ q_1 q_2 q_3 \end{vmatrix}$$

Только при этих условиях полученные перекрестным умножением величины отвечают величинам, стоящим в скобках в формуле (11а).

Если вторая кристаллографическая ось располагается влево от первой, знаки у всех величин детерминанта преобразования меняются на обратные. Для вычисления сферических координат граней чаше всего достаточно определения новых символов лишь основных и единичных граней. Для этих случаев формула преобразования символов (11b) значительно упрощается. Для (100) получаем:

$$x_1': x_2': x_3' = g_1: h_1: k_1; \tag{12}$$

$$x_1': x_2': x_3' = g_2: h_2: k_2;$$
 (13)

для (010):

$$x_1': x_2': x_3' = g_3: h_3: k_3; \tag{14}$$

наконец, для (111):

$$x_1': x_2': x_3' = (g_1 + g_2 + g_3): (h_1: h_2: h_3): (k_1 + k_2 + k_3).$$
(15)

Таким образом, индексы новых символов граней (100), (010) и (001) пропорциональны числам первого, второго и третьего столбцов детерминанта преобразования, а грани (111) — суммам чисел первой, второй и третьей строк того же детерминанта.

Пример.

При изменении установки грани P (121) приписан символ (100), грани Q (121) — символ (010), грани R (211) — символ (001) и U (231) — символ (111). Найти новые символы граней, бывших при первоначальной установке основными и единичной.

Находим детерминант преобразования символов:

По формулам (12), (13) и (14) (100) получает символ (314), (010) — символ (330) = (110) и (001) — символ (354). По формуле (15) для (111) получаем:

$$x_1': x_2': x_3' = (3+3-3): (-1+3+5): (4+0+4) = 3:7:8;$$

(111) преобразуется в (378).

Преобразуем еще символ (102). По формуле (11b) имеем:

$$\frac{x_{1}'}{x_{2}'} = \frac{3 \cdot 1 + 3 \cdot 0 - 3 \cdot 2}{-1 \cdot 1 + 3 \cdot 0 + 5 \cdot 2} = \frac{-3}{-9} = \frac{-1}{-3} (\bar{1}34).$$

Для целей вычисления мы всегда имеем право при изменении установки принимать за единичную такую возможную грань, индексы которой пропорциональны суммам индексов граней, принятых в новой установке за основные [формула (5)]. Этим мы значительно упрощаем преобразование символов. Но изменение установки кристаллов может производиться и с другой целью — например, с целью согласования установки со структурой кристалла. В этом случае часто приходится принимать за единичную не ту грань, символ которой получается суммированием индексов граней, принятых за основные, а какой-либо другой грани. Рассмотрим, как преобразуются символы в этом наиболее общем случае.

Для вывода соответствующей формулы преобразования изменим сначала установку так, как это делали только что выше, принимая за единичную такую грань U, индексы которой пропорциональны суммам индексов граней P, Q и R. При этой установке отношение новых индексов $(x_1'x_2'x_3')$ грани X выражается формулой (11b). Для какой-либо грани V с первоначальными индексами $(v_1v_2v_3)$ отношение новых индексов $(v_1'v_2'v_3')$ соответственно будет следующее:

$$\frac{v_1'}{v_2'} = \frac{v_1 g_1 + v_2 g_2 + v_3 g_3}{v_1 h_1 + v_2 h_2 + v_3 h_2}$$
(12)

После этого первого преобразования мы будем иметь:

 $P(100), Q(010), R(001), U(111), V(v_1'v_2'v_3') \Vdash X(x_1'x_2'x_3').$

Изменим снова установку, приняв грань V за единичную вместо грани U и оставляя теми же самыми основные грани. Пусть при этом окончательно грань X получит символ $(x_1''x_2''x_3'')$. Как было доказано в начале настоящего параграфа [формула (4)], при такой перемене установки отношение новых индексов граней получается делением старых индексов на индексы грани, принятой за единичную. На этом основании и на основании формул (11b) и (12) получим:

$$\frac{x_1''}{x_2''} = \frac{x_1' : v_1'}{x_2' : v_2'} = \frac{(x_1g_1 + x_2g_2 + x_3g_3) : (v_1g_1 + v_2g_2 + v_3g_3)}{(x_1h_1 + x_2h_2 + x_3h_3) : (v_1h_1 + v_2h_2 + v_3h_3)}$$
(13a)

Примем:

$$v_{1}g_{1} + v_{2}g_{2} + v_{3}g_{3} = mv_{1}'$$

$$v_{1}h_{1} + v_{2}h_{2} + v_{3}h_{3} = mv_{2}'$$

$$v_{1}k_{1} + v_{2}k_{2} + v_{3}k_{3} = mv_{3}'$$
(14)

где *m* — коэфициент пропорциональности. Подставляя в формулу (13а), получим:

1

$$\frac{x_{1}''}{x_{2}''} = \frac{x_{1}\left(\frac{g_{1}}{mv_{1}'}\right) + x_{2}\left(\frac{g_{2}}{mv_{1}'}\right) + x_{3}\left(\frac{g_{3}}{mv_{1}'}\right)}{x_{1}\left(\frac{h_{1}}{mv_{2}'}\right) + x_{2}\left(\frac{h_{2}}{mv_{2}'}\right) + x_{3}\left(\frac{h_{3}}{mv_{2}'}\right)}{x_{1}\left(\frac{k_{1}}{mv_{3}'}\right) + x_{2}\left(\frac{k_{2}}{mv_{3}'}\right) + x_{3}\left(\frac{k_{3}}{mv_{3}'}\right)}$$
(13b)

Дроби, поставленные в скобках и образуют детерминант преобразования:

$$\frac{g_1}{mv_1'} \quad \frac{g_2}{mv_1'} \quad \frac{g_3}{mv_1'}$$
$$\frac{h_1}{mv_2'} \quad \frac{h_2}{mv_3'} \quad \frac{h_3}{mv_2'}$$
$$\frac{k_1}{mv_3'} \quad \frac{k_2}{mv_3'} \quad \frac{k_3}{mv_3'}$$

Как видим, для составления детерминанта преобразования необходимо: 1) определить с самого начала $[g_1g_2g_3]$, $[h_1h_2h_3]$ и $[k_1k_2k_3]$, т. е. величины, пропорциональные индексам ребер пересечения граней *P*, *Q* и *R*, принятых за основные; 2) найти затем по (14) суммы произведений этих величин на первоначальные индексы грани *V*, принятой за единичную, и, наконец, 3) разделить на эти суммы те же величины $[g_1g_2g_3]$, $[h_1h_2h_3]$ и $[k_1k_2k_3]$. По полученному детерминанту преобразования находим новые символы граней по (13b), умножая числа детерминанта на первоначальные их индексы и суммируя полученные произведения. Новые символы для основных и единичной граней находятся так же, как это указано на стр. 140.

ú.
Пример. [Cr(CON₂H₄)₃]₂(C₂O₄)₃·14¹/₂H₂O₃. (Е. С. Федоров, Das Krystallreich, стр. 429.)

P	Q	R	V	-			
311	110	001	011	012	312	100	старые символы
100	010	001	111	113	101	311	новые символы
		1 1011 0 0100 [110]	$\left \frac{0}{1}\right $	0 0100 3 1131 [130	$\left \frac{\overline{1}}{1}\right $	$\begin{array}{c c} 3 & 1 \\ \hline 1 & 1 \end{array}$	$ \begin{array}{c c} \overline{131} & \overline{1} \\ \overline{011} & 0 \\ \hline 14] \end{array} $
		$\frac{v_1'}{v_2'} = \frac{v_1'}{v_3'} =$	$=-1\cdot (1-1)\cdot $	$\frac{0+-1}{0+-3}$ $\frac{0+1}{1}$	$\frac{1+0}{1+0}$ $+4 \cdot -$	$\frac{-1}{-1} = \frac{-1}{-1}$	$\frac{-1}{-3}$
Детерминан преобразован	т ния	$\frac{1}{1/-3}$ $\frac{-1}{-3}$ $\frac{1}{1/-3}$ $\frac{1}{-3}$	$ \begin{array}{c} $	$\begin{vmatrix} 1 \\ 3 \\ 3 \end{vmatrix} = \begin{vmatrix} 1 \\ 3 \\ 3 \end{vmatrix}$	$\frac{1}{\frac{1}{3}} = \frac{1}{\frac{1}{3}}$	$\begin{vmatrix} 0\\ 0\\ \frac{1}{4/3} \end{vmatrix} =$	$= \begin{vmatrix} 330\\\overline{130}\\\overline{114} \end{vmatrix}$
Новый симво.	л для	грани ((021):				

 $\frac{3 \cdot 0 + 3 \cdot 1 + 0 \cdot 2}{-1 \cdot 0 + 3 \cdot 1 + 0 \cdot 2} = \frac{3}{-9} = \frac{1}{-3}$ (113)

Для грани (312):

$$\frac{3 \cdot 3 + 3 \cdot 1 + 0 \cdot 2}{-1 \cdot 3 + 3 \cdot 1 + 0 \cdot 2} = \frac{12}{-12} = \frac{12}{-1} = \frac{1}{-1}$$
(101)

Û

§ 4. Долгота Фр грани Р(100). Триклинная (агирная) сингония

Юстировка по зоне [001]

Три исходные грани Q(010), R(001) и U(111) или вместо последней $V(p_vq_vr_v)$ с координатами $\varphi_q = 0^\circ$ и $\rho_q = 90^\circ$; φ_r и ρ_r , φ_u и ρ_w (или φ_v и ρ_v). $W(p_wq_wr_w)$ — четвертая исходная грань с координатами φ_w и ρ_w .

1. $W(p_w q_w r_w)$.

Решаем уравнение (2) (стр. 87) — относительно 9р, подставив

φ_w и ρ_w вместо φ_x и ρ_x. Получаем:

$$= \frac{\operatorname{ctg} \varphi_w \operatorname{tg} \rho_w \operatorname{tg} \rho_u \operatorname{sin} \varphi_u + (r_w - \rho_w) \operatorname{tg} \rho_r \operatorname{sin} \varphi_r] - q_w \operatorname{tg} \rho_u \operatorname{cos} \varphi_u - (r_w - q_w) \operatorname{tg} \rho_r \operatorname{cos} \varphi_r}{(\rho_w - q_w) \operatorname{(tg} \rho_u \operatorname{sin} \varphi_u - \operatorname{tg} \rho_r \operatorname{sin} \varphi_r)}.$$
(1a)

Подставив сюда $r_w \lg \rho_w \sin \phi_w$ из формулы (3b) (стр. 87) вместо выражения в квадратных скобках в числителе, получим:

$$\operatorname{ctg} \varphi_{p} = \frac{r_{w} \operatorname{tg} \rho_{w} \cos \varphi_{w} - q_{w} \operatorname{tg} \rho_{u} \cos \varphi_{u} - (r_{w} - q_{w}) \operatorname{tg} \rho_{r} \cos \varphi_{r}}{(p_{w} - q_{w}) (\operatorname{tg} \rho_{u} \sin \varphi_{u} - \operatorname{tg} \rho_{r} \sin \varphi_{r})}.$$
 (1*a*')

Или, подставляя еще в формулу (1а) из формулы (3а) (стр. 87)

 r_w tg $\rho_w \sin \varphi_w - (r_w - p_w) \cdot$ tg $\rho_r \sin \varphi_r$ вместо p tg $\rho_n \sin \varphi_n$, получим:

$$\operatorname{ctg} \varphi_{p} = \frac{r_{w} \operatorname{tg} \rho_{w} \cos \varphi_{w} - q_{w} \operatorname{tg} \rho_{\mu} \cos \varphi_{\mu} - (r_{w} - q_{w}) \operatorname{tg} \rho_{r} \cos \varphi_{r}}{r_{w} \operatorname{tg} \rho_{w} \sin \varphi_{w} - q_{w} \operatorname{tg} \rho_{\mu} \sin \varphi_{\mu} - (r_{w} - q_{w}) \operatorname{tg} \rho_{r} \sin \varphi_{r}}.$$
 (1a'')

Если вместо координат грани U(111) даны координаты грани $Y(p_v q_v r_v)$, поступаем, как указано в § 3, стр. 86. Получим из (1a'):

$$\operatorname{ctg} \varphi_{p} = \frac{\frac{r_{w}}{r_{v}} \operatorname{tg} \rho_{w} \cos \varphi_{w} - \frac{q_{w}}{q_{v}} \operatorname{tg} \rho_{v} \cos \varphi_{v} - \left(\frac{r_{w}}{r_{v}} - \frac{q_{w}}{q_{v}}\right) \operatorname{tg} \rho_{r} \cos \varphi_{r}}{\left(\frac{p_{w}}{p_{v}} - \frac{q_{w}}{q_{v}}\right) (\operatorname{tg} \rho_{v} \sin \varphi_{v} - \operatorname{tg} \rho_{r} \sin \varphi_{r})} \qquad (1b)$$

В дальнейшем формулы будем выводить, принимая третью исходную граньза $V(p_v q_v r_v)$. Если третья исходная грань U(111), вместо индексов $\tilde{p_v}$, q_v и r_v . подставляем единицы.

$2. W(p_w q_w 0). \qquad \rho_w = 90^{\circ}.$

Подставив в формулу (1*a*) $\dot{r}_w = 0$, получим:

$$\operatorname{ctg} \varphi_{p} = \frac{\frac{p_{w}}{p_{v}}}{\frac{p_{w}}{p_{v}} - \frac{q_{w}}{q_{v}}} \operatorname{ctg} \varphi_{w} - \frac{\frac{q_{w}}{q_{v}} (\operatorname{tg} \rho_{v} \cos \varphi_{v} - \operatorname{tg} \rho_{r} \cos \varphi_{r})}{\left(\frac{p_{w}}{p_{v}} - \frac{q_{w}}{q_{v}}\right) (\operatorname{tg} \rho_{v} \sin \varphi_{v} - \operatorname{tg} \rho_{r} \sin \varphi_{r})} .$$
(2)

3. $W(p_w 0r_w)$.

Подставляя в формулу (1b) $q_w = 0$, получим:

$$\operatorname{ctg} \varphi_{p} = \frac{\frac{r_{w}}{r_{v}} \left(\operatorname{tg} \rho_{w} \cos \varphi_{w} - \operatorname{tg} \rho_{r} \cos \varphi_{r} \right)}{\frac{p_{w}}{p_{v}} \left(\operatorname{tg} \rho_{v} \sin \varphi_{v} - \operatorname{tg} \rho_{r} \sin \varphi_{r} \right)}.$$
(3)

4. $W(0q_w r_w)$.

Подставляя в формулу (1b) $p_w = 0$, получим:

$$\operatorname{ctg} \varphi_{p} = \frac{\frac{r_{w}}{r_{v}} \operatorname{tg} \rho_{w} \cos \varphi_{w} - \frac{q_{w}}{q_{v}} \operatorname{tg} \rho_{v} \cos \varphi_{v} - \left(\frac{r_{w}}{r_{v}} - \frac{q_{w}}{q_{v}}\right) \operatorname{tg} \rho_{r} \cos \varphi_{r}}{\frac{q_{w}}{q_{v}} \left(\operatorname{tg} \rho_{r} \sin \varphi_{r} - \operatorname{tg} \rho_{v} \sin \varphi_{v}\right)}.$$
(4)

Пример (фиг. 68). Аксинит (Гольдшмидт, Winkeltabellen, стр. 58).

Дано:

$\varphi_{010} = 0^{\circ}$	$p_{010} = 90^{\circ}$	Q
$\varphi_{001} = -90^{\circ}34,5$	$\rho_{001} = 7^{\circ}58,5$	R
$\varphi_{215} = 76^{\circ}37$	$\rho_{215} = 20^{\circ}33,5$	V
$\varphi_{\bar{2}\bar{3}1} = -132^{\circ}32$	$\rho_{\bar{2}\bar{3}1} = 74^{\circ}32,5$	W.

Вычислить φ_{100} .

Пользуемся формулой (1b). В эту формулу

вместо	подставляем
	Ф215 И Р215, 2, 1 и 5, Ф231 И Р231, — 2, — 3 и 1.

Фиг. 68.

(Можно было бы подставить обратно, т. е. вместо φ_v и ρ_v подставить $\varphi_{ar{23}}$ и $p_{2\bar{2}1}$ и вместо φ_w и $\rho_w - \varphi_{215}$ и p_{215} , но тогда и отношение индексов в формуле надо взять обратное, т. е. $\frac{p_v}{p_w}$, $\frac{q_v}{q_w}$ и $\frac{r_v}{r_w}$. Получим: $\frac{1}{5}$ tg 74°32,5 cos (— 132°32) + 3 tg 20°33,5 cos 76°37 — $\frac{16}{5}$ tg 7°58,5 cos (— 90°34,5) $\operatorname{ctg} \varphi_{100} = -$ + 2 [tg 20°33.5 sin 76°37 - tg 7°58,5 sin (- 90°34,5)] $\cos -132^{\circ}32 = \cos 132^{\circ}32 = -\sin 42^{\circ}32$ $\cos -90^{\circ}34,5 = \cos 90^{\circ}34,5 = -\sin 0^{\circ}34,5$ $\sin -90^{\circ}34,5 = -\sin 90^{\circ}34,5 = -\cos 0^{\circ}34,5$ $-\frac{1}{5}$ tg 74°32,5 sin 42°32′ + 3 tg 20°33,5 cos 76°37 + $\frac{16}{5}$ tg 7°58,5′ sin 0°34,5 ,ctg 9100 = -----2 (tg 20°33.5 sin 76°37 + tg 7°58.5 cos 0°34.5) $+ \frac{\lg \lg 74^{\circ}32,5 = 0,55824}{\lg \sin 42^{\circ}32} = \underline{\overline{1,82996}} + \frac{\lg \lg 20^{\circ}33,5 = \overline{1,574085}}{\lg \cos 76^{\circ}37} = \underline{\overline{1,364490}}$ 0.38820 2.938575 N = 2,4446 N = 0,08681 $1/_{u}N = 0,4889$ 3N = 0,26043 $\overline{2.35204}$ N = 0,02249 $^{1}/_{s}N = 0,004498$ $+ {0,26043 \atop 0,00450}$ $-\frac{\overline{0,26493}}{0,48890}$ — 0,22397 — числитель $+ \frac{\lg \lg 20^{\circ}33,5 = \overline{1,574085}}{\lg \sin 76^{\circ}37 = \overline{1,988040}} \qquad \underset{\lg \cos 0^{\circ}34,5 = \overline{1,146425}}{\lg \cos 0^{\circ}34,5 = \overline{1,99998}}$ 1,146405 1,562125 N = 0,36486N = 0.14010,36486 $\operatorname{ctg} \varphi_{100} = -\frac{0,22397}{1,00992}$ 0.50496 $\times 2$ <u>1,00992</u>—знаменатель __lg 0,22397 = <u>1</u>,350190 lg 1,00992 = 0,004277 $\lg \operatorname{ctg}(-\varphi_{100}) = \overline{1,345913}$ $(\varphi' = -77^{\circ}30)$ $\varphi'' = 180 - 77^{\circ}30 = 102^{\circ}30$

По положению граней на проекции видно, что правильно второе решение.

§ 5. Долгота \u03c6_q' грани Q (010) относительно P (100) Триклинная (агирная) сингония

Юстировка по зоне [001]

Триисходныеграни P(100), R(001) и $V(p_vq_vr_v)$ или U(111) с координатами $\varphi_p' = 0^\circ$ и $\rho_p = \rho_q =$ $= 90^\circ$; φ_r' и ρ_r ; φ_v' и ρ_v (или φ_u' и ρ_u).

За начальный принят меридиан с гранью P(100), и все углы φ отсчитываем от него, в том числе и четвертой исходной грани $W(p_w q_w r_w)$ с координатами φ_w' и ρ_w .

Для вычисления φ_q' можно воспользоваться формулами предыдущего параграфа. Для этого временно приписываем грани P символ (010) и наоборот — грани Q — символ (100). При этом в символах всех граней переменятся местами первый и второй индексы. Поэтому во всех формулах параграфа 4 заменим φ_p через φ_q , все индексы p заменим индексами q и, наоборот, индексы q — индексами p. Углы φ заменяем углами φ' .

Фиг. 69.

1. $W(p_w q_w r_w)$.

$$\operatorname{ctg} \varphi_{q}' = \frac{\frac{r_{w}}{r_{v}} \operatorname{tg} \rho_{w} \cos \varphi_{w}' - \frac{p_{w}}{p_{v}} \operatorname{tg} \rho_{v} \cos \varphi_{v}' - \left(\frac{r_{w}}{r_{v}} - \frac{p_{w}}{p_{v}}\right) \operatorname{tg} \rho_{r} \cos \varphi_{r}'}{\left(\frac{q_{w}}{q_{v}} - \frac{p_{w}}{p_{v}}\right) (\operatorname{tg} \rho_{v} \sin \varphi_{v}' - \operatorname{tg} \rho_{r} \sin \varphi_{r}')}.$$
(1)

2. $W(p_{w}q_{w}0)$. $\rho_{w} = 90^{\circ}$.

$$\operatorname{ctg} \varphi_{q}' = \frac{\frac{q_{w}}{q_{v}}}{\frac{q_{w}}{q_{v}} - \frac{p_{w}}{p_{v}}} \operatorname{ctg} \varphi_{w}' - \frac{\frac{p_{w}}{p_{v}}(\operatorname{tg} \rho_{v} \cos \varphi_{v}' - \operatorname{tg} \rho_{r} \cos \varphi_{r}')}{\left(\frac{q_{w}}{q_{v}} - \frac{p_{w}}{p_{v}}\right)(\operatorname{tg} \rho_{v} \sin \varphi_{v}' - \operatorname{tg} \rho_{r} \sin \varphi_{r}')}.$$
(2)
3. $W(p_{w}0r_{w}).$

$$\operatorname{ctg} \varphi_{q'} = \frac{\frac{r_{w}}{r_{v}} \operatorname{tg} \rho_{w} \cos \varphi_{w'} - \frac{p_{w}}{p_{v}} \operatorname{tg} \rho_{v} \cos \varphi_{v'} - \left(\frac{r_{w}}{r_{v}} - \frac{p_{w}}{p_{v}}\right) \operatorname{tg} \rho_{r} \cos \varphi_{r'}}{\frac{p_{w}}{p_{v}} (\operatorname{tg} \rho_{r} \sin \varphi_{r'} - \operatorname{tg} \rho_{v} \sin \varphi_{v'})}.$$
(3)

4. $W(0 q_w r_w)$.

$$\operatorname{ctg} \varphi_{q'} = \frac{\frac{r_{w}}{r_{v}} (\operatorname{tg} \rho_{w} \cos \varphi_{w'} - \operatorname{tg} \rho_{r} \cos \varphi_{r'})}{\frac{q_{w}}{q_{v}} (\operatorname{tg} \rho_{v} \sin \varphi_{v'} - \operatorname{tg} \rho_{r} \sin \varphi_{r'})}.$$
(4)

Пример (фиг. 69). Аксинит (Гольдшмидт, Winkeltabellen, стр. 58). Дано:

$$\begin{aligned} \varphi_{100}' &= 0^{\circ}, & \rho_{100} = 90^{\circ} & P \\ \varphi_{001}' &= 166^{\circ}55,5, & \rho_{001} = 7^{\circ}58,5 & R \\ \varphi_{2\bar{3}1}' &= 124^{\circ}58, & \rho_{\bar{2}\bar{3}1} = 74^{\circ}32,5 & V \\ \varphi_{0\bar{3}1}' &= 80^{\circ}10, & \rho_{0\bar{3}1} = 71^{\circ}36,5 & W \end{aligned}$$

· Вычислить φ_q'(φ₀₁₀). Пользуемся формулой (4)

$$\begin{aligned} \operatorname{ctg} \varphi_{q}' &= \frac{\operatorname{tg} 71^{\circ}36,5 \cos 80^{\circ}10 - \operatorname{tg} 7^{\circ}58,5 \cos 166^{\circ}55,5}{\operatorname{tg} 74^{\circ}32,5 \sin 124^{\circ}58 - \operatorname{tg} 7^{\circ}58,5 \sin 166^{\circ}55,5};, \\ \operatorname{ctg} \varphi_{q}' &= \frac{\operatorname{tg} 71^{\circ}36,5 \cos 80^{\circ}10 + \operatorname{tg} 7^{\circ}58,5 \sin 76^{\circ}55,5}{\operatorname{tg} 74^{\circ}32,5 \cos 34^{\circ}58 - \operatorname{tg} 7^{\circ}58,5 \cos 76^{\circ}55,5}; \\ \operatorname{ctg} \varphi_{q}' &= \frac{0,5136 + 0,1365}{2,9633 - 0,03169} = \frac{0,6501}{2,93161}; \\ (\varphi_{q}' = 77^{\circ}30); \\ \underline{\varphi_{q}'} &= 77^{\circ}30 - 180 = -\underline{102^{\circ}30}. \end{aligned}$$

Сравнивая со стереограммой, убеждаемся в правильности второго решения. После этого принимаем меридиан с гранью Q (010) за начальный и ко всем углам φ прибавляем 102°30.

§ 6. Координаты φ_r и p_r грани *R* (001). Триклинная (агирная) сингония Юстировка по зоне [001]

Три исходных грани P(100), Q(010) и U(111) или вместо последней $V(p_vq_vr_v)$ с координитами: φ_p , $\rho_p = 90^\circ$; $\varphi_q = 0^\circ$, $\rho_q = 90^\circ$; φ_u , ρ_n или (φ_v , ρ_v). $W(p_wq_wr_w)$ — четвертая исходная грань с координатами φ_w и ρ_w .

Если третьей исходной гранью вместо U(111) будет $V(p_v q_v r_v)$, во все нижеследующие формулы подставляем $\frac{p_w}{p_v}$, $\frac{q_w}{q_v}$ и $\frac{r_w}{r_v}$ вместо p_w , q_w и r_w , а также координаты φ_v и ρ_v вместо φ_u и ρ_u .

$1.W(p_wq_wr_w).$

Из формулы (1b) (стр. 86) имеем:

$$\frac{p_w}{r_w} = \frac{\operatorname{tg} \rho_w \sin \varphi_w - \operatorname{tg} \rho_r \sin \varphi_r}{\operatorname{tg} \rho_u \sin \varphi_u - \operatorname{tg} \rho_r \sin \varphi_r};$$
$$\frac{q_w}{r_w} = \frac{\operatorname{tg} \rho_w \sin (\varphi_p - \varphi_w) - \operatorname{tg} \rho_r \sin (\varphi_p - \varphi_r)}{\operatorname{tg} \rho_u \sin (\varphi_p - \varphi_u) - \operatorname{tg} \rho_r \sin (\varphi_p - \varphi_r)}.$$

Решая эти два уравнения относительно ф, и р, получаем:

$$\operatorname{ctg} \varphi_{r} = \frac{(r_{w} - p_{w}) \left[r_{w} \operatorname{tg} \rho_{w} \sin \left(\varphi_{p} - \varphi_{w} \right) - q_{w} \operatorname{tg} \rho_{\mu} \sin \left(\varphi_{p} - \varphi_{\mu} \right) \right]}{(r_{w} - q_{w}) \sin \varphi_{p} \left(r_{w} \operatorname{tg} \rho_{w} \sin \varphi_{w} - p_{w} \operatorname{tg} \rho_{\mu} \sin \varphi_{u} \right)} + \operatorname{ctg} \varphi_{p}; \qquad (1)$$

$$\operatorname{tg} \mathbf{p}_{\mathbf{r}} = \frac{r_{w} \operatorname{tg} \boldsymbol{\rho}_{w} \sin \boldsymbol{\varphi}_{w} - p_{w} \operatorname{tg} \boldsymbol{\rho}_{u} \sin \boldsymbol{\varphi}_{u}}{(r_{w} - p_{w}) \sin \boldsymbol{\varphi}_{r}}; \qquad (2a)$$

$$\operatorname{tg} \mathbf{p}_{r} = \frac{r_{w} \operatorname{tg} \mathbf{p}_{w} \sin\left(\mathbf{\varphi}_{p} - \mathbf{\varphi}_{w}\right) - q_{w} \operatorname{tg} \mathbf{p}_{u} \sin\left(\mathbf{\varphi}_{p} - \mathbf{\varphi}_{u}\right)}{(r_{w} - q_{w}) \sin\left(\mathbf{\varphi}_{p} - \mathbf{\varphi}_{r}\right)}.$$
(2b)

2. $W(p_w q_w 0)$. $\rho_w = 90^\circ$.

φ, не может быть вычислено, так как имеем три исходных грани в одной зоне — *P*, *Q* и *W*. При данном φ, из формулы (5) (стр. 87) получим:

$$\operatorname{tg} \rho_{r} = \frac{\operatorname{tg} \rho_{u} \left[q \sin \varphi_{w} \sin \left(\varphi_{p} - \varphi_{u} \right) - p \sin \varphi_{u} \sin \left(\varphi_{p} - \varphi_{w} \right) \right]}{q \sin \varphi_{w} \sin \left(\varphi_{p} - \varphi_{r} \right) - p \sin \varphi_{r} \sin \left(\varphi_{p} - \varphi_{w} \right)}.$$
(3)

 $3. W(p_w 0 r_w).$

$$\operatorname{stg} \varphi_{r} = \frac{(r_{w} - p_{w}) \operatorname{tg} \varphi_{w} \sin (\varphi_{p} - \varphi_{w})}{\sin \varphi_{p} (r_{w} \operatorname{tg} \varphi_{w} \sin \varphi_{w} - p_{w} \operatorname{tg} \varphi_{\mu} \sin \varphi_{u})} + \operatorname{ctg} \varphi_{p}; \qquad (4)$$

$$\operatorname{ig} \boldsymbol{\rho}_{r} = \frac{r_{w} \operatorname{tg} \boldsymbol{\rho}_{w} \sin \boldsymbol{\varphi}_{w} - \boldsymbol{p}_{w} \operatorname{tg} \boldsymbol{\rho}_{u} \sin \boldsymbol{\varphi}_{u}}{(r_{w} - \boldsymbol{p}_{w}) \sin \boldsymbol{\varphi}_{r}};$$
(5a)

$$\operatorname{tg} \mathbf{p}_{r} = \frac{\operatorname{tg} \, \varphi_{w} \sin\left(\varphi_{p} - \varphi_{w}\right)}{\sin\left(\varphi_{p} - \varphi_{r}\right)}.$$
(5b)

 $4. W(0 q_w r_w).$

$$\operatorname{ctg}\varphi_{r} = \frac{r_{w}\operatorname{tg}\rho_{w}\sin\left(\varphi_{p}-\varphi_{w}\right)-q_{w}\operatorname{tg}\rho_{u}\sin\left(\varphi_{p}-\varphi_{u}\right)}{(r_{w}-q_{w})\operatorname{tg}\rho_{w}\sin\varphi_{p}\sin\varphi_{w}} + \operatorname{ctg}\varphi_{p}; \tag{6}$$

$$\operatorname{tg} \rho_r = \frac{\operatorname{tg} \rho_w \sin \varphi_w}{\sin \varphi_r}; \tag{7a}$$

$$\operatorname{tg} \rho_{r} = \frac{r_{w} \operatorname{tg} \rho_{w} \sin \left(\varphi_{p} - \varphi_{w}\right) - q_{w} \operatorname{tg} \rho_{u} \sin \left(\varphi_{p} - \varphi_{u}\right)}{(r_{w} - q_{w}) \sin \left(\varphi_{p} - \varphi_{r}\right)}. \tag{7b}$$

Пример (фиг. 68). Аксинит (Гольдшмидт, Winkeltabellen, стр. 58). Дано:

	ဖု	ρ
Q (010)	0°00	90°00
P (100)	102°30	90°00
V (231)	— 132°32	74°32,5
W (215)	76°37	20°33,5

Вычислить координаты φ_r и ρ_r грани R (001). Пользуемся формулами (1) и (2а), принимая во внимание замечание на той же странице о замене в формулах индексов и координат грани U (111) координатами грани $V(p_n q_n r_n)$.

 $\operatorname{ctg} \varphi_{r} = \frac{(5+1) (5 \operatorname{tg} 20^{\circ}33,5 \sin 25^{\circ}53 + \frac{1}{3} \operatorname{tg} 74^{\circ}32,5 \sin 235^{\circ}02)}{(5+\frac{1}{3}) \sin 102^{\circ}30 [5 \operatorname{tg} 20^{\circ}33,5 \sin 76^{\circ}37 + \operatorname{tg} 74^{\circ}32,5 \sin (-132^{\circ}32)]} + \operatorname{ctg} 102^{\circ}30 =$ $= \frac{9 (5 \text{ tg } 20^{\circ}33,5 \sin 25^{\circ}53 - \frac{1}{3} \text{ tg } 74^{\circ}32,5 \sin 55^{\circ}02)}{8 \cos 12^{\circ}30 (5 \text{ tg } 20^{\circ}33,5 \sin 76^{\circ}37 - \text{ tg } 74^{\circ}32,5 \cos 42^{\circ}32)} - \text{tg } 12^{\circ}30.$ $+ \frac{\lg \lg 20^{\circ}33,5 = \bar{1},57408}{\lg \sin 25^{\circ}53 = \bar{1},64002} + \frac{\lg \lg 74^{\circ}32,5 = 0,55824}{\lg \sin 55^{\circ}02 = \bar{1},91354} - \frac{1}{0,47178} - \frac{0,47178}{0,47178}$ $\frac{1}{100} = \frac{0,1}{1,99466}$ $- \underbrace{ \overset{0,8186}{_{0,9878}} }_{- 0,1692}$ $+ \frac{\lg \lg 74^{\circ}32,5 = 0,55824}{\lg \cos 42^{\circ}32 = \overline{1,86740}}$ $+ \frac{\lg \lg 20^{\circ}33,5 = \bar{1},57408}{\lg \sin 76^{\circ}37 = \bar{1},98804} \\ \lg 5 = 0,69897$ 0.42564 0,26109 *

$$\begin{array}{r} -\frac{1,8243}{2,6656} \\ \hline \\ \hline \\ -0,8413 \\ \hline \\ ctg \varphi_r = \frac{\pm 9 \cdot 0,1692}{\pm 8 \cos 12^{\circ}30 \cdot 0,8413} - tg \, 12^{\circ}30 \\ + \frac{1g \, 9 = 0,95424}{1g \, 0,1692 = \overline{1},22840} + \frac{1g \, 8 = 0,90309}{1g \cos 12^{\circ}30 = \overline{1},98958} \\ \hline \\ \hline \\ 0,18264 & lg \, 0,8413 = \overline{1},92495 \\ \hline \\ 0,81762 \\ \hline \\ \hline \\ \overline{1},36502 \end{array}$$

$$ctg \varphi_r = 0,23175 - tg \, 12^{\circ}30 = 0,23175 - 0,22169 = 0,01006 \end{array}$$

$$(\varphi_r' = 89^{\circ}25,5); \quad \varphi_r'' = -(180^{\circ} - 89^{\circ}25,5) = -90^{\circ}34,5.$$

По положению грани на проекции (фиг. 68) убеждаемся, что правильно второе значение.

$$tg \rho_{r} = \frac{5 tg 20^{\circ}33,5 \sin 76^{\circ}37 - tg 74^{\circ}32,5 \cos 42^{\circ}32}{6 \sin (-90^{\circ}34,5)} = \frac{\pm 0,8413}{\pm 6 \cos 0^{\circ}34,5} + \frac{1g 6 = 0,77815}{1g \cos 0^{\circ}34,5 = \overline{1,99998}} - \frac{\overline{1,99998}}{0,77813} - \frac{\overline{1,92495}}{0,77813} + \frac{1g tg \rho_{r} = \overline{1,14682}}{1,9r = \overline{1,14682}} \rho_{r} = \overline{7^{\circ}59}$$

§ 7. Координаты φ_p и ρ_p грани *P*(100). Триклинная (агирная) сингония Юстировка по грани *R*(001)

Три исходные грани Q(010), R(001) и U(111) [или вместо последней $V(p_vq_vr_v)$] с координатами: $\varphi_q = 0$, ρ_q ; $\varphi_r = \frac{0}{0}$, $\rho_r = 0^\circ$; φ_u , ρ_u (или φ_v , ρ_v).

 $W(p_w q_w r_w)$ — четвертая исходная грань с координатами φ_w и ρ_w . Если вместо третьей исходной U(111) дана грань $V(p_v q_v r_v)$, как указано на стр. 146, везде в формулах подставляем: $\frac{p_w}{p_v}$, $\frac{q_w}{q_v}$ и $\frac{r_w}{r_v}$ вместо p_w , q_w и r_w и соответственно φ_v и ρ_v вместо φ_u и ρ_u . Для этого случая формул приводить не будем.

1. $W(p_w q_w r_w)$.

Из формулы (2) и (3а) (стр. 94-95) получаем:

$$\operatorname{ctg} \varphi_{p} = \frac{p_{w} \operatorname{ctg} \varphi_{w} - q_{w} \operatorname{ctg} \varphi_{u}}{p_{w} - q_{w}}, \tag{1}$$

$$\operatorname{ctg} \rho_{p} = \frac{1}{p_{w} - r_{w}} \left[\frac{p_{w} \operatorname{ctg} \rho_{w} \sin \varphi_{p}}{\sin \varphi_{w}} - \frac{(q_{w} - r_{w}) \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u}) + r_{w} \operatorname{ctg} \rho_{u} \sin \varphi_{p}}{\sin \varphi_{u}} \right]$$
(2a)

или из (3b):

$$\operatorname{ctg} \rho_{p} = \frac{1}{(p_{w} - r_{w})\sin\varphi_{u}} \left[\frac{q_{w}\operatorname{ctg}\rho_{w}\sin\varphi_{p}\sin(\varphi_{p} - \varphi_{u})}{\sin(\varphi_{p} - \varphi_{w})} - (q_{w} - r_{w})\operatorname{ctg}\rho_{q}\sin(\varphi_{p} - \varphi_{u}) - r_{w}\operatorname{ctg}\rho_{u}\sin\varphi_{p} \right].$$
(2b)

2. $W(p_w^-q_w^-0)$.

$$\operatorname{ctg} \varphi_{p} = \frac{p_{w} \operatorname{ctg} \varphi_{w} - q_{w}}{p_{w} - q_{w}}; \qquad (3)$$

$$\operatorname{ctg} \rho_{p} = \frac{\operatorname{ctg} \rho_{w} \sin \varphi_{p}}{\sin \varphi_{w}} - \frac{q_{w} \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})}{p_{w} \sin \varphi_{u}}; \qquad (4a)$$

или из (6b) (стр. 95):

$$\operatorname{ctg} \boldsymbol{\rho}_p = \frac{\operatorname{ctg} \boldsymbol{\rho}_w \sin \boldsymbol{\varphi}_p - \operatorname{ctg} \boldsymbol{\rho}_q \sin (\boldsymbol{\varphi}_p - \boldsymbol{\varphi}_w)}{\sin \boldsymbol{\varphi}_w}.$$
 (4b)

3. $W(p_w 0 r_w)$.

$$\varphi_{p}' = \varphi_{w} \quad \varphi_{p}'' = \varphi_{w} + 180 \tag{5}$$

$$\operatorname{ctg} \boldsymbol{\rho}_{p} = \frac{1}{p_{w} - r_{w}} \left[\frac{p_{w} \operatorname{ctg} \boldsymbol{\rho}_{w} \sin \boldsymbol{\varphi}_{p}}{\sin \boldsymbol{\varphi}_{w}} + \frac{r_{w} \operatorname{ctg} \boldsymbol{\rho}_{q} \sin (\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{u}) - r_{w} \operatorname{ctg} \boldsymbol{\rho}_{u} \sin \boldsymbol{\varphi}_{p}}{\sin \boldsymbol{\varphi}_{u}} \right].$$
(6)

4. $W(0q_w r_w)$.

 φ_p не может быть вычислено, так как в одной зоне три исходные грани — Q, R и W. При данном φ_p из (2b) получим:

$$\operatorname{ctg} \boldsymbol{\rho}_{p} = \frac{1}{r_{w} \sin \varphi_{u}} \left[(q_{w} - r_{w}) \operatorname{ctg} \boldsymbol{\rho}_{q} \sin (\varphi_{p} - \varphi_{u}) + r_{w} \operatorname{ctg} \boldsymbol{\rho}_{u} \sin \varphi_{p} - \frac{q_{w} \operatorname{ctg} \boldsymbol{\rho}_{w} \sin \varphi_{p} \sin (\varphi_{p} - \varphi_{u})}{\sin (\varphi_{p} - \varphi_{w})} \right].$$
(7)

§ 8. Полярное расстояние р, грани R (001). Моноклинная (моногирная) сингония

Юстировка по зоне [001] ($\varphi_r = 90^\circ$ точно устанавливается при первопачальной обработке результатов измерения)

Три исходных грани P(100), Q(010) и U(111) (или вместо последней $V(p_v q_v r_v)$, с координатами $\varphi_p = 90^\circ$, $\rho_p = 90^\circ$; $\varphi_q = 0^\circ$, $\rho_q = 90^\circ$; φ_u , ρ_u (или φ_v , ρ_v). $W(p_w q_w r_w)$ — четвертая исходная грань с координатами φ_w и ρ_w .

Если третьей исходной гранью является грань $V(p_vq_vr_v)$ вместо грани U(111), везде в формулах подставляем $\frac{p_w}{p_v}$, $\frac{q_w}{q_v}$ н $\frac{r_w}{r_v}$ вместо p_w , q_w н r_w , а также φ_v и ρ_v вместо φ_u и ρ_u .

1. $W(p_w q_w r_w)$.

Подставив в формулу (2а) (стр. 146) $\varphi_r = 90^\circ$, получим:

$$tg \rho_r = \frac{r_w tg \rho_w \sin \varphi_w - \rho_w tg \rho_u \sin \varphi_u}{r_w - \rho_w}.$$
 (1a)

Или из формулы (2) (стр. 101):

$$\lg p_r = \frac{q_w \lg \rho_u \cos \varphi_u \lg \varphi_w - p_w \lg \rho_u \sin \varphi_u}{r_w - p_w} = \frac{\lg \rho_u \cos \varphi_u}{r_w - p_w} (q_w \lg \varphi_w - p_w \lg \varphi_u).$$
(1b)

2. $W(p_w q_w 0)$. $\rho_w = 90^\circ$.

Из формулы (1b):

$$\operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{\mu}} = \operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{\mu}} \sin \varphi_{\boldsymbol{\mu}} - \frac{q_{\boldsymbol{w}} \operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{\mu}} \cos \varphi_{\boldsymbol{\mu}}}{p_{\boldsymbol{w}} \operatorname{ctg} \varphi_{\boldsymbol{w}}}.$$
 (2)

3. $W(p_w r_w 0)$.

$$\operatorname{tg} \boldsymbol{\rho}_{r} = \frac{r_{w} \operatorname{tg} \boldsymbol{\rho}_{w} \sin \boldsymbol{\varphi}_{w} - \boldsymbol{\rho}_{w} \operatorname{tg} \boldsymbol{\rho}_{u} \sin \boldsymbol{\varphi}_{u}}{r_{w} - \boldsymbol{\rho}_{w}}.$$
(3)

4. $W(0q_w r_w)$.

$$\operatorname{tg} \rho_r = \operatorname{tg} \rho_w \sin \varphi_w; \tag{4a}$$

$$\operatorname{tg} \mathbf{p}_{\mathbf{r}} = \frac{q_w \operatorname{tg} \mathbf{\rho}_u \cos \varphi_u}{r_w \operatorname{ctg} \varphi_w}.$$
 (4b)

Пример (фиг. 63) (ср. пример § 5, гл. VI). Дано:

<i>b</i> (010)	$\varphi_b = 0^\circ$	$\rho_b = 90^\circ$	(Q)
a (100)	$\varphi_a = 90^\circ$	$\rho_a = 90^\circ$	(P)
v (3 11)	$\varphi_v = -67^{\circ}07$	$ ho_v = 56^\circ 35$	(V)
p (101)	$\varphi_p = -90^{\circ}$	$\rho_p = 15^{\circ}27$	(W)

Вычислить р_с грани с (001).

За третью исходную принимаем v (311) иза четвертую исходную — p (101). Пользуемся формулой (3), принимая во внимание замечание в начале параграфа о замене в формулах грани (111) гранью (p_nq_nr_n).

$$tg \rho_{c} = \frac{-tg \, 15^{\circ}27 - \frac{-1}{1-3} tg \, 56^{\circ}35 \sin - 67^{\circ}07}{1 - \frac{-1}{-3}} = \frac{-3 tg 15^{\circ}27 + tg \, 56^{\circ}35 \sin 67^{\circ}07}{2} + \frac{1g \, 3 = 0.47712}{1g \, tg \, 15^{\circ}27 = \overline{1,44151}} + \frac{1g \, tg \, 56^{\circ}35 = 0.18059}{1g \, \sin \, 67^{\circ}07 = \overline{1,96440}} - \frac{1,39632}{0,14499} - \frac{1,39632}{0,82914} + tg \, \rho_{c} = \overline{0,56718} : 2 = 0.28359.$$

§ 9. Полярное расстояние р_р грани *Р*(100). Моноклинная (моногирная) сингония

Юстировка по грани R (001)

Три исходных грани Q(010), R(001) и U(111) [или вместо последней V ($p_v q_v r_v$)] с координатами: $\varphi_q = 0^\circ$, $\rho_q = 90^\circ$; $\varphi_r = \frac{0}{0}$, $\rho_r = 0^\circ$; φ_u , ρ_u (или φ_v , ρ_v). Четвертая исходная грань $W(p_w q_w r_w)$ с координатами φ_w и ρ_w . [Если вместо U (111) третьей исходной дана грань V ($p_v q_v r_v$), см. замечание

в начале предыдущего параграфа.]

Долгота $\varphi_p = 90^\circ$ точно устанавливается при первоначальной обработке результатов измерения.

Для вывода формул вычисления ρ_p пользуемся соответствующими формулами § 7 для триклинной сингонии, подставляя в них $\varphi_p = 90^\circ$ и $\rho_q = 90^\circ$.

1.
$$W(p_w q_w r_w)$$
.

$$\operatorname{ctg} \rho_{\rho} = \frac{1}{p_{w} - r_{w}} \left(\frac{p_{w} \operatorname{ctg} \rho_{w}}{\sin \varphi_{w}} - \frac{r_{w} \operatorname{ctg} \rho_{u}}{\sin \varphi_{u}} \right); \tag{1a}$$

$$\operatorname{ctg} \boldsymbol{\rho}_{p} = \frac{\operatorname{ctg} \boldsymbol{\varphi}_{u}}{p_{w} - r_{w}} \left(\frac{q_{w} \operatorname{ctg} \boldsymbol{\rho}_{w}}{\cos \boldsymbol{\varphi}_{w}} - \frac{r_{w} \operatorname{ctg} \boldsymbol{\rho}_{u}}{\cos \boldsymbol{\varphi}_{u}} \right). \tag{1b}$$

2. $W(p_w q_w 0)$.

$$\operatorname{ctg} \rho_{\rho} = \frac{\operatorname{ctg} \rho_{w}}{\sin \varphi_{w}}; \qquad (2a)$$

$$\operatorname{ctg} \boldsymbol{\rho}_{p} = \frac{\boldsymbol{q}_{w} \operatorname{ctg} \boldsymbol{\rho}_{w} \operatorname{ctg} \boldsymbol{\varphi}_{u}}{\boldsymbol{p}_{w} \operatorname{csg} \boldsymbol{\varphi}_{w}}.$$
(2b)

3. $W(p_w 0 r_w)$.

$$\operatorname{ctg} \rho_p = \frac{1}{p_w - r_w} \left(\frac{p_w \operatorname{ctg} \rho_w}{\sin \varphi_w} - \frac{r_w \operatorname{ctg} \rho_u}{\sin \varphi_u} \right). \tag{3}$$

4. $W(0q_wr_w)$. $\varphi_w = 0^\circ$.

$$\operatorname{ctg} \boldsymbol{\rho}_{p} = \frac{r_{w} \operatorname{ctg} \boldsymbol{\rho}_{u} - q_{w} \operatorname{ctg} \boldsymbol{\rho}_{w} \cos \boldsymbol{\varphi}_{u}}{r_{w} \sin \boldsymbol{\varphi}_{u}}.$$
(4)

Пример (фиг. 64) (см. пример § 6, гл. VI). Дано:

c (001)	$\varphi_c = \frac{0}{2}$	$\rho_c = 0^\circ$	(R)
b(010)	$\infty = 0^{\circ}$	$a_{\rm r} = 90^{\circ}$	(Q)
u(111)	$\varphi''_{\mu} = 42^{\circ}26$	$\rho_{\nu} = 33^{\circ}48,5$	(U)
$p(\overline{1}01)$	$\varphi_{p} = -90^{\circ}$	$\rho_p = 31^{\circ}18$	(W)

Вычислить р_а для грани а (100). Подставляя в формулу (3), получаем:

$$\operatorname{ctg} \rho_{a} = \frac{1}{-2} \left(\frac{-\operatorname{ctg} 31^{\circ}18}{-1} - \frac{\operatorname{ctg} 33^{\circ}48,5}{\sin 42^{\circ}26} \right) = \frac{1}{2} \left(\frac{\operatorname{ctg} 33^{\circ}48,5}{\sin 42^{\circ}26} - \operatorname{ctg} 31^{\circ}18 \right)$$

$$- \frac{\operatorname{lg} \operatorname{ctg} 33^{\circ}48,5 = 0,17415}{\operatorname{lg} \sin 42^{\circ}26 = \overline{1,82913}} - \frac{2,21320}{\operatorname{ctg} 31^{\circ}18 = 1,64471}$$

$$- \frac{2,21320}{\operatorname{ctg} 31^{\circ}18 = 1,64471}$$

§ 10. Долгота φ_p грани *P*(100). Моноклинная (моногирная) сингония Юстировка по грани *Q*(010)

Три исходных грани Q(010), R(001) и U(111) [или вместо последней $V(p_vq_vr_v)$] с координатами $\varphi_q = \frac{0}{0}$, $\rho_q = 0^\circ$; $\varphi_r = 0^\circ$, $\rho_r = 90^\circ$; φ_u , p_u (или φ_v , ρ_v). Четвертая исходная грань $W(p_wq_wr_w)$ с координатами φ_w и ρ_w .

[При третьей исходной $V(p_vq_vr_v)$ см. замечание в начале § 8.] $p_p = 90^\circ$. Углы φ отсчитываем от меридиана с гранью R(001).

1. $W(p_w q_w r_w)$.

Из формулы (2) (стр. 109) имеем:

$$\operatorname{ctg} \varphi_{p} = \frac{p_{w}\operatorname{ctg} \varphi_{w} - r_{w}\operatorname{ctg} \varphi_{u}}{p_{w} - r_{w}} \tag{1a}$$

или из отношения q:r формулы (1) (стр. 109) получим:

$$\operatorname{ctg} \varphi_{p} = \frac{q_{w} \operatorname{ctg} \rho_{u} \cos \varphi_{w} - r_{w} \operatorname{ctg} \rho_{w} \cos \varphi_{u}}{q_{w} \operatorname{ctg} \rho_{u} \sin \varphi_{w} - r_{w} \operatorname{ctg} \rho_{w} \sin \varphi_{u}}.$$
(1b)

2. $W(p_w q_w 0)$.

 $\varphi_{\rho}' = \varphi_{w}; \quad \varphi_{\rho}'' = \varphi_{w} + 180^{\circ}.$ (2)

3. $W(p_w = 90^\circ)$. $\rho_w = 90^\circ$.

$$\operatorname{ctg} \varphi_{\rho} = \frac{p_{w} \operatorname{ctg} \varphi_{w} - r_{w} \operatorname{ctg} \varphi_{u}}{p_{w} - r_{w}}.$$
(3)

 $4. W(0q_w r_w). \quad \varphi_w = 0^\circ.$

Подставляя в формулу (1b) $\varphi_w = 0^\circ$, получим:

$$\operatorname{ctg} \varphi_p = \operatorname{ctg} \varphi_u - \frac{q_w \operatorname{ctg} \rho_u}{r_w \operatorname{ctg} \rho_w \sin \varphi_u}.$$
(4)

Пример (фиг. 65) (ср. пример § 7 гл. VI). Дано:

с (001)	$\varphi_c = 0^\circ$	$\rho_c = 90^\circ$	(R)
<i>b</i> (010)	$\varphi_b = \frac{0}{0}$	$ ho_b = 0^\circ$.	(Q)
u(111)	$\varphi_u = 24^{\circ}19$	$\rho_u = 65^{\circ}45$	(V)
<i>p</i> (101)	$\varphi_p = -31^{\circ}17,5$	$\rho_p = 90^\circ$	(W)

Вычислить φ_a грани a(100). Подставляя в формулу (3), получаем:

$$\operatorname{ctg} \varphi_{a} = \frac{-\operatorname{ctg} (-31^{\circ}17,5) - \operatorname{ctg} 24^{\circ}19}{-2} = \frac{1}{2} (\operatorname{ctg} 24^{\circ}19 - \operatorname{ctg} 31^{\circ}17,5).$$

$$\frac{-\operatorname{ctg} 24^{\circ}19}{-\operatorname{ctg} 31^{\circ}17,5} = 1,64525}$$

$$\operatorname{ctg} \varphi_{a} = 0,56779: 2 = 0,28389.$$

$$\varphi_{a} = 74^{\circ}09$$

Юстировка по зоне [111]

Дана долгота граней P(100), Q(010) и $R(001) - \varphi_q = 0^\circ$, $\varphi_p = 120^\circ$, $\varphi_r = -120^\circ$; координаты грани $U(111) - \varphi_u = \frac{0}{0}$, $\rho_u = 0^\circ$ и координаты $\varphi_w [$ и ρ_w какой-либо четвертой грани $W(p_w q_w r_w)$. Требуется вычислить полярное расстояние $\rho_p = \rho_q = \rho_r$.

Формулы для вычисления ρ_p непосредственно без каких-либо преобразований выводятся из формул § 13 (стр. 126). Приведем формулу лишь для общего случая.

Из формулы (3) § 13 (стр. 127) получаем:

$$\operatorname{tg} \rho_p = \frac{p_w + q_w + r_w}{\sqrt{p_w^2 + q_w^2 + r_w^2 - p_w q_w - p_w r_w - q_w r_w}} \operatorname{tg} \rho_w.$$

Для всех частных случаев либо пользуемся подобным же образом другими соответствующими формулами § 13, либо подставляем в данную формулу частное значение индексов символа $(p_w q_w r_w)$.

Пример (см. пример § 13, стр. 130). Дано: р₁₁₀ = 26°15.

Вычислить р₁₀₀ (р_р).

$$\operatorname{tg} \rho_{100} = 2 \operatorname{tg} 26^{\circ} 15 = 2 \cdot 0,49315 = 0,98630.$$

<u>ρ₁₀₀=44°36,5.</u>

То же найдем без вычислений по табл. III (стр. 239).

§ 12. Координаты 🖓 и р_и грани U(111)

Для вычисления сферических координат единичной грани U(111) по сферическим координатам основных граней (100), (010) и (001) и по индексам и сферическим координатам φ_v и ρ_v какой-либо грани $V(p_vq_vr_v)$ пользуемся теми же формулами главы VI. Грань V не должна находиться в зонах основных граней. Подставляем в указанные формулы:

1. Триклинная (агирная) сингония. Юстировка по зоне [001]

 $\varphi_q = 0^\circ; \qquad \rho_p = \rho_q = 90^\circ,$

$$\operatorname{ctg} \varphi_{u} = \frac{p_{v} \left[r_{v} \operatorname{tg} \rho_{v} \sin \left(\varphi_{p} - \varphi_{v} \right) + \left(q_{v} - r_{v} \right) \operatorname{tg} \rho_{r} \sin \left(\varphi_{p} - \varphi_{r} \right) \right]}{q_{v} \sin \varphi_{p} \left[r_{v} \operatorname{tg} \rho_{v} \sin \varphi_{v} + \left(p_{v} - r_{v} \right) \operatorname{tg} \rho_{r} \sin \varphi_{r} \right]} + \operatorname{ctg} \varphi_{\rho}. \tag{1}$$

$$\operatorname{tg} \rho_{u} = \frac{r_{v} \operatorname{tg} \rho_{v} \sin \left(\varphi_{p} - \varphi_{v}\right) + (q_{v} - r_{v}) \operatorname{tg} \rho_{r} \sin \left(\varphi_{p} - \varphi_{r}\right)}{q_{v} \sin \left(\varphi_{p} - \varphi_{u}\right)}; \tag{2a}$$

$$\operatorname{tg} \boldsymbol{\rho}_{u} = \frac{r_{v} \operatorname{tg} \boldsymbol{\rho}_{v} \sin \boldsymbol{\varphi}_{v} + (p_{v} - r_{v}) \operatorname{tg} \boldsymbol{\rho}_{r} \sin \boldsymbol{\varphi}_{r}}{p_{v} \sin \boldsymbol{\varphi}_{u}}.$$
(2b)

2. Триклинная (агирная) сингония. Юстировка по грани R (001)

$$\varphi_{q} = 0^{\circ}; \qquad \varphi_{r} = \frac{0}{0}; \qquad \rho_{r} = 0^{\circ};$$

$$\operatorname{ctg} \varphi_{u} = \frac{p_{v}}{q_{v}} \operatorname{ctg} \varphi_{v} + \left(1 - \frac{p_{v}}{q_{v}}\right) \operatorname{ctg} \varphi_{p}; \qquad (3)$$

$$\operatorname{ctg} \rho_{u} = \frac{p_{v} \sin \varphi_{u}}{\sin \varphi_{p} \sin \varphi_{v}} \left[\left(\frac{1}{p_{v}} - \frac{1}{r_{v}} \right) \operatorname{ctg} \rho_{p} \sin \varphi_{v} + \frac{1}{r_{v}} \operatorname{ctg} \rho_{v} \sin \varphi_{p} + \frac{1}{r_{v}} \operatorname{ctg} \rho_{v} \sin \varphi_{v} + \frac{1}{r_{v}}$$

$$\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{u}} = \frac{q_{\boldsymbol{v}} \sin\left(\boldsymbol{\varphi}_{\boldsymbol{\rho}} - \boldsymbol{\varphi}_{\boldsymbol{u}}\right)}{\sin\left(\boldsymbol{\varphi}_{\boldsymbol{\rho}} - \boldsymbol{\varphi}_{\boldsymbol{v}}\right)} \left[\left(\frac{1}{p_{\boldsymbol{v}}} - \frac{1}{r_{\boldsymbol{v}}}\right) \operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{\rho}} \sin \boldsymbol{\varphi}_{\boldsymbol{v}} + \frac{1}{r_{\boldsymbol{v}}} \operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{v}} \sin \boldsymbol{\varphi}_{\boldsymbol{\rho}} + \left(\frac{1}{q_{\boldsymbol{v}}} - \frac{1}{r_{\boldsymbol{v}}}\right) \operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{q}} \sin\left(\boldsymbol{\varphi}_{\boldsymbol{\rho}} - \boldsymbol{\varphi}_{\boldsymbol{v}}\right) \right].$$

$$(4b)$$

3. Моноклинная (моногирная) сингония. Юстировка по зоне [001]

$$\varphi_{q} = 0^{\circ}; \qquad \varphi_{p} = \varphi_{r} = 90^{\circ}; \qquad \rho_{p} = \rho_{q} = 90^{\circ}; tg \varphi_{u} = \frac{q_{v} \left[r_{v} tg \rho_{v} \sin \varphi_{v} + (\rho_{v} - r_{v}) tg \rho_{r} \right]}{p_{v} r_{v} tg \rho_{v} \cos \varphi_{v}};$$
(5)

$$\operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{\mu}} = \frac{r_{\boldsymbol{v}} \operatorname{tg} \boldsymbol{\rho}_{\boldsymbol{v}} \cos \boldsymbol{\varphi}_{\boldsymbol{v}}}{q_{\boldsymbol{v}} \cos \boldsymbol{\varphi}_{\boldsymbol{u}}}; \tag{6a}$$

$$\operatorname{tg} \mathbf{p}_{u} = \frac{r_{v} \operatorname{tg} \mathbf{p}_{v} \sin \varphi_{v} + (p_{v} - r_{v}) \operatorname{tg} \mathbf{p}_{r}}{p_{v} \sin \varphi_{u}}.$$
(6b)

4. Моноклинная (моногирная) сингония. Юстировка по грани R (001)

$$\varphi_{\rho} = 90^{\circ}; \quad \varphi_{q} = 0^{\circ}, \quad \rho_{q} = 90^{\circ}, \quad \varphi_{r} = \frac{0}{0}; \quad \rho_{r} = 0^{\circ};$$
$$\operatorname{ctg} \varphi_{\mu} = \frac{p_{\nu}}{q_{\nu}} \operatorname{ctg} \varphi_{\nu}. \tag{7}$$

*ч*_и может быть найдено без вычислений, по табл. III (стр. 235).

$$\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{\mu}} = \frac{\sin \varphi_{\boldsymbol{\mu}}}{r_{v} \sin \varphi_{v}} [(r_{v} - p_{v}) \operatorname{ctg} \boldsymbol{\rho}_{p} \sin \varphi_{v} + p_{v} \operatorname{ctg} \boldsymbol{\rho}_{v}]. \tag{8}$$

5. Моноклинная (моногирная) сингония. Юстировка по зоне [010] или по грани Q (010)

$$\varphi_{q} = \frac{0}{0}; \quad \rho_{q} = 0^{\circ}; \quad \varphi_{r} = 0^{\circ}; \quad \rho_{p} = \rho_{r} = 90^{\circ};$$

$$\operatorname{ctg} \varphi_{\mu} = \frac{p_{v}}{r_{v}} \operatorname{ctg} \varphi_{v} + \left(1 - \frac{p_{v}}{r_{v}}\right) \operatorname{ctg} \varphi_{p}; \quad (9)$$

$$\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{u}} = \frac{p_{v} \operatorname{ctg} \boldsymbol{\rho}_{v} \sin \boldsymbol{\varphi}_{u}}{q_{v} \sin \boldsymbol{\varphi}_{v}}, \qquad (10a)$$

$$\operatorname{ctg} \boldsymbol{\rho}_{\boldsymbol{\mu}} = \frac{r_{v} \operatorname{ctg} \boldsymbol{\rho}_{v} \sin\left(\boldsymbol{\varphi}_{\boldsymbol{p}} - \boldsymbol{\varphi}_{u}\right)}{q_{v} \sin\left(\boldsymbol{\varphi}_{\boldsymbol{p}} - \boldsymbol{\varphi}_{v}\right)}.$$
(10b)

6. Ромбическая (дигирная) сингония. Юстировка по зоне [001] или по грани R (001)

$$\varphi_p = 90^\circ, \quad \rho_p = 90^\circ; \quad \varphi_q = 0^\circ, \quad \rho_q = 90^\circ; \quad \varphi_r = \frac{0}{0}, \quad \rho_r = 0^\circ;$$

 $\operatorname{ctg} \varphi_u = \frac{p_v}{q_v} \operatorname{ctg} \varphi_v.$
(11)

чи можно определить без вычислений, по табл. III (стр. 235).

$$\operatorname{ctg} \rho_{\boldsymbol{a}} = \frac{-p_{v} \operatorname{ctg} \rho_{v} \sin \varphi_{u}}{r_{v} \sin \varphi_{v}}, \qquad (12a)$$

$$\operatorname{ctg} \mathbf{p}_{u} = \frac{q_{v} \operatorname{ctg} \mathbf{p}_{v} \cos \varphi_{u}}{r_{v} \cos \varphi_{v}}.$$
 (12b)

7. Тетрагональная (тетрагирная) сингония. Юстировка по зоне [001] или по грани R(001)

$$\varphi_{\rho} = 90^{\circ}, \quad \rho_{\rho} = 90^{\circ}; \quad \varphi_{q} = 0^{\circ}, \quad \rho_{q} = 90^{\circ}; \quad \varphi_{r} = \frac{0}{0}, \quad \rho_{r} = 0^{\circ}; \quad \varphi_{u} = 45^{\circ};$$

 $\operatorname{ctg} \rho_{u} = \frac{\sqrt{\rho_{v}^{2} + q_{v}^{2}}}{r_{v}\sqrt{2}}\operatorname{ctg} \rho_{v}.$
(13)

8. Гексагональная (гексагирная) сингония. Юстировка по зоне [0001] или по грани R (0001)

$$\varphi_{p} = 60^{\circ}, \quad \rho_{p} = 90^{\circ}; \quad \varphi_{q} = 0^{\circ}, \quad \rho_{q} = 90^{\circ}; \quad \varphi_{r} = \frac{0}{0}, \quad \rho_{r} = 0^{\circ}; \quad \varphi_{u} = 30^{\circ};$$

$$\operatorname{ctg} \rho_{u} = \frac{\sqrt{p_{w}^{2} + p_{w}q_{w} + q_{w}^{2}}}{r_{w}\sqrt{3}}\operatorname{ctg} \rho_{w}. \tag{14}$$

9. Гексагональная (гексагирная) сингония. Установка по Федорову. Юстировка по зоне [1000]

$$\varphi_{p} = \frac{0}{0}, \quad \rho_{p} = 0^{\circ}; \quad \varphi_{q} = 0^{\circ}, \quad \rho_{q} = 90^{\circ}; \quad \varphi_{r} = 120^{\circ}, \quad \rho_{r} = 90^{\circ}; \quad \varphi_{\mu} = 60^{\circ};$$
$$\operatorname{ctg} \rho_{\mu} = \frac{\sqrt{q_{w}^{2} - q_{w}r_{w} + r_{w}^{2}}}{p_{w}} \operatorname{ctg} \rho_{w}. \tag{15}$$

Пример. Барит (Гольдшмидт, Winkeltabellen, стр. 60). Ромбическая сингония. Дано: $\varphi_{192} = 31^{\circ}31,5$; $\rho_{122} = 57^{\circ}01$. Вычислить: φ_{111} и ρ_{111} . Подставляя в формулы (11) и (12b), получаем:

$$\operatorname{ctg} \varphi_{111} = \frac{1}{2} \operatorname{ctg} 31^{\circ} 31, 5 = \frac{1}{2} \cdot 1, 630255 = 30,81513.$$

50010

 $\varphi_{111} = 50^{\circ}49$

То же найдем без вычислений, по табл. III (стр. 240).

$$\operatorname{ctg} \mathsf{p}_{111} = \frac{\operatorname{ctg} 57^{\circ}01 \cos 50^{\circ}49}{\cos 31^{\circ}31,5}.$$

$$+ \underset{1g}{\operatorname{lg}} \operatorname{ctg} 57^{\circ}01 = \overline{1},81224$$

$$- \underset{1g}{\operatorname{cos}} 50^{\circ}49 = \overline{1},80058$$

$$- \underset{1g}{\overline{1},61282}$$

$$\operatorname{lg} \operatorname{cos} 31^{\circ}31,5 = \overline{1},93065$$

$$\operatorname{lg} \operatorname{ctg} \mathsf{p}_{111} = \overline{1},68217.$$

 $\rho_{111} = 64^{\circ}18,5$

§ 13. Вычисление координат единичной грани U (111) по двум граням в зонах основных граней

Триклинная (агирная) сингония

Кроме координат (φ_p , ρ_p , $\varphi_q = 0^\circ$, ρ_q , φ_r и ρ_r) основных граней P (100), Q (010) и R (001) даны символы и координаты двух каких-либо граней, находящихся в двух из трех основных зон [001], [010] и [100]. Один из индексов символов граней этих зон равен нулю. Обозначим эти грани следующим образом:

B	зоне	[001]	через	L	с	символом	$(p_l q_l 0)$ и	Ĉ	координатами	φιиρι	
	"	[010]	"	М		<i>п</i>	$(p_m 0 r_m)$		n	Ф _m И	Pm
	n	[100]	n	Ν		n	$(0q_nr_n)$		n	<i>ф</i> _п ир	n.

Выведем формулы для вычисления координат φ_{μ} и ρ_{μ} единичной грани U (111) по каждой паре этих граней (по одной из них вычисление невозможно).

Так как многие грани на кристаллах особенно часто развиты именно в этих зонах, эти формулы не менее важны, чем формулы для вычисления координат единичной грани, приведенные в предыдущем параграфе.

Формулу выводим из основных формул главы VI.

1. Юстировка по зоне [001] $\varphi_{a} = 0^{\circ}$; $\rho_{a} = \rho_{a} = 90^{\circ}$

$L(p_{i}q_{i}0)$ и $M(p_{m}0r_{m})$.

Решаем совместно два уравнения — (5) (стр. 87) и (7) (стр. 88) относительно φ_n и ρ_n , подставив в (5) φ_l вместо φ_x , p_l и q_l вместо p и q и в (7) — φ_m и ρ_m вместо φ_x и ρ_x , p_m и r_m вместо p и r. Получаем:

$$\operatorname{ctg} \varphi_{u} = \frac{r_{m} (\operatorname{tg} \rho_{r} \sin \varphi_{r} - \operatorname{tg} \rho_{m} \sin \varphi_{m}) \left[(p_{l} - q_{l}) \operatorname{ctg} \varphi_{p} - p_{l} \operatorname{ctg} \varphi_{l} \right] + p_{m} q_{l} \operatorname{tg} \rho_{r} \cos \varphi_{r}}{q_{l} \left[r_{m} \operatorname{tg} \rho_{m} \sin \varphi_{m} + (p_{m} - r_{m}) \operatorname{tg} \rho_{r} \sin \varphi_{r} \right]}; \quad (1)$$

$$\operatorname{tg} \boldsymbol{\rho}_{u} = \frac{r_{m} \operatorname{tg} \boldsymbol{\rho}_{m} \sin \boldsymbol{\varphi}_{m} + (\boldsymbol{\rho}_{m} - r_{m}) \operatorname{tg} \boldsymbol{\rho}_{r} \sin \boldsymbol{\varphi}_{r}}{\boldsymbol{\rho}_{m} \sin \boldsymbol{\varphi}_{u}}; \qquad (2a)$$

$$tg \rho_{u} = \frac{p_{l} \sin(\varphi_{p} - \varphi_{l})}{p_{l} \sin\varphi_{u} \sin(\varphi_{p} - \varphi_{l}) - q_{l} \sin\varphi_{l} \sin\varphi_{l} \sin(\varphi_{p} - \varphi_{u})}.$$
 (2b)

L (110), M (101).

$$\operatorname{ctg} \varphi_{n} = \frac{\operatorname{ctg} \varphi_{I} (\operatorname{tg} \rho_{m} \sin \varphi_{m} - \operatorname{tg} \rho_{r} \sin \varphi_{r}) + \operatorname{tg} \rho_{r} \cos \varphi_{r}}{\operatorname{tg} \rho_{m} \sin \varphi_{m}}; \qquad (3)$$

$$\operatorname{tg} \rho_{u} = \frac{\operatorname{tg} \rho_{m} \sin \varphi_{m}}{\sin \varphi_{u}}; \qquad (4a)$$

$$tg \rho_{\mu} = \frac{tg \rho_{r} \sin (\varphi_{r} - \varphi_{l})}{\sin (\varphi_{u} - \varphi_{l})}.$$
 (4b)

Таким образом, φ_u и ρ_u вычисляются по координатам граней L (110) и M (101) независимо от долготы φ_p грани P (100).

$L(p_{l}q_{l}0), N(0q_{n}r_{n}).$

Решаем совместно два уравнения (5) (стр. 87) и (10) (стр. 89) относительно φ_u и ρ_u , подставляя в (5) φ_l вместо φ_x , p_l и q_l вместо p и q и в (10) — φ_n н ρ_n вместо φ_x и ρ_x , q_n и r_n вместо q и r:

$$\operatorname{ctg}\varphi_{u} = \frac{p_{l}(\operatorname{ctg}\varphi_{l} - \operatorname{ctg}\varphi_{p})[r_{n}\operatorname{tg}\rho_{n}\sin(\varphi_{p} - \varphi_{n}) + (q_{n} - r_{n})\operatorname{tg}\rho_{r}\sin(\varphi_{p} - \varphi_{r})]}{p_{l}q_{n}\operatorname{tg}\rho_{r}\sin\varphi_{r}\sin\varphi_{p}(\operatorname{ctg}\varphi_{l} - \operatorname{ctg}\varphi_{p}) + q_{l}r_{n}[\operatorname{tg}\rho_{n}\sin(\varphi_{p} - \varphi_{n}) - \operatorname{tg}\rho_{r}\sin(\varphi_{p} - \varphi_{r})]} + \operatorname{ctg}\varphi_{p};(5)$$

$$\lg \mathbf{p}_{u} = \frac{r_{n} \lg \mathbf{p}_{n} \sin \left(\mathbf{\varphi}_{p} - \mathbf{\varphi}_{n}\right) + \left(q_{n} - r_{n}\right) \lg \mathbf{p}_{r} \sin \left(\mathbf{\varphi}_{p} - \mathbf{\varphi}_{r}\right)}{q_{n} \sin \left(\mathbf{\varphi}_{p} - \mathbf{\varphi}_{u}\right)};$$
(6a)

$$\lg \rho_{u} = \frac{p_{l} \lg \rho_{r} \sin \varphi_{r} \sin (\varphi_{p} - \varphi_{l}) - q_{l} \lg \rho_{r} \sin (\varphi_{p} - \varphi_{r}) \sin \varphi_{l}}{p_{l} \sin \varphi_{u} \sin (\varphi_{p} - \varphi_{l}) - q_{l} \sin \varphi_{l} \sin (\varphi_{p} - \varphi_{u})}.$$
 (6b)

L (110), N (011).

$$\operatorname{ctg} \varphi_{u} = \frac{\operatorname{ctg} \varphi_{l} \operatorname{tg} \rho_{n} \sin \varphi_{p} \cos \varphi_{n} - \operatorname{tg} \rho_{r} \cos \varphi_{r} \cos \varphi_{p}}{\operatorname{tg} \rho_{r} \sin \varphi_{p} (\sin \varphi_{r} \operatorname{ctg} \varphi_{l} - \cos \varphi_{r}) + \operatorname{tg} \rho_{n} \sin (\varphi_{p} - \varphi_{n})};$$
(7)

$$tg \rho_{\mu} = \frac{tg \rho_{n} \sin (\varphi_{p} - \varphi_{n})}{\sin (\varphi_{p} - \varphi_{u})}; \qquad (8a)$$

$$\operatorname{tg} \boldsymbol{\rho}_{u} = \frac{\operatorname{tg} \boldsymbol{\rho}_{r} \sin \left(\boldsymbol{\varphi}_{r} - \boldsymbol{\varphi}_{l} \right)}{\sin \left(\boldsymbol{\varphi}_{u} - \boldsymbol{\varphi}_{l} \right)}.$$
(8b)

$M(p_m 0r_m), N(0q_n r_n).$

Решаем совместно два уравнения (7) (стр. 88) и (10) (стр. 89) относительно φ_u и ρ_u , подставив в (7) φ_m и ρ_m вместо φ_x и ρ_x , p_m и r_m вместо p и r и в (10) — φ_n и ρ_n вместо φ_x и ρ_x , q_n и r_n вместо q и r. Получим:

$$\operatorname{ctg}\varphi_{u} = \frac{p_{m}[r_{n}\operatorname{tg}\rho_{n}\sin(\varphi_{p}-\varphi_{n})+(q_{n}-r_{n})\operatorname{tg}\rho_{r}\sin(\varphi_{p}-\varphi_{r})]}{q_{n}\sin\varphi_{p}[r_{m}\operatorname{tg}\rho_{m}\sin\varphi_{m}+(p_{m}-r_{m})\operatorname{tg}\rho_{r}\sin\varphi_{r}]} + \operatorname{ctg}\varphi_{p}; \qquad (9)$$

$$\operatorname{tg} \mathbf{p}_{u} = \frac{r_{m} \operatorname{tg} \mathbf{p}_{m} \sin \varphi_{m} + (p_{m} - r_{m}) \operatorname{tg} \mathbf{p}_{r} \sin \varphi_{r}}{p_{m} \sin \varphi_{u}}; \qquad (10a)$$

$$\operatorname{tg} \rho_{u} = \frac{r_{n} \operatorname{tg} \rho_{n} \sin \left(\varphi_{p} - \varphi_{n}\right) + (q_{n} - r_{n}) \operatorname{tg} \rho_{r} \sin \left(\varphi_{p} - \varphi_{r}\right)}{q_{n} \sin \left(\varphi_{p} - \varphi_{u}\right)} \,. \tag{10b}$$

M (101), N (011).

$$\operatorname{ctg} \varphi_{u} = \frac{\operatorname{tg} \rho_{n} \sin (\varphi_{p} - \varphi_{n})}{\operatorname{tg} \rho_{m} \sin \varphi_{m} \sin \varphi_{p}} + \operatorname{ctg} \varphi_{p}; \qquad (11)$$

$$\operatorname{tg} \rho_{n} = \frac{\operatorname{tg} \rho_{m} \sin \varphi_{m}}{\sin \varphi_{n}}; \qquad (12a)$$

$$\operatorname{tg} \rho_{u} = \frac{\operatorname{tg} \rho_{n} \sin \left(\varphi_{p} - \varphi_{n}\right)}{\sin \left(\varphi_{p} - \varphi_{u}\right)}.$$
(12b)

Символы φ ρ (001) --- 90°34,5 7°58.5 R (010) 0°00 90°00 Q 102°30 90°00 Р (100)(101) 104°04 49°10 М (011) 45°21 N - 172°02,5

Пример (фиг. 70). Аксинит (Гольдшмидт, Winkeltabellen, стр. 38). Дано:

Вычислить ф111 и р111.

Подставляем индексы и координаты в формулу (9).

 $\operatorname{ctg} \ \varphi_{111} = \frac{\operatorname{tg} 45^{\circ}21 \sin 274^{\circ}32, 5 - 2 \operatorname{tg} 7^{\circ}58, 5 \sin 193^{\circ}04, 5}{-\sin 102^{\circ}30 \operatorname{tg} 49^{\circ}10 \sin 104^{\circ}04} + \operatorname{ctg} 102^{\circ}30 =$ $= \frac{\pm \text{ tg } 45^{\circ}21 \sin 85^{\circ}27,5 \mp 2 \text{ tg } 7^{\circ}58,5 \sin 13^{\circ}04,5}{\pm \cos 12^{\circ}30 \text{ tg } 49^{\circ}10 \cos 14^{\circ}04} - \text{ tg } 12^{\circ}30.$ $+ \frac{\lg \lg 45^{\circ}21 = 0,005310}{\lg \sin 85^{\circ}27,5 = \overline{1},998635}$ 0.003945 $\lg 2 = 0,301030$ $\lg tg 7^{\circ}58,5 = \overline{1},146425$ $+ \lg \sin 13^{\circ}04,5 = \overline{1,354540}$ 2.801995 loi. 100 (010) $-\frac{1,00910}{0,06338}$ $lg 0,94572 = \overline{1},97576$ $\lg \cos 12^{\circ}30 = \overline{1,98958}$ $+ lg tg 49^{\circ}10 = 0,06339$ $\overline{1.97576}$ $\lg \cos 14^{\circ}04 = \overline{1,98678}$ 0,03975 1001 0,03975 1,93601 $ctg \varphi_{111} = 0,8630 - tg 12^{\circ}30$ Фиг. 70. 0,86300 $tg 12^{\circ}30 = 0,22169$ $\varphi_{111} = 57^{\circ}19,5$ $ctg \varphi_{111} = 0,64131$

По формуле (10а) получаем:

$$tg \rho_{111} = \frac{tg \, 49^{\circ}10 \sin 104^{\circ}04}{\sin 57^{\circ}19,5} = \frac{tg \, 49^{\circ}10 \cos 14^{\circ}04}{\sin 57^{\circ}19,5}.$$

$$+ \frac{lg \, tg \, 49^{\circ}10 = 0,06339}{lg \cos 14^{\circ}04 = \overline{1,98678}}$$

$$- \frac{1,98678}{0,05017}$$

$$lg \sin 57^{\circ}19,5 = \overline{1,92518}$$

$$lg \, tg \, \rho_{111} = \overline{0,12499}$$

$$- \rho_{111} = 53^{\circ}08$$

2. Юстировка по грани *R* (001). $\varphi_q = 0^\circ$; $\varphi_r = \frac{0}{0}$; $\rho_r = 0^\circ$

$L(p_1q_10), M(p_m0r_m).$

В формулу (5) (стр. 95) подставляем φ_l вместо φ_x , p_l и q_l вместо p и q и находим:

$$\operatorname{ctg} \varphi_{u} = \frac{p_{l}}{q_{l}} \operatorname{ctg} \varphi_{l} + \left(1 - \frac{p}{q}\right) \operatorname{ctg} \varphi_{p}. \tag{1}$$

Подставнв в (9) (стр. 96) φ_m и ρ_m вместо φ_x и ρ_x , p_m и r_m вместо p и rи решая относительно ρ_u , получим:

 $\operatorname{ctg} p_{u} = \frac{p_{m} \operatorname{ctg} \rho_{m} \sin \varphi_{u}}{r_{m} \sin \varphi_{m}} + \frac{\operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})}{\sin \varphi_{p}} - \frac{(p_{m} - r_{m}) \operatorname{ctg} \rho_{p} \sin \varphi_{u}}{r_{m} \sin \varphi_{p}}.$ (2)

<u>L (110), M (101) $\varphi_m = \varphi_p$.</u>

$$\varphi_u = \varphi_l. \tag{3}$$

Так как по формуле (8) (стр. 96) $\varphi_m = \varphi_p$, получаем:

$$\operatorname{ctg} \boldsymbol{\rho}_{u} = \frac{\operatorname{ctg} \boldsymbol{\rho}_{m} \sin \boldsymbol{\varphi}_{l} + \operatorname{ctg} \boldsymbol{\rho}_{q} \sin (\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{l})}{\sin \boldsymbol{\varphi}_{p}}.$$
(4)

$L(p_lq_l0), N(0q_nr_n).$

Для 🤪 формула та же, что и (1):

$$\operatorname{ctg} \varphi_{u} = \frac{p_{l}}{q_{l}} \operatorname{ctg} \varphi_{l} + \left(1 - \frac{p}{q}\right) \operatorname{ctg} \varphi_{p}. \tag{5}$$

Подставляя в формулу (12) (стр. 96) φ_n , ρ_n вместо φ_x , ρ_x н q_n , r_n вместо q, r, найдем:

$$\operatorname{ctg} \mathfrak{p}_{u} = \frac{q_{n} \operatorname{ctg} \mathfrak{p}_{n} \sin \left(\varphi_{p} - \varphi_{n} \right)}{r_{n} \sin \left(\varphi_{p} - \varphi_{n} \right)} + \frac{\operatorname{ctg} \mathfrak{p}_{p} \sin \varphi_{u}}{\sin \varphi_{p}} - \frac{(q_{n} - r_{n}) \operatorname{ctg} \mathfrak{p}_{q} \sin \left(\varphi_{p} - \varphi_{u} \right)}{r_{n} \sin \varphi_{p}}.$$
 (6)

$L(110), N(011) \varphi_n = 0^\circ.$

$$\varphi_{ll} = \varphi_{l}. \tag{7}$$

$$\operatorname{ctg} \boldsymbol{\rho}_{u} = \frac{\operatorname{ctg} \boldsymbol{\rho}_{n} \sin \left(\boldsymbol{\varphi}_{p} - \boldsymbol{\varphi}_{l} \right) + \operatorname{ctg} \boldsymbol{\rho}_{p} \sin \boldsymbol{\varphi}_{l}}{\sin \boldsymbol{\varphi}_{p}}.$$
(8)

$M(p_m 0r_m), N(0q_n r_n).$

Решаем совместно (7) и (11) (стр. 96) относительно φ_u и ρ_u , подставив в (11) φ_m , ρ_m вместо φ_x , ρ_x ; p_m , r_m вместо p, r и в (19) φ_n , ρ_n вместо φ_x , ρ_x ; q_n , r_n вместо q, r. Получаем:

$$\operatorname{ctg}\varphi_{u} = \frac{p_{m}r_{n}\sin\left(\varphi_{p}-\varphi_{n}\right)\left(\operatorname{ctg}\rho_{p}\sin\varphi_{m}-\operatorname{ctg}\rho_{m}\sin\varphi_{p}\right)}{q_{n}r_{m}\sin\varphi_{p}\sin\varphi_{m}\left[\operatorname{ctg}\rho_{q}\sin\left(\varphi_{p}-\varphi_{n}\right)-\operatorname{ctg}\rho_{n}\sin\varphi_{p}\right]} + \operatorname{ctg}\varphi_{p}.$$
(9)

Для ρ_u формулы те же, что (2) и (6):

$$\operatorname{ctg} \mathfrak{p}_{u} = \frac{p_{m} \operatorname{ctg} \mathfrak{p}_{m} \sin \varphi_{u}}{r_{m} \sin \varphi_{m}} + \frac{\operatorname{ctg} \mathfrak{p}_{q} \sin (\varphi_{p} - \varphi_{u})}{\sin \varphi_{p}} - \frac{(p_{m} - r_{m}) \operatorname{ctg} \mathfrak{p}_{p} \sin \varphi_{u}}{r_{m} \sin \varphi_{p}}, \quad (10a)$$

$$\operatorname{ctg} \mathbf{p}_{n} = \frac{q_{n} \operatorname{ctg} \mathbf{p}_{n} \sin \left(\varphi_{p} - \varphi_{n} \right)}{r_{n} \sin \left(\varphi_{p} - \varphi_{n} \right)} + \frac{\operatorname{ctg} \mathbf{p}_{p} \sin \varphi_{u}}{\sin \varphi_{p}} - \frac{(q_{n} - r_{n}) \operatorname{ctg} \mathbf{p}_{q} \sin \left(\varphi_{p} - \varphi_{u} \right)}{r_{n} \sin \varphi_{p}}.$$
 (10b)

M (101), N (011).

По формулам на стр. 96 и 97: $\varphi_m = \varphi_p$ и $\varphi_n = 0^\circ$. Подставляя в предыдущие формулы, получим:

$$\operatorname{ctg} \varphi_{u} = \frac{\operatorname{ctg} \rho_{p} - \operatorname{ctg} \rho_{m}}{\sin \varphi_{p} \left(\operatorname{ctg} \rho_{q} - \operatorname{ctg} \rho_{n}\right)} + \operatorname{ctg} \varphi_{p} \,. \tag{11}$$

$$\operatorname{ctg} \rho_{u} = \frac{\operatorname{ctg} \rho_{m} \sin \varphi_{u} + \operatorname{ctg} \rho_{q} \sin (\varphi_{p} - \varphi_{u})}{\sin \varphi_{p}}; \qquad (12a)$$

$$\operatorname{ctg} \rho_{n} = \frac{\operatorname{ctg} \rho_{n} \sin \left(\varphi_{p} - \varphi_{n}\right) + \operatorname{ctg} \rho_{p} \sin \varphi_{n}}{\sin \varphi_{p}}.$$
(12b)

§ 14. Вычисление координат единичной грани U(111) по двум граням в зонах основных граней

Моноклинная (моногирная) сингония [обозначение см. § 13 (стр. 155)].

1. Юстировка по зоне [001]

В формулы для триклинной сингонии (§ 13, стр. 155—156) подставляем:

$$\varphi_p = \varphi_r = 90^\circ$$
.

 $\underline{L(p_lq_l0)}, \quad M(p_m0r_m).$

$$\operatorname{ctg} \varphi_{u} = \frac{p_{l} r_{m} \operatorname{ctg} \varphi_{l} \left(\operatorname{tg} \rho_{m} \sin \varphi_{m} - \operatorname{tg} \rho_{r} \right)}{q_{l} \left[r_{m} \operatorname{tg} \rho_{m} \sin \varphi_{m} + \left(p_{m} - r_{m} \right) \operatorname{tg} \rho_{r} \right]}; \qquad (1)$$

$$\operatorname{tg} \rho_{u} = \frac{r_{m} \operatorname{tg} \rho_{m} \sin \varphi_{m} + (p_{m} - r_{m}) \operatorname{tg} \rho_{r}}{p_{m} \sin \varphi_{u}}; \qquad (2a)$$

$$\lg \rho_{u} = -\frac{p_{l} \lg \rho_{r}}{p_{l} \sin \varphi_{u} - q_{l} \lg \varphi_{l} \cos \varphi_{u}}.$$
 (2b)

$$\frac{L(110), M(101)}{\operatorname{ctg} \varphi_{u}} = \frac{\operatorname{ctg} \varphi_{l} (\operatorname{tg} \rho_{m} - \operatorname{tg} \rho_{r})}{\operatorname{tg} \rho_{m}} = \frac{\operatorname{ctg} \varphi_{l} \sin (\rho_{m} - \rho_{r})}{\sin \rho_{m} \cos \rho_{r}}; \quad (3)$$

$$\operatorname{tg} \boldsymbol{\rho}_{u} = \frac{\operatorname{tg} \boldsymbol{\rho}_{m}}{\sin \boldsymbol{\varphi}_{u}}; \qquad (4a)$$

$$\lg \rho_u = \frac{\operatorname{ct} \rho_r \cos \varphi_l}{\sin (\varphi_u - \varphi_l)} \,. \tag{4b}$$

 $L(p_lq_l0), N(0q_nr_n).$

$$\operatorname{tg} \varphi_{u} = \frac{q_{l}}{p_{l}} \operatorname{tg} \varphi_{l} + \frac{q_{n} \operatorname{tg} \rho_{r}}{r_{n} \operatorname{tg} \rho_{n} \cos \varphi_{n}} .$$

Hο τακ κακ tg $p_r =$ tg $p_n \sin \varphi_n$, το

$$\operatorname{tg} \varphi_{u} = \frac{q_{l}}{p_{l}} \operatorname{tg} \varphi_{l} + \frac{q_{n}}{r_{n}} \operatorname{tg} \varphi_{n}.$$
(5)

$$\operatorname{tg} \rho_{\mu} = \frac{r_{n} \operatorname{tg} \rho_{n} \cos \varphi_{n}}{q_{n} \cos \varphi_{u}}; \tag{6a}$$

$$\operatorname{ig} \rho_{u} = \frac{p_{l} \operatorname{tg} \rho_{r}}{p_{l} \sin \varphi_{u} - q_{l} \operatorname{tg} \varphi_{l} \cos \varphi_{u}}.$$
(6b)

L (110), N(011).

$$\operatorname{tg} \varphi_{u} = \operatorname{tg} \varphi_{l} + \operatorname{tg} \varphi_{n}; \tag{7}$$

$$\operatorname{tg} \boldsymbol{\rho}_{u} = \frac{\operatorname{tg} \boldsymbol{\rho}_{n} \cos \boldsymbol{\varphi}_{n}}{\cos \boldsymbol{\varphi}_{u}}; \qquad (8a)$$

$$\operatorname{tg} \rho_{\mu} = \frac{\operatorname{tg} \rho_{r} \cos \varphi_{l}}{\sin \left(\varphi_{\mu} - \varphi_{l}\right)}.$$
(8b)

 $\underline{M(p_m0r_m), N(0q_nr_n)}.$

$$\operatorname{tg}\varphi_{u} = \frac{p_{m}r_{n}\operatorname{tg}\rho_{n}\cos\varphi_{n}}{q_{n}r_{m}\operatorname{tg}\rho_{m}\sin\varphi_{m} + (p_{m} - r_{m})\operatorname{tg}\rho_{r}}; \qquad (9)$$

$$\operatorname{tg} \rho_{u} = \frac{r_{m} \operatorname{tg} \rho_{m} \sin \varphi_{m} + (p_{m} - r_{m}) \operatorname{tg} \rho_{r}}{p_{m} \sin \varphi_{u}}; \qquad (10a)$$

$$\operatorname{tg} \boldsymbol{\rho}_{u} = \frac{r_{n} \operatorname{tg} \boldsymbol{\rho}_{n} \cos \boldsymbol{\varphi}_{n}}{q_{n} \cos \boldsymbol{\varphi}_{u}}.$$
 (10b)

<u>M(101), N(011).</u> $\varphi_m = 90^\circ$

$$\operatorname{ctg} \varphi_{u} = \frac{\operatorname{tg} \rho_{n} \cos \varphi_{n}}{\operatorname{tg} \rho_{m}}; \qquad (11)$$

$$\operatorname{tg} \mathbf{p}_{u} = \frac{\operatorname{tg} \mathbf{p}_{m}}{\sin \mathbf{q}_{u}}; \qquad (12a)$$

$$tg \, \mathbf{p}_{u} = \frac{tg \, \mathbf{p}_{n} \cos \mathbf{\varphi}_{n}}{\cos \mathbf{\varphi}_{u}}.$$
 (12b)

Пример. Диопсид (Гольдшмидт, Winkeltabellen, стр. 28). Дано:

Символы	ę	p	
(001)	90°00	15°51	R
(010)	0°00	90°00	Q
(100)	90°00	90°00	P
(110)	43°33	90°00	L
(011)	25°43	3 3° 11,5	N

Вычислить φ_{111} и ρ_{111} . По формулам (7) и (8а) имеем:

 $tg \varphi_{111} = tg 43^{\circ}33 + tg 25^{\circ}43.$ $+ tg 43^{\circ}33 = 0,95062$ $tg 25^{\circ}43 = 0,48163$ $tg \varphi_{111} = \overline{1,43225}$ $\underline{\varphi_{111}} = 55^{\circ}04,5$

$$tg \rho_{111} = \frac{tg 33^{\circ}11,5 \cos 25^{\circ}43}{\cos 55^{\circ}04,5}.$$

$$+ lg tg 33^{\circ}11,5 = \overline{1},81570$$

$$- lg \cos 25^{\circ}43 = \overline{1},95470$$

$$- \overline{1},77040$$

$$- lg \cos 55^{\circ}04,5 = \overline{1},75778$$

$$0,01262 \qquad \rho_{111} = 45^{\circ}50$$

2. Юстировка по грани R (001)

В формулы для триклинной сингонии (§ 13, стр.158) подставляем $\varphi_p = 90^\circ$, $\rho_q = 90^\circ$ и $\varphi_n = 0^\circ$.

$$L(p_lq_l0), \quad M(p_m0r_m).$$

$$\operatorname{ctg} \varphi_{u} = \frac{p_{l}}{q_{l}} \operatorname{ctg} \varphi_{l}. \tag{1}$$

три можно определить по табл. III (стр. 235).

$$\operatorname{ctg} \rho_{u} = \frac{\sin \varphi_{u}}{r_{m} \sin \varphi_{m}} [p_{m} \operatorname{ctg} \rho_{m} - (p_{m} - r_{m}) \operatorname{ctg} \rho_{p} \sin \varphi_{m}]. \tag{2}$$

L (110), M (101).

$$\begin{array}{c}
\varphi_{\mu} = \varphi_{l}; \\
\operatorname{ctg} \varphi_{\mu} = \operatorname{ctg} \varphi_{m} \cdot \sin \varphi_{l}; \\
\end{array} \tag{3}$$

 $L(p_lq_l0), N(0q_nr_n).$

$$\operatorname{ctg} \varphi_{u} = \frac{p_{l}}{q_{l}} \operatorname{ctg} \varphi_{l}.$$
(5)

си может быть найдено без вычислений, по табл. III.

$$\operatorname{ctg} \rho_{u} = \frac{q_{n}}{r_{n}} \operatorname{ctg} \rho_{n} \cos \varphi_{u} + \operatorname{ctg} \rho_{p} \sin \varphi_{u}. \tag{6}$$

L (110), N (011).

$$\varphi_{ll} = \varphi_{l}; \tag{7}$$

$$\operatorname{ctg} \rho_{u} = \operatorname{ctg} \rho_{n} \cos \varphi_{l} + \operatorname{ctg} \rho_{p} \sin \varphi_{l}. \tag{8}$$

 $\underline{M(p_m0r_m), N(0q_nr_n)}.$

$$\operatorname{ctg} \varphi_{\mu} = \frac{p_m r_n \left(\operatorname{ctg} \rho_m - \operatorname{ctg} \rho_p \sin \varphi_m\right)}{q_n r_m \sin \varphi_m \operatorname{ctg} \rho_n}; \qquad (9)$$

$$\operatorname{ctg} \boldsymbol{\rho}_{u} = \sin \varphi_{u} \left[\frac{p_{m}}{r_{m}} \cdot \frac{\operatorname{ctg} \boldsymbol{\rho}_{m}}{\sin \varphi_{m}} + \left(1 - \frac{p_{m}}{r_{m}} \right) \operatorname{ctg} \boldsymbol{\rho}_{p} \right]; \tag{10a}$$

$$\operatorname{ctg} \rho_{u} = \operatorname{ctg} \rho_{p} \sin \varphi_{u} + \frac{q_{n}}{r_{n}} \operatorname{ctg} \rho_{n} \cos \varphi_{u}. \tag{10b}$$

M(101), N(011)
$$\cdot \varphi_m = 90^\circ$$
.

$$\operatorname{ctg} \varphi_{u} = \frac{\operatorname{ctg} \rho_{m} - \operatorname{ctg} \rho_{p}}{\operatorname{ctg} \rho_{n}} = \frac{\sin\left(\rho_{p} - \rho_{m}\right)}{\operatorname{ctg} \rho_{n} \sin\rho_{p} \sin\rho_{m}}; \qquad (11)$$

$$\operatorname{ctg} \rho_u = \operatorname{ctg} \rho_m \sin \varphi_u, \tag{12a}$$

$$\operatorname{ctg} \rho_u = \operatorname{ctg} \rho_p \sin \varphi_u + \operatorname{ctg} \rho_n \cos \varphi_u. \tag{12b}$$

3. Юстировка по зоне [010] или по грани Q (010)

$$\varphi_q = \frac{0}{0}, \ \rho_q = 0^\circ; \ \varphi_r = 0^\circ, \ \rho_p = \rho_r = 90^\circ.$$

Формулы выводим из формул § 7 (стр. 109).

$L(p_{l}q_{l}0), M(p_{m}0r_{m}).$

Из формулы (10) (стр. 110), подставляя φ_m вместо φ_x , p_m и r_m вместо pи r, получаем:

$$\operatorname{ctg}\varphi_{\mu} = \frac{p_{m}}{r_{m}}\operatorname{ctg}\varphi_{m} + \left(1 - \frac{p_{m}}{r_{m}}\right)\operatorname{ctg}\varphi_{p}.$$
(1)

Из формулы (6) (стр. 109), подставляя φ_l , ρ_l вместо φ_x , ρ_x , и $p_l q_l$ вместо p, q, получим:

$$\operatorname{ctg} \rho_{u} = \frac{p_{l} \operatorname{ctg} \rho_{l} \sin \varphi_{u}}{q_{l} \sin \varphi_{l}}.$$
(2)

L(110), M(101).

$$\varphi_{u} = \varphi_{m}; \tag{3}$$

$$\operatorname{ctg} \rho_{\mu} = \frac{\operatorname{ctg} \rho_{l} \sin \varphi_{m}}{\sin \varphi_{l}}.$$
(4)

11 Аншелес - 706

 $L(p_lq_l0), N(0q_nr_n).$

$$\operatorname{ctg}\varphi_{u} = \frac{p_{l}q_{n}\operatorname{ctg}\rho_{l}\sin\left(\varphi_{p}-\varphi_{n}\right)}{q_{l}r_{n}\operatorname{ctg}\rho_{n}\sin\varphi_{p}\sin\varphi_{l}} + \operatorname{ctg}\varphi_{p}; \qquad (5)$$

$$\operatorname{ctg} \rho_{u} = \frac{p_{l} \operatorname{ctg} \rho_{l} \sin \varphi_{u}}{q_{l} \sin \varphi_{l}}; \tag{6a}$$

$$\operatorname{ctg} \rho_{u} = \frac{r_{n} \operatorname{ctg} \rho_{n} \sin \left(\varphi_{p} - \varphi_{u}\right)}{q_{n} \sin \left(\varphi_{p} - \varphi_{n}\right)}.$$
(6b)

<u>L (110), N (011).</u>

$$\operatorname{ctg}\varphi_{n} = \frac{\operatorname{ctg}\rho_{l}}{\operatorname{ctg}\rho_{n}\sin\varphi_{p}} + \operatorname{ctg}\varphi_{p}; \tag{7}$$

$$\operatorname{ctg} \rho_{u} = \frac{\operatorname{ctg} \rho_{l} \sin \varphi_{u}}{\sin \varphi_{l}}; \qquad (8a)$$

$$\operatorname{ctg} \rho_{\mu} = \frac{\operatorname{ctg} \rho_{\mu} \sin \left(\varphi_{p} - \varphi_{\mu} \right)}{\sin \left(\varphi_{p} - \varphi_{n} \right)}.$$
(8b)

 $\underline{M(p_m 0r_m), N(0q_n r_n)}.$

$$\operatorname{ctg} \varphi_{n} = \frac{p_{m}}{r_{m}} \operatorname{ctg} \varphi_{m} + \left(1 - \frac{p_{m}}{r_{m}}\right) \operatorname{ctg} \varphi_{p} ; \qquad (9)$$

$$\operatorname{ctg} \rho_u = \frac{r_n \operatorname{ctg} \rho_n \sin \left(\varphi_p - \varphi_n\right)}{q_n \sin \left(\varphi_p - \varphi_n\right)}.$$
(10)

M(101), N(011).

$$\begin{aligned} \varphi_n &= 0^\circ; \\ \varphi_u &= \varphi_m; \end{aligned} \tag{11}$$

$$\operatorname{ctg} \rho_{u} = \frac{\operatorname{ctg} \rho_{n} \sin \left(\varphi_{p} - \varphi_{m}\right)}{\sin \varphi_{p}}.$$
(12)

§ 15. Вычисление координат единичной грани U(111) по двум граням в зонах основных граней

Ромбическая (дигирная) сигония [обозначение см. § 13 (стр. 155)]

Юстировка по зоне [001] или по грани R (001)

Формулы выводим из соответствующих формул для моноклинной сингонии § 14 при юстировке по зоне [001] (стр. 159), подставляя в них $\rho_r = 0^\circ$, или при юстировке по грани R(001) (стр. 160), подставляя $\rho_p = 90^\circ$. Кроме того, для обонх случаев $\varphi_m = 90^\circ$ и $\varphi_n = 0^\circ$. Впрочем, те же формулы легко выводятся непосредственно из основных формул § 8 гл. VI (стр. 112), подобно тому как это сделано для триклинной сингонии.

$$\frac{L(p_lq_l0), M(p_m0r_m)}{q_l} \qquad \qquad \operatorname{ctg}\varphi_u = \frac{p_l}{q_l}\operatorname{ctg}\varphi_l. \tag{1}$$

φ, может быть найдено без вычислений, по табл. III (стр. 235).

$$\operatorname{tg} \rho_{u} = \frac{r_{m}}{p_{m}} \frac{\operatorname{tg} \rho_{m}}{\sin \varphi_{u}}.$$
 (2)

L (110), M (101).

$$\varphi_{\mu} = \varphi_{l}; \tag{3}$$

$$\operatorname{tg} \rho_{u} = \frac{\operatorname{tg} \rho_{m}}{\sin \varphi_{l}}.$$
 (4)

 $L(p_lq_l0), N(0q_nr_n).$

$$\operatorname{ctg} \varphi_{u} = \frac{p_{l}}{q_{l}} \operatorname{ctg} \varphi_{l}.$$
 (5)

фи может быть найдено без вычислений, по табл. III.

$$\operatorname{tg} \mathfrak{p}_{n} = \frac{r_{m} \operatorname{tg} \mathfrak{p}_{n}}{q_{n} \cos \varphi_{n}}.$$
 (6)

$$\varphi_{u} = \varphi_{l}; \tag{7}$$

$$tg \rho_{\mu} = \frac{tg \rho_{n}}{\cos \varphi_{\mu}}.$$
 (8)

$$M(p_m 0r_m), N(0q_n r_n).$$

$$\operatorname{ctg} \varphi_{u} = \frac{p_{m}r_{n} \operatorname{tg} \rho_{n}}{q_{n}r_{m} \operatorname{tg} \rho_{m}}; \qquad (9)$$

$$\operatorname{tg} \rho_{u} = \frac{r_{m} \operatorname{tg} \rho_{m}}{p_{m} \sin \varphi_{u}}; \qquad (10a)$$

$$\operatorname{tg} \mathfrak{p}_{u} = \frac{r_{n} \operatorname{tg} \mathfrak{p}_{n}}{q_{n} \cos \varphi_{u}}.$$
 (10b)

M(101), N(011).

*

$$\operatorname{ctg} \varphi_{\mu} = \frac{\operatorname{tg} \varphi_{\mu}}{\operatorname{tg} \varphi_{m}}; \qquad (11)$$

$$\operatorname{ig} \rho_{u} = \frac{\operatorname{tg} \rho_{m}}{\sin \varphi_{u}};$$
 (12a)

$$tg \rho_n = \frac{tg \rho_n}{\cos \varphi_n}.$$
 (12b)

Пример. Барит (Гольдшмидт, Winkeltabellen, стр. 60). Дано:

$$(\varphi_{203} = 90^{\circ}), \quad \rho_{203} = 47^{\circ}03 \ M, \\ (\varphi_{012} = 0), \quad \rho_{012} = 33^{\circ}18 \ N.$$

Вычислить ф₁₁₁ и р₁₁₁. Пользуемся формулами (9) и (10а):

$$ctg \varphi_{111} = \frac{2 \cdot 2 tg 33^{\circ}18}{1 \cdot 3 tg 47^{\circ}03} + \frac{\lg 4 = 0,60206}{\lg tg 33^{\circ}18 = \overline{1,81748}} + \frac{\lg 3 = 0,47712}{\lg tg 47^{\circ}03 = 0,03110} \\ - \frac{0,41954}{0,50822} \\ - \frac{0,50822}{1,911 = \overline{1,91132}}$$

$$\varphi_{111} = 50^{\circ}48,5.$$

$$\rho_{111} = 64^{\circ}19.$$

§ 16. Вычисление полярного расстояния р_и единичной грани U(111) по граням в основных зонах

Тетрагональная (тетрагирная) сингония [обозначения см. § 13 (стр. 155)]

Юстировка по зоне [001] или по грани R (001)

При выводе формул для вычислення $\rho_u(\varphi_u = 45^\circ)$ пользуемся формулами предыдущего § 15 для ромбической сингонии, подставляя в них $\varphi_u = \varphi_l = 45^\circ$, или — непосредственно основными формулами § 9, гл. VI (стр. 117).

Из этих формул видно, что в тетрагональной сингонии ρ_u не вависит от индексов и координат граней (pq0), а только лишь от индексов и полярного расстояния (p) одной из граней (p0r) или (0qr). Получаем следующие формулы:

$N(0q_nr_n).$

$$\operatorname{tg} \rho_{u} = \frac{r_{n} \sqrt{2}}{q_{n}} \operatorname{tg} \rho_{n}. \tag{1}$$

N(011).

$$\frac{\operatorname{tg} \rho_{u} = \operatorname{tg} \rho_{n} \sqrt{2}}{\operatorname{lg} \sqrt{2} = 0,150515}$$
(2)

- Пример. Идокраз (Гольдшмидт, Winkeltabellen, стр. 187).
- Дано: $\rho_{032} = 38^{\circ}53$.
- Вычислить Рин-

По формуле (1) имеем:

$$tg \rho_{111} = \frac{2\sqrt{2} tg 38^{\circ}53}{3}.$$

$$lg 2 = 0,301030$$

$$+ lg \sqrt{2} = 0,150515$$

$$lg tg 38^{\circ}53 = \overline{1},906560$$

$$\overline{0,358105}$$

$$- lg 3 = 0,477120$$

$$lg tg \rho_{111} = \overline{1},880985$$

$$\rho_{111} = 37^{\circ}15.$$

§ 17. Вычисление полярного расстояния ρ_μ единичной грани U(1121) по граням в основных зонах

Гексагональная (гексагирная) сингония

1. Установка Браве (см. § 11, гл. VI, стр. 121)

Юстировка по зоне [0001] или по грани R (0001)

Формулы выводим либо непосредственно из основных формул § 11 гл. VI, либо из формул для триклинной сингонии при юстировке по грани R (001) § 13 гл. VII (стр. 158), подставляя в последние $\varphi_p = \varphi_m = 60^\circ$, $\rho_p = \rho_q = 90^\circ$, $\varphi_n = 0^\circ$ и $\varphi_n = \varphi_l = 30^\circ$.

 $\varphi_n = 0^\circ$ и $\varphi_n = \varphi_l = 30^\circ$. Как и в тетрагональной сингонии, для вычисления ρ_n достаточно иметь индексы и полярное расстояние (ρ) одной из двух граней $M(p_m 0r_m)$ или $N(0q_n r_n)$ (третий индекс, как и в основных формулах, в вычисления не входит).

$$\frac{\mathbf{N}(\mathbf{0}q_n \mathbf{r}_n)}{\operatorname{tg} \boldsymbol{\rho}_u} = \frac{\mathbf{r}_n \sqrt{3}}{q_n} \operatorname{tg} \boldsymbol{\rho}_n. \tag{1}$$

N (011).

$$\frac{\operatorname{tg} \rho_{\mu} = \operatorname{tg} \rho_{n} \sqrt{3}}{\operatorname{1g} \sqrt{3} = 0,23856}$$
(2)

Пример. Апатит. Дано: $\rho_{01\overline{13}} = 15^{\circ}46$. Вычислить $\rho_{11\overline{21}}$. По формуле (1) имеем:

$$tg \rho_{11\overline{2}1} = 3\sqrt[4]{3} tg 15^{\circ}46.$$

$$lg 3 = 0,47712$$

$$+ lg\sqrt[4]{3} = 0,23856$$

$$lg tg 15^{\circ}46 = \overline{1},45078$$

$$lg tg \rho_{11\overline{2}1} = 0,16646$$

$$p_{11\overline{2}1} = 55^{\circ}43,5.$$

2. Установка Федорова (см. § 12, гл. VI, стр. 126)

Юстировка по зоне [1000] или по грани Р (1000)

Формулы выводим по основным формулам (§ 12 гл. VI); ρ_u может быть вычислено по индексам и полярному расстоянию (ρ) одной из граней $L(p_lq_l0)$ или $M(p_m0r_m)$.

$L(p_{l}q_{l}0).$

$$\operatorname{tg} \boldsymbol{\rho}_{u} = \frac{p_{l}}{q_{l}} \operatorname{tg} \boldsymbol{\rho}_{l}; \tag{1}$$

р, может быть найдено без вычислений, по табл. III (стр. 235).

L (110).

Пример. Дано: _{Р310ї} — 15°46. Вычислить _{Р1110}.

 $tg \rho_{1110} = 3 tg 15^{\circ}46 = 3 \cdot 0,28234 = 0,84702.$

 $\rho_n = \rho_l$

 $\rho_{1110} = 40^{\circ}16.$

То же найдем по табл. III (стр. 237).

ГЛАВА ВОСЬМАЯ

ЗОНАЛЬНЫЕ ВЫЧИСЛЕНИЯ

§ 1. Зависимость между индексами и сферическими координатами граней одной зоны

Пусть в некоторой зоне (фиг. 71) нам даны четыре грани: $P(p_1p_2p_3)$, $Q(q_1q_2q_3)$, $V(v_1v_2v_3)$ и $X(x_1x_2x_3)$. Примем грани P и Q за основные грани зоны и припишем грани P зональный символ (10), а грани Q—(01) (§ 5, гл. III, стр. 39). Пусть зональный символ грани V относительно граней P и Q будет (m_vn_v) , а грани $X - (m_xn_x)$. В § 8 гл. III (стр. 51) было доказано [формула (1)], что

$$\frac{m_x}{m_y}: \frac{n_x}{n_y} = \frac{\sin QOX}{\sin POX}: \frac{\sin QOV}{\sin POV},$$
(1)

165

(2)

т. е., что двойные отношения зональных индексов двух граней (X и V) какой-либо зоны равны двойным отношениям синусов углов между диаметрами основного круга проекций, на которых лежат проекции данных граней и проекции граней (P и Q), принятых нами за основные грани зоны.

Фиг. 71.

Перейдем от углов в приведенной выше формуле к долготам граней—углам φ , которые получаются при измерении кристаллов и которые мы вычисляем при обработке результатов измерения (фиг. 71).

$$\angle QOX = \varphi_x - \varphi_q \angle POX = \varphi_p - \varphi_x \angle QOV = \varphi_v - \varphi_q \angle POV = \varphi_v - \varphi_q.$$

Подставляя данные величины в формулу (1), получим:

$$\frac{m_x}{m_v}: \frac{n_x}{n_v} = \frac{\sin(\varphi_q - \varphi_x)}{\sin(\varphi_p - \varphi_x)}: \frac{\sin(\varphi_q - \varphi_v)}{\sin(\varphi_p - \varphi_v)}.$$
 (2a)

Подставив сюда вместо $\frac{m_x}{n_x}$ и $\frac{m_v}{n_v}$ их выражения через обычные индексы граней *P*, *Q*, *V* и *X* [формулы (2a) (стр. 41) и (2b) (стр. 42)], получим:

$$\frac{\begin{vmatrix} q_1 q_2 \\ x_1 x_2 \end{vmatrix}}{\begin{vmatrix} x_1 x_2 \\ p_1 p_2 \end{vmatrix}} : \frac{\begin{vmatrix} q_1 q_2 \\ v_1 v_3 \\ p_1 p_2 \end{vmatrix}}{\begin{vmatrix} v_1 v_3 \\ p_1 p_2 \end{vmatrix}} = \frac{\begin{vmatrix} q_1 q_3 \\ x_1 x_3 \\ p_1 p_3 \end{vmatrix}}{\begin{vmatrix} v_1 v_3 \\ p_1 p_3 \end{vmatrix}} : \frac{\begin{vmatrix} q_1 q_3 \\ v_1 v_3 \\ p_1 p_3 \end{vmatrix}}{\begin{vmatrix} v_1 q_3 \\ p_2 p_3 \end{vmatrix}} = \frac{\begin{vmatrix} q_2 q_3 \\ v_2 v_3 \\ p_2 p_3 \end{vmatrix}}{\begin{vmatrix} v_2 v_3 \\ p_2 p_3 \end{vmatrix}} = \frac{\sin\left(\varphi_q - \varphi_x\right)}{\sin\left(\varphi_p - \varphi_x\right)} : \frac{\sin\left(\varphi_q - \varphi_y\right)}{\sin\left(\varphi_p - \varphi_y\right)} \quad (2b)$$

или в развернутом виде:

$$\frac{q_1 x_2 - q_2 x_1}{x_1 p_2 - x_2 p_1} : \frac{q_1 v_2 - q_2 v_1}{v_1 p_2 - v_2 p_1} = \frac{q_1 x_3 - q_3 x_1}{x_1 p_3 - x_3 p_1} : \frac{q_1 v_3 - q_3 v_1}{v_1 p_3 - v_3 p_1} = \frac{q_2 x_3 - q_3 x_2}{x_2 p_3 - x_2 p_2} : \frac{q_2 v_3 - q_3 v_2}{v_3 p_2 - v_2 p_3} = \\ = \frac{\sin\left(\varphi_q - \varphi_s\right)}{\sin\left(\varphi_p - \varphi_s\right)} : \frac{\sin\left(\varphi_q - \varphi_s\right)}{\sin\left(\varphi_p - \varphi_s\right)}.$$
(2c)

Полученное выражение и представляет зависимость между индексами и долготами (φ) четырех граней одной зоны кристалла. Эта зависимость представлена здесь в самом общем виде, так как зона взята совсем произвольная, с произвольным, ничем не ограниченным положением. Это может быть любая косая зона или вертикальная зона (гномостереографические проекции граней на внешнем круге проекций). Четыре грани в зоне также могут иметь любые символы, возможные в данной зоне, и любое положение.

Если в зоне дана грань V единичная относительно граней P и Q [т. е. если $(v_1v_2v_3) = (p_1p_2p_3) + (q_1q_2q_3)$], так что ее зональный символ будет (11), то формулы (2) принимают следующий вид:

$$m_{x}: n_{x} = \frac{\sin\left(\varphi_{q} - \varphi_{x}\right)}{\sin\left(\varphi_{p} - \varphi_{x}\right)}: \frac{\sin\left(\varphi_{q} - \varphi_{v}\right)}{\sin\left(\varphi_{p} - \varphi_{v}\right)};$$
(3a)

$$\begin{vmatrix} q_1 q_2 \\ x_1 x_2 \end{vmatrix} : \begin{vmatrix} x_1 x_2 \\ p_1 p_2 \end{vmatrix} = \begin{vmatrix} q_1 q_3 \\ x_1 x_3 \end{vmatrix} : \begin{vmatrix} x_1 x_3 \\ p_1 p_3 \end{vmatrix} = \begin{vmatrix} q_2 q_3 \\ x_2 x_3 \end{vmatrix} : \begin{vmatrix} x_2 x_3 \\ p_2 p_3 \end{vmatrix} = \frac{\sin(\varphi_q - \varphi_x)}{\sin(\varphi_p - \varphi_x)} : \frac{\sin(\varphi_q - \varphi_v)}{\sin(\varphi_p - \varphi_v)}; \quad (3b)$$

$$(q_1x_2 - q_2x_1) : (x_1p_2 - x_2p_1) = (q_1x_3 - q_3x_1) : (x_1p_3 - x_3p_1) = = (q_2x_3 - q_3x_2) : (x_2p_3 - x_3p_2) = \frac{\sin(\varphi_q - \varphi_x)}{\sin(\varphi_p - \varphi_x)} : \frac{\sin(\varphi_q - \varphi_y)}{\sin(\varphi_p - \varphi_y)}.$$
 (3c)

В следующих параграфах будет указано, как использовать формулы (2) или (3) для вычисления индексов граней по углам φ и, наоборот, — сферические координаты по индексам. Здесь же необходимо еще вывести подобную же зависимость для горизонтальных зон, т. е. для тех зон, которые проходят через центр проекций (фиг. 72). Для всех граней такой зоны углы φ либо равны друг другу, либо отличаются на 180°.

Пусть (фиг. 72) мы имеем зону, проходящую через точку O — центр основного круга проекций. P, Q, V и X — гномонические проекции четырех граней этой зоны. Пусть соответствующие зональные индексы этих граней будут (10), (01), $(m_v n_v)$ и $(m_x n_x)$. По формуле (6а) (стр. 46) имеем:

$$\frac{m_x}{m_y} : \frac{n_x}{n_y} = \frac{QX}{PX} : \frac{QV}{PV}.$$
(4)

Проведем теперь из точки O ось зоны OS. Из точки S — точки пересечения оси зоны с основным кругом проекций — проведем прямые SP, SQ, SV и SX. Получаем четыре треугольника: QSX и PSX, QSV и PSV. Площади каждой пары этих треугольников относятся как основания — QX и PX, QV и PV. В свою очередь площади каждой пары этих треуголь-

ников относятся как синусы соответствующих углов при точке S (стр. 51). Поэтому

$$\frac{QX}{PX} = \frac{\sin QSX}{\sin PSX} \quad \text{H} \quad \frac{QV}{PV} = \frac{\sin QSV}{\sin PSV}.$$

Подставляя в формулу (4), получим:

$$\frac{m_x}{m_y}: \frac{n_x}{n_y} = \frac{\sin QSX}{\sin PSX}: \frac{\sin QSV}{\sin PSV}.$$
 (5)

Углы OSP, OSQ, OSV и OSX — полярные расстояния граней P, Q, V и X, т. е. углы ρ_p , ρ_q , ρ_v и ρ_x (фнг. 72). Выразим углы, входящие в формулу (5), через эти углы:

Фиг. 72.

$$\angle QSX = \rho_x - \rho_q, \ \angle PSX = \rho_p - \rho_x, \ \angle QSV = \rho_v - \rho_q \ H \ \angle PSV = \rho_p - \rho_v$$

Подставив в формулу (5), получим:

$$\frac{m_x}{m_v}:\frac{n_x}{n_v}=\frac{\sin\left(\rho_q-\rho_x\right)}{\sin\left(\rho_p-\rho_x\right)}:\frac{\sin\left(\rho_q-\rho_v\right)}{\sin\left(\rho_p-\rho_v\right)}.$$
(6)

Как видим, полученная формула вполне аналогична формуле (2а) для углов φ . Подставив в формулу (6) вместо $\frac{m_v}{n_x}$ и $\frac{m_v}{n_v}$ их выражения через обычные индексы граней *P*, *Q*, *V* и *X*, получим формулы, аналогичные (2b) и (2c) (стр. 166). Разница лишь в том, что углы φ заменяются в них углами ρ . Если грань *V* единичная относительно граней *P* и *Q*, получаем формулы, аналогичные формулам (3а), (3b) и (3c) (стр. 166).

§ 2. Вычисление индексов по сферическим координатам

Пусть нам даны три грани одной зоны $P(p_1 \ p_2 \ p_3), Q(q_1 \ q_2 \ q_3)$ и $V(v_1 v_2 v_3)$ с соответствующей долготой — φ_p, φ_q и φ_v , и дана долгота φ_x четвертой грани

X той же зоны. Требуется вычислить индексы грани $X(x_1 x_2 x_3)$. Две из трех граней, символы которых даны, например грани P и Q, примем за основные грани зоны и припишем грани P зональный символ (10) и грани Q—(01). Пусть зональный символ грани V относительно граней P и Q будет $(m_v n_v)$. Эти индексы m_v и n_v мы прежде всего и определяем по формуле (2a) (стр. 41) или (2b) (стр. 42). Затем вычисляем зональные индексы грани X по формуле (2a) (стр. 166), переписав ее таким образом:

$$m_x : n_x = m_v \frac{\sin(\varphi_q - \varphi_x)}{\sin(\varphi_p - \varphi_x)} : n_v \frac{\sin(\varphi_q - \varphi_v)}{\sin(\varphi_p - \varphi_v)} . \tag{1}$$

Вычислив зопальные индексы m_x и n_x , определяем символ грани X по формулам (1a) (стр. 38) и (1b) (стр. 39).

В тех случаях, когда разность углов φ для граней, принятых нами за основные грани зоны — P (10) и Q (01), равна 90°, т. е. $\varphi_p - \varphi_q = 90°$, формула (1) упрощается. Углы φ будем отсчитывать от меридиана с гранью Q (01), отняв φ_q от всех углов φ . Новые углы обозначим так:

$$\varphi_{q}{\,}' = 0^{\circ}; \; \varphi_{p}{\,}' = 90^{\circ}; \; \varphi_{v}{\,}' = \varphi_{v} - \varphi_{q} \; \text{H} \; \varphi_{x}{\,}' = \varphi_{x} - \varphi_{q}.$$

Формула (1) принимает следующий вид:

$$m_x : n_x = m_v \operatorname{tg} \varphi_x' : n_v \operatorname{tg} \varphi_v'. \tag{2}$$

Для этого случая зональные индексы $(m_x n_x)$ грани X можем чаще всего получить без вычислений по табл. IV (стр. 250). Находим в таблице совместно в одной и той же строке углы, близкие φ'_x и φ'_v . Числа в самой верхней строке таблицы над углом φ'_x множим на m_v и над углом φ'_v на n_v . Отношение полученных произведений и равно отношению зональных индексов грани X (см. ниже примеры).

Для горизонтальных зон (проходящих через центр проекций) при вычислении зональных индексов $(m_x n_x)$ пользуемся формулой (6) (стр. 167), переписав ее аналогично формуле (1):

$$m_x : n_x = m_v \frac{\sin(\rho_q - \rho_x)}{\sin(\rho_p - \rho_x)} : n_v \frac{\sin(\rho_q - \rho_v)}{\sin(\rho_p - \rho_v)}$$
(3)

В тех случаях, когда $\rho_p - \rho_q = 90^\circ$, отсчитываем углы от грани Q (01). Получаем тогда формулу, аналогичную формуле (2)

$$m_x: n_x = m_v \operatorname{tg} \rho_x': n_v \operatorname{tg} \rho_v'.$$
(4)

Зональные индексы $(m_x n_x)$ определяем по табл. IV так же, как это указано выше для углов φ .

Пример 1.

Даны грани: P(201), $\varphi_p = 90^\circ$; Q(021), $\varphi_q = 0^\circ$; V(111), $\varphi_v = 47^\circ$, и X, $\varphi_x = 20^\circ$.

Определить символ грани Х.

Припишем грани *P* зональный символ (10), грани *Q* — (01). Грань *V* единичная относительно этих граней; ее зональный символ (11), так как (стр. 40):

 $1 \cdot (201) + 1 \cdot (021) = (222) = (111).$

По формуле (2) имеем:

 $m_x: n_x = \text{ig } 20^\circ: \text{ig } 47^\circ.$

В табл. IV (стр. 250) находим по строкам 6,11 и 31

$$m_r: n_r = 3:9 = 2:6 = 1:3.$$

Зональный символ грани Х-(13). Обычный символ грани Х получаем по стр. 39:

$$1(201) + 3(021) = (264) = (132).$$

Пример 2.

Даны грани одной горизонтальной зоны: Q(001), $\rho_{\rho} = 0^{\circ}$; P(210), $\rho_{\rho} = 90^{\circ}$; $V(423), \rho_{\pi} = 56^{\circ}, H X, \varphi_{r} = 77^{\circ}30.$

Определить символ грани Х.

Зональный символ грани V — (23), так как (стр. 39):

$$2(210) + 3(001) = (423).$$

По формуле (4) имеем:

 $m_r: n_r = 2 \text{ tg } 77^{\circ}30: 3 \text{ tg } 56^{\circ}.$

По табл. IV (на стр. 252) находим:

$$m_r: n_r = 2 \cdot 3: 3 \cdot 1 = 6: 3 = 2:1.$$

Зональный символ грани Х-(21). Обычный символ находим по стр. 39.

$$2(210) + 1(001) = (421).$$

§ 3. Вычисление сферических координат по индексам

Символы граней в большинстве случаев просто определяются графически; поэтому к зональному вычислению их приходится прибегать редко. Но зональным вычислением сферических координат граней, в виду простоты формул такого вычисления, следует пользоваться. Особенно выгодно пользоваться зональными вычислениями в зонах с большим количеством граней, тем более для кристаллов триклинной и отчасти моноклинной сингонии, где основные формулы часто значительно сложнее формул зонального вычисления.

Формулы зонального вычисления одинаковы для всех сингоний и для любой юстировки кристаллов (и даже для произвольной юстировки). В некоторых случаях, когда углы, входящие в формулы, оказываются равными 90°, формулы, как видели выше, особенно просты.

При зональном вычислении кристаллов часто удобно вводить в вычисление индексы и сферические координаты симметричных граней в других квадрантах, октантах или сексантах, которые при пользовании основными формулами обычно не вычисляются (пример 2, § 4, стр. 175).

Для вычисления сферических координат граней какой-либо зоны должны быть известны символы и сферические координаты трех любых граней данной. зоны и символы тех граней, для которых вычисляются сферические координаты.

Пусть данными гранями зоны будут $P(p_1 \ p_2 \ p_3), \ Q(q_1 \ q_2 \ q_3)$ и $V(v_1 \ v_2 \ v_3)$ (фиг. 71) с соответствующими сферическими координатами φ_p и ρ_p , φ_q и ρ_q , φ_w и ρ_v и требуется вычислить координаты φ_x и ρ_x для грани $X(x_1, x_2, x_3)$. Принимаем Р и Q за основные грани зоны с зональными символами (10) и (01). По § 5 (стр. 41—42) определяем прежде всего зональные символы (m_n n_n) и (m_r n_r) граней V и X относительно основных граней P и Q.

При выводе формул для вычисления φ_x воспользуемся формулой (2a) (стр. 166). Но в этой формуле углы 🕫 отсчитаны, как обычно, от мериднана с гранью (010) так же, как и все вышеприведенные углы 🕫 (фиг. 71). Для упрощения формулы будем отсчитывать углы φ от меридиана с гранью $Q(q_1 q_2 q_3)$, т. е. той грани, которой мы приписали зональный символ (01). От всех углов φ отнимаем φ_q . Получаем: $\varphi_q' = \varphi_q - \varphi_q = 0^\circ$, $\varphi_p' = \varphi_p - \varphi_q$, $\varphi_v' = \varphi_v - \varphi_q$ и $\varphi_x' = \varphi_x - \varphi_q$. Указанная формула (2а) принимает следующий вид:

$$\frac{m_x}{m_v}:\frac{n_x}{n_v} = \frac{\sin\varphi_x'}{\sin(\varphi_p'-\varphi_x')}:\frac{\sin\varphi_v'}{\sin(\varphi_p'-\varphi_v')}.$$
(1)

169/

Решаем уравнение относительно φ_x . Для этого числители дробей правой части равенства множим на sin φ_p и после соответствующих преобразований окончательно получим:

$$\operatorname{ctg} \varphi_{x}' = \frac{m_{v} n_{x}}{m_{x} n_{v}} \operatorname{ctg} \varphi_{v}' + \left(1 - \frac{m_{v} n_{x}}{m_{x} n_{v}}\right) \operatorname{ctg} \varphi_{p}'.$$
(2)

Угол φ_x' может быть вычислен и без определения зональных индексов граней V и X, а непосредственно по индексам граней $P(p_1 \ p_2 \ p_3), Q(q_1 \ q_2 \ q_3), V(v_1 \ v_2 \ v_3)$ и $X(x_1 \ x_2 \ x_3)$. Для этого можно воспользоваться одной из следующих трех формул, полученных подстановкой в формулу (2) вместо отношений $\frac{m_v}{n_v}$ и $\frac{m_x}{n_x}$ их выражений через индексы по формулам (2а) (стр. 41) или (2b) (стр. 42):

$$\operatorname{ctg} \varphi_{x}' = \frac{(q_1 v_2 - q_2 v_1) (p_1 x_2 - p_2 x_1) \operatorname{ctg} \varphi_{v}' + (p_1 q_2 - p_2 q_1) (v_1 x_2 - v_2 x_1) \operatorname{ctg} \varphi_{p}'}{(p_1 v_2 - p_2 v_1) (q_1 x_2 - q_2 x_1)}, \quad (3a)$$

$$\operatorname{ctg} \varphi_{x}' = \frac{(q_{1}v_{3} - q_{3}v_{1})(p_{1}x_{3} - p_{3}x_{1})\operatorname{ctg} \varphi_{y}' + (p_{1}q_{2} - p_{3}q_{1})(v_{1}x_{3} - v_{3}x_{1})\operatorname{ctg} \varphi_{p}'}{(p_{1}v_{2} - p_{3}v_{1})(q_{1}x_{3} - q_{3}x_{1})}, \quad (3b)$$

$$\operatorname{ctg} \varphi_{x}' = \frac{(q_{2}v_{3} - q_{3}v_{2})(p_{2}x_{3} - p_{3}x_{2})\operatorname{ctg} \varphi_{y}' + (p_{2}q_{3} - p_{3}q_{2})(v_{2}x_{3} - v_{3}x_{2})\operatorname{ctg} \varphi_{p}'}{(p_{2}v_{3} - p_{3}v_{2})(q_{2}x_{3} - q_{3}x_{2})}.$$
 (3c)

• Формулы значительно упрощаются, если грань $V(v_1 v_2 v_3)$ единичная относительно $P(p_1 p_2 p_3)$ и $Q(q_1 q_2 q_3)$, т. е. если ее зональный символ (11). В таком случае в формулу (2) надо вместо m_v и n_v подставить единицы, и формулы (3а), (3b) и (3c) принимают следующий вид:

$$\operatorname{ctg} \varphi_{x}' = \frac{p_{2}x_{1} - p_{1}x_{2}}{q_{1}x_{2} - q_{2}x_{1}} \operatorname{ctg} \varphi_{v}' + \left(1 - \frac{p_{2}x_{1} - p_{1}x_{2}}{q_{1}x_{2} - q_{2}x_{1}}\right) \operatorname{ctg} \varphi_{p}', \tag{4a}$$

$$\operatorname{ctg} \varphi_{x}' = \frac{p_{3}x_{1} - p_{1}x_{3}}{q_{1}x_{3} - q_{3}x_{1}} \operatorname{ctg} \varphi_{v}' + \left(1 - \frac{p_{3}x_{1} - p_{1}x_{3}}{q_{1}x_{3} - q_{3}x_{1}}\right) \operatorname{ctg} \varphi_{p}', \tag{4b}$$

$$\operatorname{ctg} \varphi_{x}' = \frac{p_{3}x_{2} - p_{2}x_{3}}{q_{2}x_{2} - q_{3}x_{2}} \operatorname{ctg} \varphi_{v}' + \left(1 - \frac{p_{3}x_{2} - p_{2}x_{3}}{q_{2}x_{2} - q_{3}x_{2}}\right) \operatorname{ctg} \varphi_{p}'.$$
(4c)

После того как φ_x' вычислено, определяем долготу φ_x , отсчитанную от меридиана с гранью (010):

$$\varphi_x = \varphi_x' + \varphi_q.$$

Если ср'=90°, формула (2) получает следующий вид:

$$\operatorname{ctg} \varphi_{x}' = \frac{m_{x} n_{x}}{m_{x} n_{v}} \operatorname{ctg} \varphi_{v}'.$$
(5)

В этом случае φ_x' может быть определено без вычислений по табл. III (стр. 235). Отыскиваем в таблице данный угол φ_v' в столбце под цифрой, отвечающей числителю дроби перед сtg φ_v' , и в той же строке под цифрой, отвечающей знаменателю, находим искомый угол φ_x' (см. пример 2 на стр. 173).

Формулу для вычисления полярного расстояния ρ_x грани X выведем из общей формулы (2b) (стр. 82). На основании изложенного на стр. 44 в этой формуле r=0. Следовательно, третья дробь формулы равна нулю, а потому равен нулю се числитель.

$$\operatorname{ctg} \rho_p \sin \left(\varphi_x - \varphi_q \right) - \operatorname{ctg} \rho_x \sin \left(\varphi_p - \varphi_q \right) + \operatorname{ctg} \rho_q \sin \left(\varphi_p - \varphi_x \right) = 0.$$

Отсюда получаем:

$$\operatorname{ctg} \rho_{x} = \frac{\operatorname{ctg} \rho_{p} \sin\left(\varphi_{x} - \varphi_{q}\right) + \operatorname{ctg} \rho_{q} \sin\left(\varphi_{p} - \varphi_{x}\right)}{\sin\left(\varphi_{p} - \varphi_{o}\right)}.$$
 (6a)

Так как в эту формулу не входят индексы граней, то сферические координаты одной из граней P или Q могут быть заменены в ней координатами φ_v и ρ_v грани V. Можно также заменить координаты граней P и Q известными координатами двух любых граней зоны, например — координатами φ_m , ρ_m и φ_n , ρ_n каких-либо граней M и N. Вместо формулы (6а) получим формулу:

$$\operatorname{ctg} \rho_{x} = \frac{\operatorname{ctg} \rho_{m} \sin \left(\varphi_{x} - \varphi_{n}\right) + \operatorname{ctg} \rho_{n} \sin \left(\varphi_{m} - \varphi_{x}\right)}{\sin \left(\varphi_{m} - \varphi_{n}\right)}.$$
(6b)

Для горизонтальных зон (фиг. 72) $\varphi_x = \varphi_p = \varphi_q = \varphi_v$. Поэтому здесь требуется вычисление лишь полярного расстояния ρ_x . Для упрощения формулы отсчитываем углы ρ от грани Q (01). Для этого из всех углов ρ вычитаем ρ_q :

$$\rho_q' = \rho_q - \rho_q = 0^\circ, \quad \rho_p' = \rho_p - \rho_q, \quad \rho_v' = \rho_v - \rho_q \quad \text{ii} \quad \rho_x' = \rho_x - \rho_q.$$

Формула (6) (стр. 167) принимает следующий вид:

$$\frac{m_x}{m_v}:\frac{n_x}{n_v} = \frac{\sin \rho_{x'}}{\sin (\rho_p' - \rho_{x'})}:\frac{\sin \rho_{v'}}{\sin (\rho_p' - \rho_{v'})}$$

Из этой формулы, так же как для $\varphi_{x'}$ (стр. 170), найдем формулу, аналогичную формуле (2):

$$\operatorname{ctg} \boldsymbol{\rho}_{x}' = \frac{m_{v} n_{x}}{m_{x} n_{v}} \operatorname{ctg} \boldsymbol{\rho}_{v}' + \left(1 - \frac{m_{v} n_{x}}{m_{x} n_{v'}}\right) \operatorname{ctg} \boldsymbol{\rho}_{p}' \quad (7)$$

или формулы, аналогичные формулам (3) и (4) (стр. 170), в которых лишь углы φ' следует заменить соответствующими углами ρ' .

После того как вычислено ρ_x' , находим ρ_x , прибавив угол ρ_q :

$$\rho_x = \rho_x' + \rho_q \cdot \mathbf{i}$$

Если $\rho_p' = 90^\circ$, формула (7) получает следующий вид:

$$\operatorname{ctg} \rho_{x}' = \frac{m_{v} n_{x}}{m_{x} n_{v}} \operatorname{ctg} \rho_{v}'. \tag{8}$$

р_x'может быть определено без вычислений, по табл. III (стр. 235), совершенно так же, как это описано выше для формулы (5). (См. пример 3 на стр. 173.)

Пример 1 (фиг. 73). Гексагидрит¹.

Дано:

(111)	$\phi = -40^{\circ}56$	ρ <u>= 90</u> °00
(001)	$\dot{\varphi} = -90^{\circ}00$	$\dot{\rho} = 34^{\circ}39$
(110)	$27^{\circ}50,5$	$\rho = 66^{\circ}33$

Вычислить координаты φ_x и ρ_x грани (111).

Две грани с известными координатами — (001) и (110), а также грань (111) с искомыми координатами лежат в одной зоне. Для вычисления координат грани (111) необходимы координаты трех граней в зоне. Но кристалл моноклинной сингонии (на фиг. 73 вертикально проходит плоскость симметрии), и если мы возьмем грань (111) симметричную грани (111), то она будет лежать в той же зоне и ее координаты также будут известны.

(111) $\varphi = -(180^{\circ}00 - 40^{\circ}56) = -139^{\circ}04, \quad \rho = 90^{\circ}00.$

¹ В. В. Доливо-Добровольский, Зап. Всеросс. мин. общ., 58, № 1, 1929. Кристаллы юстировались по зоне [101], поэтому координаты не отвечают обычным.

Обозначим грань (110) через P с зональным символом (10), грань ($1\overline{1}\overline{1}$) — через Q(01), грань (001) — через $V(m_v n_v)$ и грань (111) — через $X(m_x n_x)$. (Буквенные обозначения лишь временные, для удобства пользования формулами предыдущего параграфа.)

Находим начальные символы $(m_v n_v)$ и $(m_x n_x)$. Индексы (001) получаются простым сложением индексов (110) и ($\overline{111}$); следовательно, грань V — единичная относительно P и Q, т. е. ее зональный символ (11). Вычисляем по формуле (2b) (стр. 42) зональные индексы грани X.

$$m_{x}: n_{x} = \begin{vmatrix} \bar{1}\bar{1} \\ 11 \end{vmatrix} : \begin{vmatrix} 11 \\ 11 \end{vmatrix} = (-1+1): (1-1) = 0: 0$$
(неопределенность)
$$m_{x}: n_{x} = \begin{vmatrix} \bar{1}\bar{1} \\ 11 \end{vmatrix} : \begin{vmatrix} 11 \\ 10 \end{vmatrix} = (-1-1): (0-1) = -2: -1 = 2: 1.$$

Итак, зональный символ X (111) будет (21). Впрочем, легко сообразить "в уме", что индексы (111) получаются суммированием индексов (110), умноженных на 2, с индексами ($\overline{111}$), умноженных на 1, т. е.

$$(111) = 2 \cdot (110) + 1 \cdot (111).$$

Для вычислення φ_x пользуемся формулой (2) или формулой (4) (стр. 170). Но в этих формулах все углы φ отсчитаны от меридиана с гранью Q. Следовательно, необходимо от всех данных выше углов φ отнять $\varphi_q = -139^{\circ}04$ — иначе говоря, ко всем углам φ прибавить 139°04. Получим:

Подставляя в формулу (2) зональные индексы и данные углы, или в формулу (4b) или (4c) обычные индексы и углы [формулой (4a) иельзя пользоваться, так как получается неопределенное решение], получаем:

$$\operatorname{ctg} \varphi_{x}' = \frac{1}{2} \operatorname{ctg} 49^{\circ}04 + \frac{1}{2} \operatorname{ctg} 166^{\circ}54, 5 = \frac{1}{2} \operatorname{ctg} 49^{\circ}04 - \frac{1}{2} \operatorname{ctg} 13^{\circ}05, 5.$$

По таблице натуральных котангенсов (табл. II) находим:

$$\begin{array}{c} -\operatorname{ctg} 49^\circ 04 = 0,867250\\ -\operatorname{ctg} 13^\circ 05,5 = 4,300075\\ \hline \\ -\operatorname{ctg} \varphi_x{'} = -3,432825:2 = -1,716412\\ \varphi_x{'} = -30^\circ 13,5, \ или \ \varphi_x{'} = 180^\circ - 30^\circ 13,5 = 149^\circ 46,5. \end{array}$$

По положению проекции грани на стереограмме (фиг. 73) видно, что правильно второе решение.

Так как мы прибавили 139°04 ко всем углам φ , то, чтобы найти окончательное φ_x , необходимо отнять от полученной величины тот же угол.

$$\varphi_x = 149^{\circ}46, 5 - 139^{\circ}04 = 10^{\circ}42, 5.1$$

 ρ_x вычисляем по формуле (6а) (стр. 170). Так как $\rho_q = 90^\circ$, формула упрощается. Получаем:

$$\operatorname{ctg} \rho_{x} = \frac{\operatorname{ctg} 66^{\circ}33 \sin 149^{\circ}46,5}{\sin 166^{\circ}54,5} = \frac{\operatorname{ctg} 66^{\circ}33 \sin 30^{\circ}13,5}{\sin 13^{\circ}05,5} + \frac{\operatorname{lg} \operatorname{ctg} 66^{\circ}33 = \overline{1},63726}{\operatorname{lg} \sin 30^{\circ}13,5 = \overline{1},70191} - \frac{\overline{1},33917}{\operatorname{lg} \sin 13^{\circ}05,5 = \overline{1},35508} \\ \operatorname{lg} \operatorname{ctg} \rho_{x} = \overline{\overline{1},98409} - \frac{\rho_{x} = 46^{\circ}03.}{\operatorname{lg} \operatorname{ctg} \rho_{x} = 46^{\circ}03.}$$

¹ У автора опечатка: 10°43,5

Пример 2.

Даны: долготы $\varphi_q = 0^\circ$ грани Q (021), $\varphi_p = 90^\circ$ грани P (201) и $\varphi_v = 47^\circ 08$ грани V (111).

Определить φ_x грани X (132).

Припишем грани Q (021) зональный символ (01) и грани P (201) — зональный символ (10). Зональный символ грани V (111) будет (11) и грани X (132) — (13), так как по стр. 39 имеем:

$$1 \cdot (201) + 1 \cdot (021) = (222) = (111);$$

$$1 \cdot (201) + 3 \cdot (021) = (264) = (132).$$

По формуле (5) имеем:

$$\operatorname{ctg} \varphi_x = \frac{1 \cdot 3}{1 \cdot 1} \operatorname{ctg} 47^{\circ}08 = 3 \operatorname{ctg} 47^{\circ}08.$$

На стр. 237 табл. III в столбце под цифрой 3 находим 47°08 и в той же строке в столбце под цифрой 1 находим искомый угол

$$\varphi_x = 19^{\circ}45.$$

Пример 3.

Даны: полярные расстояния граней горизонтальной зоны: $\rho_q = 0^\circ$ грани Q(001), $\rho_p = 90^\circ$ грани P(210), $\rho_v = 56^\circ 08,5$ грани V(423).

Определить р. грани Х (421).

Припишем грани Q (001) зональный символ (01) и грани P (210) — зональный символ (10). Зональный символ грани V (423) будет (23) и грани X (421) — (21), так как по стр. 39 имеем:

$$2 \cdot (210) + 3 \cdot (001) = (423);$$

$$2 \cdot (210) + 1 \cdot (001) = (421).$$

По формуле (8) получим:

$$\operatorname{ctg} \rho_{x} = \frac{2 \cdot 1}{2 \cdot 3} \operatorname{ctg}_{5} 56^{\circ} 08, 5 = \frac{1}{3} \operatorname{ctg} 56^{\circ} 08, 5.$$

На стр. 245 табл. III в столбцах под цифрой 1 и в той же строке под цифрой 3 найдем интерполяцией, что углу 56°08,5 отвечает

§ 4, Координаты основных граней (100), (010) и (001)

При отсутствии в кристаллах основных и единичной граней или если они плохо замеряются, прежде всего, как указывалось выше (стр. 131), вычисляются точные координаты этих граней. Часто эти вычисления проще всего произвести при помощи зональных формул, если в соответствующих зонах имеются три грани с точно замеренными или уже вычисленными координатами. В предыдущем параграфе дан пример вычисления координат единичной грани (111). Ниже приводятся примеры вычисления координат основных граней для того случая, когда из трех граней данной зоны, имеющих точные координаты, ни одна не является основной. В этом случае вычисления производятся одинаково, проходит ли зона через две основные грани (обе искомые) или только через одну (одна искомая). Одной из трех граней с точными координатами приписываем зональный символ (10), другой — (01). Определяем по формуле (2а) или (2b) (стр. 41—42) зональные символы третьей грани с точными координатами — $(m_v n_v)$ и искомой основной грани $(m_x n_x)$. Затем вычислями с точные через (отр. 171). В тех случаях, когда мы имеем дело с горизон-

тальными зонами (проходящими через центр проекций), пользуемся формулой (7). (стр. 171).

Пример 1 (фиг. 74). Родонит (Гольдшмидт, Winkelfabellen, стр. 287). Дано:

(120)	$\varphi = 25^{\circ}16,5$	ρ <u>= 90°00</u>	Q (01)
(210)	$\varphi = 120^{\circ}08,5$	$\rho = 90^{\circ}00$	$V(m_v n_v)$
(110)	$\varphi = 138^{\circ}15$	$\rho = 90^{\circ}00$	P(10)

Требуется вычислить: 🚓 для грани X (100) и 👳 для грани Y (010) (р для всех граней данной зоны при данной юстировке 90°).

Приписываем любой из трех данных граней, например грани (120), зональный символ (01), другой грани, например (110), — зональный символ (10) и третьей грани (210) — зональный символ ($m_n n_n$). (Буквенные обозначения P, Q, V и X соответствуют таковым в формулах и вводятся для удобства пользования формулами.) Вычисляем зональные индексы (*m_mn_m*)

В последнем случае лучше взять обратные знаки у зональных индексов, а именно (11), так как: $(010) = -1 \cdot (1\overline{10}) + 1 \cdot (120)$

Отсчитываем все углы со от грани Q (01). Для этого отнимаем от них угол 25°16,5. Получаем:

(120)	Q (01)	$\varphi_{g}' = 0^{\circ}00$
(210)	V (51)	$\varphi_v' = 94^{\circ}52$
(110)	P (10)	$\varphi_{p}' = 112^{\circ}58,5$
(100)	X(21)	φ_γ' ?
(010)	Y (11)	တ္ (?

Полученные зональные индексы и углы подставляем в формулу (2) (стр. 170) или в формулу (3a) подставляем обычные индексы и углы [формулы (3b) и (3c) дают неопределенные решения].

В том и другом случае получим:

$$\begin{aligned} \operatorname{ctg} \varphi_{x}' &= \frac{5 \operatorname{ctg} 94^{\circ}52 - 3 \operatorname{ctg} 112^{\circ}58,5}{2} = \frac{-5 \operatorname{tg} 4^{\circ}52 + 3 \operatorname{tg} 22^{\circ}58,5}{2} \\ &- 5 \operatorname{tg} 4^{\circ}52 = -0,08514 \cdot 5 = -0,42570 \\ &+ 3 \operatorname{tg} 22^{\circ}58,5 = 0,42396 \cdot 3 = 1,27188 \\ &\operatorname{ctg} \varphi_{x}' = -0,84618 : 2 = 0,42309 \\ &\underline{\varphi_{x}' = 67^{\circ}04} \\ &\operatorname{ctg} \varphi_{y}' = -5 \operatorname{ctg} 94^{\circ}52 + 6 \operatorname{ctg} 112^{\circ}58,5 = 5 \operatorname{tg} 4^{\circ}52 - 6 \operatorname{tg} 22^{\circ}58,5 \\ &- 5 \operatorname{tg} 4^{\circ}52 = 0,42570 \\ &- 6 \operatorname{tg} 22^{\circ}58,5 = -2,54376 \\ &\operatorname{ctg} \varphi_{y}' = -2,11806 \\ &\underline{\varphi_{y}' = -25^{\circ}16,5.} \end{aligned}$$

Чтобы получить углы φ , надо ко всем углам φ' прибавить 25°16,5 ($\varphi_{120} = 25^{\circ}16,5$):

$$\varphi_x = \varphi_{100} = 67^{\circ}04 + 25^{\circ}16, 5 = 92^{\circ}20, 5,$$

 $\varphi_y = \varphi_{010} = -25^{\circ}16, 5 + 25^{\circ}16, 5 = 0^{\circ}00.$

Пример 2 (фиг. 75). Диопсид (Гольдшмидт, Winkeltabellen, стр. 283).

Дано:

(110) $\varphi = 43^{\circ}33$ $\rho = 90^{\circ}00$

(112) $\rho = 62^{\circ}25$ $\rho = 32^{\circ}28,5$

$$(\bar{1}11) \quad \varphi = -25^{\circ}07,5 \quad \rho = 33^{\circ}04.$$

Вычислить: φ_x, ρ_x для грани X (001) и φ_y, ρ_y для грани Y (111).

Данная грань (111) не лежит в зоне остальных граней. Но так как кристалл моноклинной сингонии, мы можем взять симметричную ей грань (111), которая находится в данной зоне. Ее координаты будут:

$$\varphi_{\bar{1}\bar{1}1} = -180^{\circ} + 25^{\circ}07, 5 = -154^{\circ}52, 5$$
 II $\rho_{\bar{1}\bar{1}1} = 33^{\circ}04$

Приписываем грани (11) зональный символ (10) и грани (110) — зональный символ (01). Определяем по формуле (2b) (стр. 42) зональные символы $(m_v n_v)$ третьей данной грани (112) и искомых граней (001) — $(m_x n_x)$ и (111) — $(m_v n_v)$:

$$m_v: n_v = \begin{vmatrix} 11\\11 \end{vmatrix} : \begin{vmatrix} 11\\11 \end{vmatrix} = 0:0$$
 (неопределенность)
 $m_v: n_v = \begin{vmatrix} 10\\12 \end{vmatrix} : \begin{vmatrix} 12\\11 \end{vmatrix} = 2:3$

Зональный символ грани V (112) будет (23)

$$m_{x}: n_{x} = \begin{vmatrix} 11\\00 \end{vmatrix} : \begin{vmatrix} 00\\1\overline{11} \end{vmatrix} = 0:0$$
 (неопределенность)
$$m_{x}: n_{x} = \begin{vmatrix} 10\\01 \end{vmatrix} : \begin{vmatrix} 01\\1\overline{11} \end{vmatrix} = 1:1$$

Зональный символ грани Х (001) будет (11)

$$m_{y}: n_{y} = \begin{vmatrix} 11\\11 \end{vmatrix} : \begin{vmatrix} 11\\11 \end{vmatrix} = 0:0$$
 (неопределенность)
$$m_{y}: n_{y} = \begin{vmatrix} 10\\11 \end{vmatrix} : \begin{vmatrix} 11\\11 \end{vmatrix} = 1:2$$

Зональный символ грани У (111) будет (12).

Вычитаем от всех углов φ угол $\varphi_{110} = 43^{\circ}33$. Окончательно для подстановки: в формулу (2) (стр. 170) и в формулу (6а) (стр. 170), получаем:

Пользуясь таблицей натуральных котангенсов (табл. II), получим:

$$\varphi_{r}' = \varphi_{001}' = 46^{\circ}27.$$

Прибавив сюда вычтенный угол 43°33, имеем:

 $\varphi_x = \varphi_{001} = 90^{\circ}00.$

Пример 3 (фиг. 76). Диопсид (Гольдшмидт, Winkeltabellen, сгр. 283). Дано: (100) $\rho = 90^{\circ}00$

(101)
$$\rho = 40^{\circ}10$$

($\overline{3}01$) $\rho = -54^{\circ}24,5$.

Вычислить р_х для грани (001).

Грань (100) обозначим через Q(01), грань ($\overline{301}$) — через P(10), грань (101) — через $V(m_v, n_v)$ и искомую грань (001) — через $X(m_x n_x)$.

Зональные индексы $(m_v n_v)$, грани V (101) и $(m_x n_x)$ грани X (001) легко определяются в "уме":

$$(101) = 1 \cdot (\overline{3}01) + 4 (100),$$

 $(001) = 1 \cdot (\overline{3}01) + 3 (100).$

Таким образом, зональные индексы V - (14) и X - (13). Отсчитываем углы р от грани Q(100). Для этого вычитаем все углы из 90° :

(100)
$$Q(01)$$
 $\rho_q' = 0^{\circ}00$
($\overline{3}01$) $P(10)$ $\rho_p' = 144^{\circ}24,5$
(101) $V(14)$ $\rho_{v'} = 49^{\circ}50$
(001) $X(13)$ ρ_x ?

Подставляем в формулу (7) зональные индексы и углы:

$$\operatorname{ctg} \rho_{x}' = \frac{3 \operatorname{ctg} \rho_{v}' + \operatorname{ctg} \rho_{p}'}{4} = \frac{3 \operatorname{ctg} 49^{\circ}50 - \operatorname{ctg} 35^{\circ}35,5}{4}$$
$$- \frac{3 \operatorname{ctg} 49^{\circ}50}{\operatorname{ctg} 35^{\circ}35,5} = \frac{2,532210}{1,397215}$$
$$\operatorname{ctg} \rho_{x}' = 1,134995 : 4 = 0,283749$$
$$\rho_{x}' = 74^{\circ}09; \quad \rho_{x} = \rho_{001} = 90^{\circ}00 - 74^{\circ}09 = \underline{15^{\circ}51}.$$

ГЛАВА ДЕВЯТАЯ

ВЫЧИСЛЕНИЕ ГЕОМЕТРИЧЕСКИХ КОНСТАНТ КРИСТАЛЛОВ

§ 1. Вычисление угла между двумя направлениями по координатам этих направлений

Пусть даны сферические координаты φ_m , ρ_m и φ_n , ρ_n каких-либо двух направлений М и N (фиг. 57, стр. 76). Этими направлениями могут являться перпендикуляры к граням кристалла, ребра кристалла и проч. Требуется вычислить угол δ между этими направлениями.

.

Из сферического треугольника МОЛ, в котором

имеем:

$$OM = \rho_m, ON = \rho_n, MON = \varphi_n - \varphi_m \times MN = \delta,$$

$$\cos \delta = \cos \rho_m \cos \rho_n + \sin \rho_m \sin \rho_n \cos (\varphi_n - \varphi_m).$$
(1)

Этой формулой удобно пользоваться для различных частных случаев, когда она упрощается. Например, при $\rho_m = 90^\circ$ первый член правой части равенства обра-щается в нуль; при ($\varphi_n - \varphi_m$) = 90° — второй член равен нулю и пр. В других случаях удобнее пользоваться формулой, приведенной к логарифмическому виду. В правой части равенства (1) вынесем за скобки $\cos \rho_m \sin \rho_n$; получаем:

 $\cos \delta = \cos \rho_m \sin \rho_n \left[\operatorname{ctg} \rho_n + \operatorname{tg} \rho_m \cos \left(\varphi_n - \varphi_m \right) \right].$

Вводим вспомогательный угол:

$$\operatorname{tg} \theta_1 = \operatorname{tg} \rho_m \cos \left(\varphi_n - \varphi_m \right). \tag{2a}$$

После преобразования получим:

$$\cos \delta = \frac{\cos \rho_m \cos (\rho_n - \theta_1)}{\cos \theta_1}.$$
 (3a)

Или выносим за скобки sin pm cos pn:

$$\cos \delta = \sin \rho_m \cos \rho_n [\operatorname{ctg} \rho_m + \operatorname{tg} \rho_n \cos (\varphi_n - \varphi_m)];$$

$$\operatorname{tg} \theta_2 = \operatorname{tg} \rho_n \cos (\varphi_n - \varphi_m); \qquad (2b)$$

$$\cos \delta = \frac{\cos \rho_n \cos (\rho_m - \theta_2)}{\cos \theta_2}.$$
 (3b)

Пример. Дано: $\phi_m = -26^{\circ}34$ и $\rho_m = 65^{\circ}54, 5 - для$ грани М,

$$\varphi_n = 45^{\circ}00$$
 и $\rho_n = 35^{\circ}16$ — для грани N.

Вычислить угол δ между этими гранями. φ_m, р_m и φ_n, р_n — координаты для перпендикуляров к граням М и N, а следовательно δ, точно выражаясь, - угол между перпендикулярами к этим граням. По формуле (2а) имеем:

$$tg \theta_1 = tg 65^{\circ}54, 5 \cos 71^{\circ}34$$

$$+ \frac{\lg \lg \ 65^{\circ}54, 5 = 0,34955}{\lg \cos 71^{\circ}34 = \overline{1,49996}} \\ \lg \lg \theta_1 = \overline{1,84951} \quad \theta_1 = 35^{\circ}16.$$

12 Аншелес - 706

. '
Подставляем в формулу (За):

$$\cos \delta = \frac{\cos 65^{\circ}54, 5 \cdot \cos 0^{\circ}}{\cos 35^{\circ}16}.$$

-
$$\lg \cos 65^{\circ}54, 5 = \overline{1}, 61087$$

$$\lg \cos 35^{\circ}16 = \overline{1}, 91194$$

$$\lg \cos \delta = \overline{1}, 69893 \qquad \delta = 60^{\circ}00 .$$

Предлагается учащемуся проверить правильность решения по сетке Вульфа.

§ 2. Общие замечания и обозначения к вычислению геометрических констант

Элементами, или геометрическими константами кристалла, как известно из общего курса кристаллографии, называются углы между кристаллографическими осями — α , β и γ и отношение единичных отрезков на кристаллографических осях: $a_0: b_0: c_0$ (фиг. 77), т. е. отношение тех отрезков, которые отсекает на кри-

отношение тех отрезков, которые отсекает на кристаллографических осях единичная грань (111). Принято обозначать через α угол между второй [010] и третьей [001] кристаллографическими осями, через β — угол между первой [100] и третьей [001] кристаллографическими осями и, наконец, через γ — угол между первой [100] и второй [010] кристаллографическими осями.

Единичный отрезок по второй кристаллографической оси принимают обычно за единицу, т. е. вычисляют:

$$a_0: b_0: c_0 = \frac{a_0}{b_0}: 1: \frac{c_0}{b_0}.$$

Если принять $\frac{a_0}{b_0} = a$ и $\frac{c_0}{b_0} = c$, получим

$$a_0: b_0: c_0 = a: 1: c$$
.

Таким образом, в кристаллах триклинной сингонии вычисляются 5 геометрических констант: α , β , γ , α и c. В других сингониях количество констант соответственно уменьшается.

В § 4 и 5 выведены формулы вычисления геометрических констант для самого общего случая, а именно для кристаллов триклинной сингонии в произвольной ориентировке. Геометрические константы выражены здесь через сферические координаты кристаллографических осей, которые в свою очередь вычисляются по формулам § 3.

В § 6—14 данной главы выведены формулы вычисления геометрических констант кристаллов каждой сингонии в отдельности, при юстировках по зоне и по грани. Во всех случаях исходными величинами при вычислении геометрических констант являются сферические координаты основных и единичной граней, т. е. граней (100), (010), (001) и (111). Сферические координаты этих последних либо берутся непосредственно из результатов измерения кристаллов, либо вычисляются, как указано в гл. VII и в § 4 гл. VIII.

Во избежание ошибок вычислению углов α, β и γ должно предшествовать графическое определение этих углов при помощи сетки Вульфа.

Кроме углов α, β и γ и отношения α:1:с, значения которых указаны выше во всех формулах данной главы приняты следующие обозначения:

φ _n ,	Pp	координаты	грани	Р	(100)
$\dot{\varphi}_a = 0,$	Pa	7	7	Q	(010)
φ,	Pr	л	n	R	(010)
φ _μ ,	Pu	л	n	U	(111)

Φ(100)	P[100]	координаты	1-й	оси
φ[010],	P[010]	л	2-й	оси
φ[001],	P[001]	n	З-й	оси

Углы φ всюду отсчитываются от меридиана с гранью Q(010).

§ 3. Координаты кристаллографических осей, выраженные через координаты основных граней

Формулы данного параграфа для вычисления координат кристаллографических осей являются наиболее общими. Они относятся к кристаллам триклинной сингонии при произвольной их ориентировке. Для кристаллов, юстированных при измерении по зонам двух основных граней или по одной из основных граней, формулы упрощаются. Эти формулы приведены в § 6—14.

Для определения координат $\varphi_{[100]}$ и $\rho_{[100]}$ пользуемся формулами (1), (2) и (3) § 8 (стр. 76).

Подставив в них: $\varphi_q = 0$ и ρ_q вместо φ_m и ρ_m , φ_r и ρ_r – вместо φ_n и ρ_n , $\varphi_{[100]}$ – вместо φ_p и ρ_p , получаем:

$$\operatorname{tg} \varphi_{[100]} = \frac{\operatorname{tg} \rho_q}{\operatorname{tg} \rho_r \sin \varphi_r} - \operatorname{ctg} \varphi_r. \tag{1a}$$

Для приведения к логарифмическому виду принимаем временно за нулевой меридиан

$$\frac{1}{2}(\varphi_q + \varphi_r) = \frac{1}{2}\varphi_r.$$

Находим:

или:

$$\begin{aligned} \operatorname{tg} \varphi_{[100]} &= \operatorname{ctg} \frac{1}{2} \varphi_r \frac{\sin\left(\rho_q - \rho_r\right)}{\sin\left(\rho_q + \rho_r\right)} \\ \varphi_{[100]} &= \varphi_{[100]} + \frac{1}{2} \varphi_r \end{aligned}$$
(1b)

$$\operatorname{ctg} \rho_{[100]} = -\operatorname{tg} \rho_r \sin \left(\varphi_{[100]} - \varphi_r \right) \tag{2a}$$

$$\operatorname{ctg} \rho_{[100]} = -\operatorname{tg} \rho_q \sin \varphi_{[100]}.$$
 (2b)

Подобным же образом, подставив соответствующие координаты в указанные выше формулы, найдем:

$$tg \varphi_{[010]} = -\frac{tg \rho_{\rho} \cos \varphi_{\rho} - tg \rho_{r} \cos \varphi_{r}}{tg \rho_{\rho} \sin \varphi_{\rho} - tg \rho_{r} \sin \varphi_{r}},$$
(3a)

или в логарифмическом виде:

$$tg \varphi_{[010]} = ctg \frac{1}{2} (\varphi_r - \varphi_p) \frac{\sin(\rho_p - \rho_r)}{\sin(\rho_p + \rho_r)}$$

$$\varphi_{[010]} = \varphi'_{(010)} + \frac{1}{2} (\varphi_p + \varphi_r)$$

$$(3b)$$

$$\varphi_{[010]} = \varphi'_{[010]} + \frac{1}{2} (\varphi_p + \varphi_r)$$
(42)

$$\operatorname{ctg} \operatorname{p}_{[010]} = -\operatorname{tg} \operatorname{p}_{\rho} \cos \left(\operatorname{\varphi}_{[010]} - \operatorname{\varphi}_{\rho} \right), \tag{4a}$$

$$\operatorname{ctg} \rho_{[010]} = -\operatorname{tg} \rho_r \cos \left(\varphi_{[010]} - \varphi_r \right). \tag{4b}$$

Таким же путем найдем:

$$\operatorname{tg}\varphi_{[001]} = \frac{\operatorname{tg}\rho_q}{\operatorname{tg}\rho_p\sin\varphi_p} - \operatorname{ctg}\varphi_p, \tag{5a}$$

или в логарифмическом виде:

$$tg \varphi_{[001]}' = ctg \frac{1}{2} \varphi_p \frac{\sin(\rho_q - \rho)}{\sin(\rho_q + \rho_p)}$$

$$\varphi_{[001]} = \varphi_{[001]}' + \frac{1}{2} \varphi_p$$

$$(5b)$$

$$\operatorname{ctg} \operatorname{p}_{[001]} = -\operatorname{tg} \operatorname{p}_{\rho} \cos\left(\operatorname{\varphi}_{[001]} - \operatorname{\varphi}_{\rho}\right), \tag{6a}$$

$$\operatorname{ctg} \boldsymbol{\rho}_{[001]} = -\operatorname{tg} \boldsymbol{\rho}_{\sigma} \cos \boldsymbol{\varphi}_{[001]}. \tag{6b}$$

или:

§ 4. Углы между кристаллографическими осями. Общий случай

Вычисление угла между двумя направлениями по их сферическим координатам делается по формулам (1), (2) и (3) (стр. 177). α — угол между осями [010] и [001]. Поэтому формула (1) перепишется так:

$$\cos \alpha = \cos \rho_{[010]} \cos \rho_{[001]} + \sin \rho_{[010]} \sin \rho_{[001]} \cos (\varphi_{[001]} - \varphi_{[010]}).$$
(1a)

Ту же формулу в логарифическом виде получаем из формулы (3a) или (3b) (стр. 177). Приняв

$$tg \theta_1 = tg \rho_{[010]} \cos (\varphi_{[001]} - \varphi_{[010]}),$$

получим:

$$\cos \alpha = \frac{\cos \rho_{[010]} \cos (\rho_{[001]} - \theta_1)}{\cos \theta_1}.$$
 (1b)

Или, приняв

$$tg \theta_1' = tg \rho_{[010]} \cos (\varphi_{[010]} - \varphi_{[010]}),$$

получим:

$$\cos \alpha = \frac{\cos \rho_{[001]} \cos \left(\rho_{[010]} - \theta_1' \right)}{\cos \theta_1'}.$$
 (1c)

$$\cos \beta = \cos \rho_{[100]} \cos \rho_{[001]} + \sin \rho_{[100]} \sin \rho_{[001]} \cos (\varphi_{01]} - \varphi_{[100]}); \qquad (2a)$$
$$tg \theta_{2} = tg \rho_{[100]} \cos (\varphi_{[001]} - \varphi_{[100]}); \\\cos \beta = \frac{\cos \rho_{[100]} \cos (\rho_{[001]} - \theta_{2})}{\cos \theta_{2}}; \qquad (2b)$$

или

ŕ.

$$tg \theta_{2}' = tg \rho_{[001]} \cos (\varphi_{[001]} - \varphi_{[100]});$$

$$\cos \beta = \frac{\cos \rho_{[001]} \cos (\rho_{[100]} - \theta_{2}')}{\cos \theta_{2}'}.$$
(2c)

ү-угол между осями [100] и [010]. Из тех же формул получаем:

$$\cos \gamma = \cos \rho_{[100]} \cos \rho_{[010]} + \sin \rho_{[100]} \sin \rho_{[010]} \cos (\varphi_{[100]} - \varphi_{[010]});$$
(3a)
$$tg \theta_{a} = tg \rho_{[010]} \cos (\varphi_{[100]} - \varphi_{[010]});$$

$$\cos \gamma = \frac{\cos \rho \cdot \rho_{10} \cos \left(\rho_{[100]} - \theta_{3}\right)}{\cos \theta_{3}}; \qquad (3b)$$

$$tg \theta_{3}' = tg \rho_{[100]} \cos (\varphi_{[100]} - \varphi_{[010]});$$

$$\cos \gamma = \frac{\cos \rho_{[100]} \cos (\rho_{[010]} - \theta_{3}')}{\cos \theta_{3}'}.$$
(3c)

§ 5. Отношение единичных отрезков на кристаллографических осях. Обший случай

Пусть ОА, ОВ и ОС (фиг. 78) — 1-я [100], 2-я [010] и 3-я [001] кристаллографические оси; ABC — единичная грань (111); a₀, b₀ н c₀ — единичные отрезки на кристаллографических осях; OU — перпендикуляр к единичной грани; U точка пересечения перпендикуляра к единичной грани с самой гранью (111). Пусть $\angle AOU = \lambda$, $\angle BOU = \mu$ и $\angle COU = \nu$. Из прямоугольных треугольников АОИ, ВОИ и СОИ находим:

$$a_0 = \frac{OU}{\cos \lambda}, \quad b_0 = \frac{OU}{\cos \mu} \, \Join \, c_0 = \frac{OU}{\cos \nu}.$$

Взяв отношение единичных отрезков, получим:

$$a_0: b_0: c_0 = \frac{1}{\cos \lambda}: \frac{1}{\cos \mu}: \frac{1}{\cos \nu}$$

Отсюда:

$$\frac{a_0}{b_0}: 1: \frac{c_0}{b_0} = a: 1: c = \frac{\cos \mu}{\cos \lambda}: 1: \frac{\cos \mu}{\cos \gamma}.$$
(1)

Углы λ , μ и ν , т. е. углы между кристаллографическими осями и перпендикуляром к единичной грани, выражаем через сферические координаты кристаллографических осей и единичной грани. Для этого пользуемся, как и в предыдущем пара-графе, формулой (1) (стр. 177):

$$\cos \lambda = \cos \rho_u \cos \rho_{[100]} + \sin \rho_u \sin \rho_{[100]} \cos (\varphi_{[100]} - \varphi_u);$$

$$\cos \mu = \cos \rho_u \cos \rho_{[010]} + \sin \rho_u \sin \rho_{[010]} \cos (\varphi_u - \varphi_{[010]});$$

$$\cos \nu = \cos \rho_u \cos \rho_{[001]} + \sin \rho_u \sin \rho_{[001]} \cos (\varphi_{[001]} - \varphi_u).$$

Подставляя в формулу (1), получаем:

$$a:1:c = \frac{\cos \rho_{u} \cos \rho_{[010]} + \sin \rho_{u} \sin \rho_{[010]} \cos (\varphi_{u} - \varphi_{[010]})}{\cos \rho_{u} \cos \rho_{[100]} + \sin \rho_{u} \sin \rho_{[100]} \cos (\varphi_{[100]} - \varphi_{u})} - :1:$$
$$:\frac{\cos \rho_{u} \cos \rho_{[010]} + \sin \rho_{u} \sin \rho_{[010]} \cos (\varphi_{u} - \varphi_{[010]})}{\cos \rho_{u} \cos \rho_{[001]} + \sin \rho_{u} \sin \rho_{[001]} \cos (\varphi_{[001]} - \varphi_{u})}.$$
(2a)

Для приведения дробей к логарифмическому виду принимаем для числителей первой и второй дробей:

$$\operatorname{tg} \theta_1 = \operatorname{tg} \rho_u \cos (\varphi_u - \varphi_{010});$$

для знаменателя первой дроби

$$\operatorname{tg} \theta_2 = \operatorname{tg} \rho_u \cos (\varphi_{[100]} - \varphi_u);$$

и для знаменателя второй дроби

$$\operatorname{tg} \theta_3 = \operatorname{tg} \rho_u \cos (\varphi_{[001]} - \varphi_u)$$

Окончательно после преобразования получаем:

$$a:1:c = \frac{\cos\theta_{2}\cos(\rho_{[010]} - \theta_{1})}{\cos\theta_{1}\cos(\rho_{[100]} - \theta_{2})}:1:\frac{\cos\theta_{3}\cos(\rho_{[010]} - \theta_{1})}{\cos\theta_{1}\cos(\rho_{[001]} - \theta_{3})}$$
(2b)

или, принимая соответственно:

$$tg \theta_1' = tg \rho_{[010]} \cos (\varphi_n - \varphi_{[010]}),$$

$$tg \theta_2' = tg \rho_{[100]} \cos (\varphi_{[100]} - \varphi_n)$$

И

$$\operatorname{tg} \theta_{3}' = \operatorname{tg} \rho_{[001]} \cos (\varphi_{[001]} - \varphi_{u}),$$

$$a:1:c = \frac{\cos \rho_{[010]} \cos \theta_{2'} \cos (\rho_{u} - \theta_{1'})}{\cos \rho_{[100]} \cos \theta_{1'} \cos (\rho_{u} - \theta_{2'})}:1:\frac{\cos \rho_{[010]} \cos \theta_{3'} \cos (\rho_{u} - \theta_{1'})}{\cos \rho_{[001]} \cos \theta_{1'} \cos (\rho_{u} - \theta_{3'})}$$
(2c)

Фиг. 78.

ГЕОМЕТРИЧЕСКИЕ КОНСТАНТЫ КРИСТАЛЛА. ЧАСТНЫЕ СЛУЧАИ

§ 6. Триклинная (агирная) сингония

Юстировка по зоне [001] $\varphi_q = 0^\circ$, $\rho_p = \rho_q = 90^\circ$ (фиг. 79)

Выведем сначала формулы, связывающие для данного частного случая сферические координаты кристаллографических осей со сферическими координатами

Фиг. 79.

основных граней. Для этого подставляем $\rho_p = \rho_q = 90^\circ$ в общие формулы § 3 (стр. 179). Получаем:

$$\varphi_{[100]} = 90^{\circ}; \quad \operatorname{ctg} \rho_{[100]} =$$

$$= -\operatorname{tg} \rho_{r} \sin \varphi_{r} = -A; ^{1} (1)$$

$$\varphi_{[010]} = \varphi_{p} - 90^{\circ};$$

$$\operatorname{ctg} \rho_{[010]} = -\operatorname{tg} \rho_r \sin \left(\varphi_p - \varphi_r \right) =$$

$$= -C, 1 \qquad (2)$$

$$\varphi_{[001]} = \frac{0}{0}; \quad \rho_{[001]} = 0^{\circ}.$$
 (3)

Подставляя полученные величины в формулы § 4, получим:

> $\alpha = \rho_{0101}$ (4a)

или, выражая в сферических координатах основных граней по формуле (2):

$$\operatorname{ctg} \alpha = -\operatorname{tg} \rho_r \sin (\varphi_p - \varphi_r) = -C$$

$$\operatorname{ctg} (180 - \alpha) = \operatorname{tg} \rho_r \sin (\varphi_p - \varphi_r) = C$$
(4b)

$$=\rho_{[100]}, \qquad (5a)$$

или:

$$\operatorname{ctg} \beta = -\operatorname{tg} \rho_r \sin \varphi_r = -A$$

$$\operatorname{ctg} (180 - \beta) = \operatorname{tg} \rho_r \sin \varphi_r = A$$
(5b)

Подставляя в формулу (За) § 4 (стр. 180) выведенные выше значения [формулы (1), (4a) и (5a)] $\varphi_{[100]} = 90^{\circ}$, $\rho_{[100]} = \beta$, $\varphi_{[010]} = \varphi_{\rho} - 90^{\circ}$ и $\rho_{[010]} = \alpha$, получаем:

β

$$\cos \gamma = \cos \alpha \cos \beta - \sin \alpha \sin \beta \cos \varphi_p. \tag{6a}$$

Для приведения к логарифмическому виду выносим за скобки соs α sin β и примем

$$tg \theta_{1} = tg \alpha \cos \varphi_{p}.$$
$$tg \gamma = \frac{\cos \alpha \cos (\beta + \theta_{1})}{\cos \theta_{1}},$$
(6b)

Получаем:

или, вынося за скобку cosβsin α и принимая

$$tg \theta_1' = tg \beta \cos \varphi_p,$$

$$tg \gamma = \frac{\cos \beta \cos (\alpha + \theta_1')}{\cos \theta_1'}.$$
 (6c)

¹ Величины А, В, С и D данного параграфа, а также D—C и B—A определены уже раньше при вычислении индексов и сферических координат граней (стр. 86). 182

Для вывода отношения единичных отрезков подставляем в формулу (2а) предыдущего параграфа (стр. 181) вместо сферических координат кристаллографических осей их значения из формул (1), (2), (3), (4а) и (5а) данного параграфа. Получаем:

$$a:1:c \doteq \frac{\cos \rho_{u} \cos \alpha + \sin \rho_{u} \sin \alpha \sin (\varphi_{p} - \varphi_{u})}{\cos \rho_{u} \cos \beta + \sin \rho_{u} \sin \beta \sin \varphi_{u}}:1:\frac{\cos \rho_{u} \cos \alpha + \sin \rho_{u} \sin \alpha \sin (\varphi_{p} - \varphi_{u})}{\cos \rho_{u}}$$

Выносим за скобки в числителях первой и второй дробей $\cos \rho_u \sin \alpha$, а в знаменателе первой дроби — $\cos \rho_u \sin \beta$:

$$a:1:c = \frac{\sin\alpha \left[\operatorname{ctg}\alpha + \operatorname{tg}\rho_{u}\sin\left(\varphi_{p} - \varphi_{u}\right)\right]}{\sin\beta \left(\operatorname{ctg}\beta + \operatorname{tg}\rho_{u}\sin\varphi_{u}\right)}:1:\sin\alpha \left[\operatorname{ctg}\alpha + \operatorname{tg}\rho_{u}\sin\left(\varphi_{p} - \varphi_{u}\right)\right].$$
(7a)

Подставляя сюда вместо $ctg \alpha$ и $ctg \beta$ их значения из формул (4b) и (5b), получим:

$$a:1:c = \frac{\sin \alpha \left[\operatorname{tg} \rho_{u} \sin \left(\varphi_{p} - \varphi_{u} \right) - \operatorname{tg} \rho_{r} \sin \left(\varphi_{p} - \varphi_{r} \right) \right]}{\sin \beta \left(\left[\operatorname{tg} \rho_{u} \sin \varphi_{u} - \operatorname{tg} \rho_{r} \sin \varphi_{r} \right] \right]}:1:$$

$$: \sin \alpha \left[\operatorname{tg} \rho_{u} \sin \left(\varphi_{p} - \varphi_{u} \right) - \operatorname{tg} \rho_{r} \sin \left(\varphi_{p} - \varphi_{r} \right) \right] =$$

$$= \frac{\sin \alpha \left[\overline{(D-C)}^{1} \right]}{\sin \beta (B-A)^{1}}:1: \sin \alpha (D-C).$$
(7b)

Пример (фиг. 61, стр. 92). Родонит (пример § 3, гл. VI, стр. 91). (Точки с кружочками на фиг. 61 нижние концы осей.)

Дано:

a (001) $\varphi_a = 80^{\circ}27$ $\rho_a = 21^{\circ}43,5$ (R) c (010) $\varphi_c = 0^{\circ}00$ $\rho_c = 90^{\circ}00$ (Q) b (100) $\varphi_b = 92^{\circ}21$ $\rho_b = 90^{\circ}00$ (P) μ (111) $\varphi_{\mu} = 48^{\circ}48$ $\rho_{\mu} = 70^{\circ}15,5$ (V)

Вычислить геометрические константы кристалла.

α.

Пользуемся формулой (4b):

$$\operatorname{ctg}(180^{\circ} - \alpha) = \operatorname{tg} \rho_a \sin(\varphi_b - \varphi_a) = \operatorname{tg} 21^{\circ}43,5 \sin 11^{\circ}54 = C.$$

Величина С уже получена при вычислении сферических координат граней (пример § 3, гл. VI, стр. 92).

$$ctg(180^{\circ}-\alpha) = 0,08216.$$

$$180^{\circ} - \alpha = 85^{\circ}18; \quad \alpha = 94^{\circ}42.$$

β

По формуле (5b) имеем:

ctg (180° — β) = tg
$$ρ_a \sin φ_a$$
 = tg 21°43 sin 80°27 = A.

¹ Эти величины вычислены при определении индексов и сферических координат граней (§ 3, гл. VI, стр. 86).

Значение А см. пример стр. 92.

ctg
$$(180^{\circ} - \beta) = 0,39293;$$

 $180^{\circ} - \beta = 68^{\circ}33;$
 $\beta = 111^{\circ}27.$

ĩ

По формуле (6а) имеем:

 $\cos\gamma = \cos\alpha\cos\beta - \sin\alpha\sin\beta\cos\varphi_b;$

 $\cos \gamma = \cos 94^{\circ}42 \cos 111^{\circ}27 - \sin 94^{\circ}42 \sin 111^{\circ}27 \cos 92^{\circ}21 =$

 $= \sin 4^{\circ}42 \sin 21^{\circ}27 + \cos 4^{\circ}42 \cos 21^{\circ}27 \sin 2^{\circ}21$

 $+ \frac{\lg \sin 4^{\circ}42 = \bar{2},91349}{\lg \sin 21^{\circ}27 = \bar{1},56311} + \lg \cos 4^{\circ}42 = \bar{1},99854 + \lg \cos 21^{\circ}27 = \bar{1},96883 \\ \lg \sin 2^{\circ}21 = \bar{2},61282 \\ \bar{2},47660 + \frac{\lg \sin 2^{\circ}21 = \bar{2},61282}{\bar{2},58019} \\ + \frac{0,02996}{0,03804} \\ \cos \gamma = 0,06800 \\ \lg \cos \gamma = \lg 0,06800 = \bar{2},83251 \\ \gamma = 86^{\circ}06.$

a:1:c

По формуле (7) нмеем:

$$a:1:c = \frac{\sin 94^{\circ}42 (\operatorname{tg} 70^{\circ}15,5 \sin 43^{\circ}33 - \operatorname{tg} 21^{\circ}43,5 \sin 11^{\circ}54)}{\sin 111^{\circ}27 (\operatorname{tg} 70^{\circ}15,5 \sin 48^{\circ}48 - \operatorname{tg} 21^{\circ}43,5 \sin 80^{\circ}27)}:1:$$

 $: \sin 94^{\circ}42 (tg 70^{\circ}15,5 \sin 43^{\circ}33 - tg 21^{\circ}43,5 \sin 11^{\circ}54);$

$$a:1:c = \frac{\cos 4^{\circ}42 (D - C)}{\cos 21^{\circ}27 (B - A)}:1:\cos 4^{\circ}42 (D - C).$$

Величины (D — C) и (B — A) уже получены при вычислении сферически**х** координат граней (стр. 92).

1 70007

00774

$$D = C \equiv 1,83774; B = A \equiv 1,70367$$

$$+ \frac{\lg \cos 4^{\circ}42 = \overline{1},99854}{\lg 1,83774 = 0,26428} + \frac{\lg \cos 21^{\circ}27 = \overline{1},96883}{\lg 1,70367 = 0,23139}$$

$$\boxed{0,26282}$$

$$- \frac{0,26282}{0,20022}$$

$$\lg a = 0,06260$$

$$\underline{a = 1,1551}.$$

Величина c = cos 4°42 (D - C) равна числителю первой дроби, логарифм которой заключен выше в рамку.

$$\lg c = 0,26282; \quad c = 1,8315.$$

Получаем таким образом следующие геометрические константы кристаллов родонита:

$$\frac{\alpha = 94^{\circ}42; \ \beta = 111^{\circ}27; \ \gamma = 86^{\circ}06;}{\alpha : 1 : c = 1,1551 : 1 : 1,8315}.$$

§ 7. Триклинная (агирная) сингония Юстировка по грани (001) р_r = 0

Подставляя в формулы § 3 (стр. 179) р_r = 0°, получаем:

$$\varphi_{[100]} = 90^\circ; \quad \rho_{[100]} = 90^\circ; \quad (1)$$

$$\varphi_{[010]} = \varphi_p - 90^\circ; \quad \rho_{[010]} = 90^\circ;$$
 (2)

$$tg \varphi_{[001]} = \frac{tg \rho_q}{tg \rho_p \sin \varphi_p} - \underline{ctg} \varphi_p$$

$$ctg \rho_{[001]} = -\frac{\cos (\varphi_{[001]} - \varphi_p)}{ctg \rho_p} = -\frac{\cos \varphi_{[001]}}{ctg \rho_q}$$

$$(3)$$

Углы между кристаллографическими осями найдем, подставляя полученные выше значения их сферических координат в формулы (1а), (2а) и (3а) § 4 (стр. 180).

$$\cos \alpha = \sin \rho_{[001]} \sin \left(\varphi_p - \varphi_{[001]}\right); \tag{4}$$

$$\cos\beta = \sin\rho_{[001]}\sin\varphi_{[001]}; \tag{5}$$

$$\gamma = 180 - \varphi_p. \tag{6}$$

Из формулы (2a) § 5 (стр. 181) получим:

$$a:1:c = \frac{\sin\left(\varphi_{p} - \varphi_{u}\right)}{\sin\varphi_{u}}:1:\frac{\sin\left(\varphi_{p} - \varphi_{u}\right)}{\sin\rho_{[001]}\left[\operatorname{ctg}\rho_{u}\operatorname{ctg}\rho_{[001]} + \cos\left(\varphi_{[001]} - \varphi_{u}\right)\right]}.$$
(7)

§ 8. Моноклинная (моногирная) сингония

Юстировка по зоне [001]; $\varphi_p = \varphi_r = 90^\circ$

Подставляя в формулы (1), (2) и (3) § 6 (стр. 182) указанное значение φ_p и φ_r , получим:

$$\varphi_{[100]} = 90^{\circ} \quad \rho_{[100]} = \rho_r + 90^{\circ};$$
 (1)

$$\varphi_{[010]} = 0^{\circ} \quad \rho_{[010]} = 90^{\circ};$$
 (2)

$$\varphi_{[001]} = \frac{0}{0} \qquad \rho_{[001]} = 0^{\circ}.$$
 (3)

Подставляя то же значение φ_p и φ_r в формулы (4b), (5b) и (6a) § 6, получаем:

$$\alpha = \gamma = 90^{\circ}; \tag{4}$$

$$\beta = \rho_r + 90^\circ. \tag{5}$$

Из формулы (7) § 6 (стр. 183) получаем:

$$a:1:c = \frac{\frac{tg \rho_u \cos \varphi_u}{tg \rho_u \sin \varphi_u - tg \rho_r}}{\frac{C}{\cos \rho_r (B-A)}:1:C} :1:tg \rho_u \cos \varphi_u = \frac{\overline{C}}{1-2}$$
(6)

Если предварительно вычислялись сферические координаты граней данного кристалла, то величины (В-А) и С и их логарифмы в большинстве случаев уже известны. Они непосредственно подставляются в данную формулу.

Пример (фиг. 63, стр. 104). Диопсид (ср. пример § 5, гл. VI). Лано:

 $\begin{array}{ll} c & (001) & \varphi_c = 90^{\circ}00 & \rho_c = 15^{\circ}51 \\ b & (010) & \varphi_b = 0^{\circ}00 & \rho_b = 90^{\circ}00 \\ a & (100) & \varphi_a = 90^{\circ}00 & \rho_a = 90^{\circ}00 \\ u & (111) & \varphi_u = 55^{\circ}04, 5 & \rho_u = 45^{\circ}50. \end{array}$

Вычислить элементы кристалла. Из формул (4) и (5) имеем:

По формуле (6) получаем:

$$a:1:c = \frac{\operatorname{tg} \rho_u \cos \varphi_u}{\cos \rho_c (\operatorname{tg} \rho_u \sin \varphi_u - \operatorname{tg} \rho_c)}:1:\operatorname{tg} \rho_u \cos \varphi_u = \frac{\operatorname{tg} 45^\circ 50 \cos 55^\circ 04,5^\circ}{\cos 15^\circ 51 (\operatorname{tg} 45^\circ 50 \sin 55^\circ 04,5 \operatorname{tg} 15^\circ 51)}:1:\operatorname{tg} 45^\circ 50 \cos 55^\circ 04,5 = c$$

$$=\frac{C}{\cos 15^{\circ}51 (B-A)}:1:C$$

Берем на стр. 104 уже вычисленные величины $\lg C = \overline{1},77041$ и (B-A) = $+ \frac{\lg \cos 15^{\circ}51 = 1,9\overline{8}317}{\lg (B-A) = \overline{1,74834}} - \frac{\lg C = \overline{1,77041}}{\overline{1,73151}}$ $\lg a = 0,03890$ = 0.56020:

a = 1,0937.

$$gc = 1,77041; c = 0,5894.$$

Таким образом, геометрические константы кристаллов диопсида следующие:

$$\frac{\alpha = \gamma = 90^{\circ};}{a:1:c=1,0937:1:0,5894}$$

§ 9. Моноклинная (моногирная) сингония

Юстировка по грани (001)

$$\varphi_p = 90^\circ$$
; $\varphi_q = 0^\circ$; $\rho_a = 90^\circ$; $\varphi_r = \frac{0}{0}$; $\rho_r = 0^\circ$.Подставляя данные значения в формулы (1), (2) и (3) § 7 (стр. 185),получим: $\varphi_{[100]} = 90^\circ$ $\rho_{[00]} = 90^\circ$ (1) $\varphi_{[010]} = 0^\circ$ $\rho_{[010]} = 90^\circ$ (2) $\varphi_{[001]} = 90^\circ$ $\rho_{[001]} = \rho_p - 90^\circ$.(3)

Вместо формул (4), (5) и (6) § 7 получим:

$$\alpha = \gamma = 90^{\circ} \tag{4}$$

$$\beta = 180 - \rho_{\rho}. \tag{5}$$

Подставляем значения φ_p , $\varphi_{[001]}$ и $\rho_{[031]}$ в формулу (7) § 7. После преобразования получим:

$$a:1:c = \operatorname{ctg} \varphi_{u}: 1: \frac{\cos \varphi_{u}}{-\sin \varphi_{p} (\operatorname{ctg} \rho_{p} \sin \varphi_{u} - \operatorname{ctg} \rho_{u})} = \operatorname{ctg} \varphi_{u}: 1: \frac{\cos \varphi_{u}}{\sin \varphi_{p} (B-A)}.$$
(6)

Величины ctg φ_u , cos φ_u п (B - A) определены при вычислении сферических координат граней (см. § 6, гл. VI, стр. 105).

Пример (фиг. 64, стр. 108). Днопсид (ср. пример § 6, гл. VI). Дано 00

c(001)	$\varphi_c = \frac{1}{0}$	$\rho_c = 0^\circ$
<i>b</i> (010)	$\varphi_b = 0^{\circ}$	$\rho_b = 90^{\circ}$
a (100)	$\varphi_a = 90^\circ$	$\rho_a = 74^{\circ}09$
u(111)	$\varphi_u = 42^{\circ}26$	$\rho_u = 33^{\circ}48,5$

Вычислить элементы кристалла. По формуле (4), (5) и (6) имеем:

$$a = \gamma = 90^{\circ};$$

$$\beta = 180 - \rho_a = 180^{\circ} - 74^{\circ}09 = \underline{105^{\circ}51}.$$

$$a : 1 : c = \operatorname{ctg} \varphi_u : 1 : \frac{\cos \varphi_u}{\sin \rho_a (\operatorname{ctg} \rho_u - \operatorname{ctg} \rho_a \sin \varphi_u)} =$$

$$= \operatorname{ctg} 42^{\circ}26 : 1 : \frac{\cos 42^{\circ}26}{\sin 74^{\circ}09 (\operatorname{ctg} 33^{\circ}48,5} - \operatorname{ctg} 74^{\circ}09 \sin 42^{\circ}26)}{B}.$$

Пользуемся при вычислении величинами, полученными на стр. 108.

$$a = \operatorname{ctg} \varphi_{u} = \underline{1,0938}.$$

$$- \underset{A = 0,19156}{B = 1,49331} + \underset{1g \ 1,30175}{Ig \ 1,30175} = \underbrace{1,98317}_{0,11451}$$

$$- \underset{1,30175}{Ig \ cos \ 42^{\circ}26} = \overline{1,86809}_{0,09768}$$

$$- \underset{1g \ c = \overline{1,77041}}{Ig \ c = 0,5894}.$$

§ 10. Моноклинная (моногирная) сингония Юстировка по грани (010) или по зоне [010]

Отсчеты углов φ — от меридиана с гранью R (001)

$$\begin{split} \varphi_{q} = & \frac{0}{0}; \quad \rho_{q} = 0^{\circ}; \quad \varphi_{r} = 0^{\circ}; \quad \rho_{p} = \rho_{r} = 90^{\circ} \\ \varphi_{[100]} = & 90^{\circ}, \quad \rho_{[100]} = 90^{\circ} \\ \varphi_{[010]} = & \frac{0}{0} \quad \rho_{[010]} = 0^{\circ} \\ \varphi_{001]} = & \varphi_{p} - 90^{\circ}; \quad \rho_{[001]} = 90^{\circ}. \end{split}$$

Подставляя данные величины в формулы (1а), (2а) и (3а) § 4 (стр. 180), получаем:

$$\alpha = \gamma = 90^{\circ}; \tag{1}$$

$$\beta = 180^{\circ} - \varphi_{p}. \tag{2}$$

Подставляя сферические координаты кристаллографических осей в формулу (2а) § 5 (стр. 181), получаем:

$$a:1:c = \frac{\operatorname{ctg} \rho_{u}}{\sin \varphi_{u}}:1:\frac{\operatorname{ctg} \rho_{u}}{\sin (\varphi_{p} - \varphi_{u})}.$$
(3)

Пример (фнг. 65). Диопсид (см. пример на стр. 111). Дано:

c (001)	$\varphi_c = 0^\circ$	$\rho_c = 90^\circ$
b (010)	$\varphi_b = \frac{0}{0}$	$\rho_b = 0^\circ$
a (100)	$\varphi_a = 74^{\circ}09$	$\rho_a = 90^\circ$
u (111)	$\varphi_{\mu} = 24^{\circ}19$	$\rho_{u} = 65^{\circ}45$

000

Вычислить элементы кристалла. По формулам (1), (2) и (3) получаем:

$$a = \beta = 90^{\circ};$$

$$\beta = 180^{\circ} - 74^{\circ}09 = \underline{105^{\circ}51}.$$

$$a: 1: c = \frac{\operatorname{ctg} \rho_{u}}{\sin \varphi_{u}}: 1: \frac{\operatorname{ctg} \rho_{u}}{\sin (\varphi_{a} - \varphi_{u})} = \frac{\operatorname{ctg} 65^{\circ}45}{\sin 24^{\circ}19}: 1: \frac{\operatorname{ctg} 65^{\circ}45}{\sin 49^{\circ}50}$$

$$- \underset{1g \operatorname{ctg} \rho_{u} = \overline{1},65366}{\operatorname{1g} \sin \varphi_{u} = \overline{1},61466}$$

$$1g \operatorname{ctg} \rho_{u} = \overline{1},65366$$

$$1g \operatorname{ctg} \rho_{u} = \overline{1},65366$$

$$1g \operatorname{sin} (\varphi_{a} - \varphi_{u}) = \overline{1},88319$$

$$1g c = \overline{1},77047$$

$$c = 0,5895.$$

§ 11. Ромбическая (дигирная) сингония

Юстировка по зоне [001] или по грани (001)

$$\varphi_p = 90^\circ; \ \rho_p = 90^\circ; \ \varphi_q = 0^\circ; \ \rho_a = 90^\circ; \ \varphi_r = \frac{0}{0}; \ \rho_r = 0^\circ$$

Кристаллографические оси перпендикулярны соответствующим основным граням, и координаты их те же, что и у основных граней. Формулы для вычисления геометрических констант выводятся подстановкой указанных выше сферических координат основных граней в формулы § 8 или § 9.

$$\alpha = \beta = \gamma = 90^{\circ}; \tag{1}$$

$$a:1:c = \operatorname{ctg} \varphi_{u}:1:\frac{\operatorname{cos} \varphi_{u}}{\operatorname{ctg} \varphi_{u}}.$$
(2)

Первую величину находим непосредственно по таблице натуральных котангенсов (табл. II, стр. 214), а кроме того как сtg φ_u , так и логарифмы соs φ_u и сtg ρ_u определяются при вычислениях индексов и сферических координат.

Пример. Топаз (см. пример стр. 114).

Дано:

0 (111);
$$\varphi_0 = 62^{\circ}08,5;$$
 $\rho_0 = 63^{\circ}54.$

Вычислить элементы кристалла. По формуле (1) и (2) имеем:

$$\alpha = \beta = \gamma = 90^{\circ}$$

$$a : 1 : c = \operatorname{ctg} 62^{\circ}08,5 : 1 : \frac{\cos 62^{\circ}08,5}{\operatorname{ctg} 63^{\circ}54}$$

$$- \lg \cos 62^{\circ}08,5 = \overline{1},66958$$

$$- \lg \operatorname{ctg} 63^{\circ}54 = \overline{1},69010$$

$$- \lg c = \overline{1,97948}$$

$$a:1:c=0,52854:1:0,95385.$$

§ 12. Тетрагональная (тетрагирная) сингония

Юстировка по зоне [001] или по грани (001)

$$\varphi_p = 90^\circ; \ \rho_p = 90; \ \varphi_q = 0^\circ; \ \rho_q = 90^\circ \ \varphi_r = \frac{0}{0}; \ \rho_r = 0^\circ; \ \varphi_u = 45^\circ.$$

Координаты кристаллографических осей те же, что и соответствующих основных граней.

Подставляя в формулы предыдущего параграфа

$$\operatorname{ctg} \varphi_{u} = \operatorname{ctg} 45^{\circ} = 1; \quad \operatorname{cos} \varphi_{u} = \frac{1}{\sqrt{2}}; \quad \operatorname{lg} \frac{1}{\sqrt{2}} = \overline{1},849485,$$

$$\alpha = \beta = \gamma = 90^{\circ};$$
 (1)

получим:

$$a:1:c=1:1:\frac{1}{\sqrt{2}} \operatorname{tg} \rho_{u}; \qquad 2)$$

$$\lg c = (\bar{1},849485 + \lg \operatorname{tg} \rho_{u}),$$

Единственная величина *с*, которую необходимо здесь вычислить, находится также непосредственно в прилагаемой таблице X при каждом р_и.

Пример. Циркон (Гольдшмидт, Winkeltabellen, стр. 379).

Дано: р₁₁₁ = 42°09,5.

Вычислить с.

По таблице Х на стр. 274 находим, что данному углу отвечает с = 0,6402.

В тех случаях, когда на кристалле присутствует лишь форма {011}, нет необходимости вычислять координаты грани (111). Величина с может быть вычислена непосредственно по углу ро11.

По формуле для (011) на стр. 118 имеем:

$$tg \rho_{u} = V 2 \rho_{011}$$
.

Подставляя в формулу (2), получаем:

$$c = \operatorname{tg} p_{011}. \tag{3}$$

Таким образом, величина с может быть определена здесь непосредственно по таблице натуральных тангенсов (табл. II, стр. 215).

Пример. Левенит (Гольдшмидт, Winkeltabellen, стр. 223). Дано: pol1 = 52°31.

Определить с.

По табл. II (стр. 223) находим:

$$c = 1,30401.$$

Для кристаллов кубической (полигирной) сингонии также $\alpha = \beta = \gamma = 90^{\circ}$, а так как $\rho_{\mu} = 54^{\circ}44'08''$ и tg $54^{\circ}44'08'' = \sqrt{2}$, то по формуле (2):

a:1:c=1:1:1.

§ 13. Гексагональная (гексагирная) сингония. Установка Браве

(см. § 11, гл. VI, стр. 121)

Юстировка по зоне [0001] или по грани (0001)

$\varphi_p = 60^\circ;$	$\rho_{p} = 90^{\circ};$	$\varphi_q = 0^\circ;$	$\rho_q = 90^{\circ};$	<i>ې</i> , =	$\frac{0}{0}$;	$\rho_r = 0^\circ;$	$\varphi_u = 30^\circ$.
	1-я	кристалл	ографическа	ая ось	[211	0]	
	2-я		n	л	[121]	0]	
	З-я		"	n	[112	20]	
	4-я		"	n	[000]	1].	

Подставляя указанные выше значения сферических координат основных граней в формулы (1a), (2a), (3a), (4b), (5a) и (6b) (стр. 179), найдем для кристаллографических осей (ср. фиг. 34, стр. 36):

$\varphi_{[2\bar{1}\bar{1}0]} = 90^{\circ}$	$\rho_{[2\overline{1}\overline{1}0]} = 90^{\circ}$
$\varphi_{[12\bar{1}0]} = -30^{\circ}$	$\rho_{[1210]} = 90^{\circ}$
$\varphi_{0001} = \frac{0}{0}$	ρ _[0001] == 0°

α угол между 2-й и 4-й, β — между 1-й и 4-й и γ — между 1-й и 2-й кристаллографическими осями.

Подставляя соответствующие координаты кристаллографических осей в формулы (1а), (2а) и (3а) § 4 (стр. 180), получим:

$$\alpha = \beta = 90^{\circ}, \tag{1}$$

$$\gamma = 120^{\circ}.$$
 (2)

Подставляя те же координаты, а также $\varphi_u = 30^\circ$ в формулу (2a) § 5 (стр. 181), или сферические координаты основных и единичной граней в формулу (7) § 6, получаем:

$$a:1:c=1:1:\frac{1}{2}$$
tg ρ_{a} . (3)

Вычислению подлежит только всличина $c = \frac{1}{2} \operatorname{tg} \rho_a$.

Пример. Апатит (Гольдшмидт, Winkeltabellen, стр. 50).

- Дано: $\rho_{1!\overline{2}1} = 55^{\circ}43,5.$
- Вычислить с.

По табл. II (стр. 221) находим:

$$c = \frac{1}{2}$$
tg 55'43,5 = $\frac{1}{2} \cdot 1,46732 = 0,73366.$

То же найдем по табл. XI на стр. 293.

В тех случаях, когда на кристаллах присутствуют лишь грани формы $\{01\overline{11}\}$, нет нужды в вычислении сферических координат грани $U(11\overline{21})$. Величина c может быть вычислена непосредственно по углу $\rho_{01\overline{11}}$.

¹ При вычислении величины с Гольдшмидт вместо 1-й и 2-й кристаллографических осей, т. е. вместо осей [2110] и [1210], берет 1-ю и 2-ю оси полярной системы координат, т. е. оси [1010] и [0110]. При этом $c = \frac{\sqrt{3}}{2}$ tg $\rho_{[1121]}$, и для апатита c = 1,2708.

По формуле для (0111) (стр. 123) имеем:

$$\operatorname{tg} p_{01\overline{1}\overline{1}} = \frac{\operatorname{tg} p_u}{\sqrt{3}}$$

Отсюда

tg
$$\rho_{u} = \sqrt{3}$$
tg $\rho_{01\bar{1}1}$

Подставляя в формулу (3), получаем:

$$c = \frac{\sqrt{3}}{2} \operatorname{tg} \rho_{01\overline{1}1}, \qquad (4)$$

$$\log \frac{\sqrt{3}}{2} = \overline{1},93753.$$

Пример. Халькопирит (Гольдшмидт, Winkellabellen, стр. 92). Дано: $\rho_{01\overline{10}} = 65^{\circ}36$. Вычислить с. По формуле (4) имеем: $c = \frac{\sqrt{3}}{2} tg \, 65^{\circ}36$.

$$+ \lim_{\substack{\lg tg \ 65^{\circ}36 = 0,34331\\ \lg c = 0,28084}} 1,93753.$$

Установка Федорова (см. § 12, гл. VI, стр. 126 и фиг. 35, стр. 37)

$$\begin{split} \varphi_{p} &= \frac{0}{0}; \ \rho_{p} = 0^{\circ}; \ \varphi_{q} = 0^{\circ}; \ \rho_{q} = 90^{\circ}; \ \varphi_{r} = 120^{\circ}; \ \rho_{r} = 90^{\circ}; \ \varphi_{n} = 60^{\circ}. \\ 1 \text{--} я \quad кристаллографическая ось [1000] \\ 2 \text{--} я \qquad , \qquad , \qquad [021\overline{1}] \\ 3 \text{--} я \qquad , \qquad , \qquad [0121] \\ 4 \text{--} я \qquad , \qquad , \qquad [0121] \\ 4 \text{--} я \qquad , \qquad , \qquad [0\overline{1}12] \\ & \varphi_{[1000]} = \frac{0}{0} \qquad \rho_{[1000]} = 0^{\circ} \\ & \varphi_{[01\overline{1}1]} = 30^{\circ} \qquad \rho_{[021\overline{1}]} = 90^{\circ} \\ & \varphi_{[0121]} = 90^{\circ} \qquad \rho_{[0121]} = 90^{\circ} \\ & (\varphi_{[0\overline{1}12]} = 150^{\circ} \qquad \rho_{[0\overline{1}12]} = 90^{\circ}) \end{split}$$

α — угол между 2-й и 3-й кристаллографическими осями, β — между 1-й и 3-й и γ — между 1-й н 2-й.

Подставляя соответствующие координаты кристаллографических осей в формулы (1а), (2а) и (3а) § 4 (стр. 180), получим:

$$\alpha = 60^{\circ}; \quad \beta = \gamma = 90^{\circ}. \tag{5}$$

Подставляя те же координаты, а также $\varphi_{\mu} = 60^{\circ}$ в формулу (2а) § 5 (стр. 181), получим:

$$a:1:c = \frac{\sqrt{3}}{2} \operatorname{tg} \rho_{u}:1:1$$

$$\frac{\sqrt{3}}{2} = 0,86605; \quad \operatorname{lg} \frac{\sqrt{3}}{2} = \overline{1},93753.$$
(6)

¹ У Гольдшмидта c = 3,3067, так как на основании примечания на стр. 190 имеем $c = \frac{3}{2}$ tg $\rho_{01\overline{11}}$.

Пример. Апатит. Дано: $\rho_{1110} = 40^{\circ}16,5.$ Вычислить a.По формуле (6): $a = \frac{\sqrt{3}}{2} \operatorname{tg} \rho_{1110} = \frac{\sqrt{3}}{2} \operatorname{tg} 40^{\circ}16,5$ $+ \operatorname{lg} \frac{\sqrt{3}}{2} = \overline{1},937530$ $+ \operatorname{lg} \operatorname{tg} 40^{\circ}16,5 = \overline{1},928045$ $\operatorname{lg} a = \overline{1},865575$ a = 0,7338.

§ 14. Тригональная (тригирная, ромбоэдрическая) сингония или гипосингония

Юстировка по зоне [111] или по грани (111) (ср. § 13, гл. VI, стр. 126 и фиг. 36, стр. 38)

$$\varphi_q = 0^\circ; \ \rho_p = 120^\circ; \ \varphi_r = -120^\circ; \ \varphi_u = \frac{0}{0}; \ \rho_u = 0^\circ; \ \rho_p = \rho_q = \rho_r$$

По формулам § 3, (стр. 179), найдем:

$$\begin{array}{c} \varphi_{[100]} = 120^{\circ}; \quad \varphi_{[010]} = 0^{\circ}; \quad \varphi_{[001]} = -120^{\circ} \\ \text{ctg } \rho_{[100]} = \frac{1}{2} \text{tg } \rho_{\rho}; \quad \rho_{[100]} = \rho_{[010]} = \rho_{[011]}. \end{array} \right\}$$
(1)

Из формул § 4 (стр. 180) имеем:

$$\cos \alpha = 1 - \frac{3}{2} \sin^2 \rho_{[100]}.$$

Выражаем в этой формуле sin p_[100] через ctg p_[100] и подставляем значение последнего из формулы (1). Получаем:

$$\cos\alpha = 1 - \frac{6}{4 \operatorname{tg}^2 \rho_p}$$

Выражаем теперь $\cos \alpha$ через $tg \frac{\alpha}{2}$ и $tg \rho_p$ — через $\cos \rho_p$. После преобразований окончательно получим:

$$tg\frac{\alpha}{2} = \sqrt{3}\cos\rho_{\rho} \quad \alpha = \beta = \gamma.$$
⁽²⁾

Из формулы (2a) § 5 (стр. 181) получим:

$$a:1:c=1:1:1. (3)$$

Таким образом в кристаллах тригональной сингонии вычисляется лишь угол α по формуле (2). $1/3 - 1.73205 = \log 1/3 - 0.23856$

$$V_3 = 1,73205$$
 $\lg V_3 = 0,23856$

Угол а может быть определен без вычисления, по табл. XII (стр. 295). Пример. Кальцит. Дано: $\rho_{100} = 44^{\circ}36,5$. Вычислить а. По формуле (2) имеем: $tg \frac{\alpha}{2} = \sqrt{3} \cos 44^{\circ}36,5$ $+ \frac{lg \sqrt{3} = 0,238560}{lg \cos 44^{\circ}36,5 = \overline{1},852435}$

$$\lg \lg \frac{\alpha}{2} = \overline{0,090995}$$
$$\frac{\alpha}{2} = 50^{\circ} 57,5 \qquad \alpha = 101^{\circ} 55.$$

В кристаллах тригональной сингонии часто необходимо вычислить не только угол α при тригональной установке кристаллов, но и отношение единичных отрезков при гексагональной установке, т. е. величину с. Грани (010) при переходе от тригональной установки к гексагональной необходимо приписать символ (0111) (ср. фиг. 36 и фиг. 34). Тогда по формуле (4) предыдущего параграфа имеем:

$$c = \frac{\sqrt{3}}{2} \operatorname{tg} \rho_{01\overline{1}1} = \frac{\sqrt{3}}{2} \operatorname{tg} \rho_p.$$
(4)

Величину с можно выразить также через угол α. По формуле (2) имеем:

$$\frac{1}{\cos \rho_p} = \frac{\mathrm{tg}\,\frac{1}{2}}{\sqrt{3}}$$

Выражаем $\cos \rho_p$ через $\operatorname{tg} \rho_p$ II $\operatorname{tg} \frac{\alpha}{2}$ — через $\sin \frac{\alpha}{2}$. Получим:

$$\operatorname{tg} \rho_p = \frac{\sqrt{3 - 4 \sin^2 \frac{\alpha}{2}}}{\sin \frac{\alpha}{2}}$$

Подставляем теперь в формулу (4). Получаем окончательно:

$$c = \sqrt{\frac{-9}{4\sin^2\frac{\alpha}{2} - 3}}.$$
 (5)

Если дано с и надо вычислить α, из формулы (5) найдем

$$\sin \frac{\alpha}{2} = \frac{3}{2\sqrt{c^2 + 3}};$$
(6)

$$\lg \frac{\sqrt{3}}{2} = \overline{1},93753; \quad \lg \frac{9}{4} = 0,35218; \quad \lg \frac{3}{2} = 0,17609.$$

Пример. Кальцит. Дано: р₁₀₀ == 44°36,5. Вычислить *с.* По формуле (4) имеем:

$$c = \frac{\sqrt{3}}{2} \operatorname{tg} 44^{\circ}36,5.$$

$$\lg \frac{\sqrt{3}}{2} = \overline{1},937530$$

$$+ \lg \operatorname{tg} 44^{\circ}36,5 = \overline{1},994065$$

$$\lg c = \overline{1},93159\overline{5} \qquad c = 0,85427.$$

Дано: а == 101°55'. Вычислить с. По формуле (5) имеем:

$$c = \sqrt{\frac{9}{4 \sin^2 50^{\circ} 57,5} - 3}$$

$$\lg \sin 50^{\circ} 57,5 = \overline{1},89025$$

$$\times \underline{2}_{\overline{1},78050} - \lg \frac{9}{4} = 0,35218$$

$$\overline{1},78050}$$

$$- \frac{3,72975}{3}$$

$$\lg c = \lg 0,72975 : 2 = \overline{1},86317 : 2 = \overline{1},931585$$

$$\underline{c = 0,85425}.$$

13 Аншелес - 706

ГЛАВА ДЕСЯТАЯ

ВЫЧИСЛЕНИЕ КООРДИНАТ ОСНОВНЫХ И ЕДИНИЧНОЙ ГРАНЕЙ ПО ЭЛЕМЕНТАМ КРИСТАЛЛА¹

Выведем формулы, выражающие сферические координаты основных и единичной граней через элементы кристаллов, лишь для обычной ориентировки кристаллов — иначе говоря, для юстировки по осп [001]. Только для гексагональных кристаллов при установке Федорова формулы выведены для юстировки по оси [1000] и для тригональных по оси [111]. Таким образом, мы принимаем, кроме указанных двух случаев, $\varphi_q = 0^\circ$ п $\rho_p = \rho_q = 90^\circ$. Требуется вывести формулы для вычисления φ_p , φ_r , ρ_r , φ_u и ρ_u .

Сферические координаты граней при других ориентировках, если это окажется необходимым, могут быть вычислены по формулам § 9, гл. V (стр. 78). После того как вычислены сферические координаты основных и единичной граней, для вычисления координат остальных граней удобнее вссго пользоваться основными формулами гл. VI. Обозначения в настоящей главе те же, что и в предыдущей.

§ 1. Триклинная (агирная) сингония

Элементы кристалла а, β, γ, а и с. Из формулы (6а) (стр. 182) получаем:

$$\cos\varphi_p = \frac{\cos\alpha\cos\beta - \cos\gamma}{\sin\alpha\sin\beta}.$$
 (1)

Разделив (4b) на (5b) (стр. 182), получаем:

$$\frac{\sin\left(\varphi_{o}-\varphi_{r}\right)}{\sin\varphi_{r}}=\frac{\operatorname{ctg}\alpha}{\operatorname{ctg}\beta}.$$

Отсюда находим:

$$\operatorname{ctg} \varphi_{r} = \frac{\operatorname{ctg} \alpha}{\operatorname{ctg} \beta \sin \varphi_{p}} + \operatorname{cgt} \varphi_{p}.$$
⁽²⁾

После того как φ_p и φ_r вычислены, ρ_r вычисляется из формул:

$$\operatorname{tg} \rho_r = -\frac{\operatorname{ctg} \alpha}{\sin\left(\varphi_p - \varphi_r\right)} \tag{3a}$$

или

$$tg \rho_r = -\frac{ctg \beta}{\sin \varphi_r}.$$
 (3b)

Та н другая формулы выводятся из вышеуказанных формул (4b) и (5b). Формулы для вычисления φ_u и ρ_u выводим из формулы (7a) (стр. 183). Из этой формулы находим:

$$c = \sin \alpha [\operatorname{ctg} \alpha + \operatorname{tg} \rho_u \sin (\varphi_p - \varphi_u)] = \cos \alpha + \sin \alpha \operatorname{tg} \rho_u \sin (\varphi_p - \varphi_u).$$
Отсюда

$$\operatorname{tg} \rho_{u} \sin \left(\varphi_{p} - \varphi_{u} \right) = \frac{c - \cos \alpha}{\sin \alpha}.$$
(4)

Из той же формулы имеем:

$$a = \frac{c}{\sin\beta (\operatorname{ctg}\beta + \operatorname{tg}\rho_{u}\sin\varphi_{u})}.$$

$$\operatorname{tg} p_{u}\sin\varphi_{u} = \frac{c - a\cos\beta}{a\sin\beta}.$$
(5)

Отсюда

¹ В. В. Доливо-Добровольский, Тр. Лен. общ. естеств., 58, в. 4, стр. 48.

Разделив почленно (4) на (5), получим:

$$\frac{\sin\left(\varphi_{p}-\varphi_{u}\right)}{\sin\varphi_{u}}=\frac{(c-\cos\alpha)\,a\,\sin\beta}{(c-a\cos\beta)\sin\alpha}.$$

Умножив знаменателей на sin φ_p , после преобразования получаем:

$$\operatorname{ctg} \varphi_n = \frac{(c - \cos \alpha) \, a \sin \beta}{(c - \alpha \cos \beta) \sin \alpha \sin \varphi_p} + \operatorname{ctg} \varphi_p. \tag{6}$$

Из формул (4) и (5) получим:

$$\lg p_{\mu} = \frac{c - \cos \alpha}{\sin \alpha \sin (\varphi_{p} - \varphi_{\mu})}, \qquad (7a)$$

$$tg \rho_{\mu} = \frac{c - a \cos \beta}{a \sin \beta \sin \varphi_{\mu}}.$$
 (7b)

Пример. Родонит (ср. пример на стр. 91, и фиг. 61). Дано: $\alpha = 94^{\circ}42$. $\beta = 111^{\circ}27$ 0.000

$$\alpha = 94^{\circ}42, \ \beta = 111^{\circ}27, \ \gamma = 86^{\circ}06,$$

a:1:c=1,1551:1:1,8315.

Вычислить: φ_p , φ_r , ρ_r , φ_u и ρ_u . По формуле (1) имеем:

$\cos\varphi_{p} = \frac{\cos 94^{\circ}42 \cos 111^{\circ}27 - \cos 86^{\circ}06}{\sin 94^{\circ}42 \sin 111^{\circ}27} =$	
$+\frac{ \lg \sin 4^{\circ}42 = \overline{2},91349 }{ \lg \sin 21^{\circ}27 = \overline{1},56311 }$ $\lg \cos \alpha \beta = \overline{2},47660$	$\frac{\cos \gamma = 0,06800}{\cos \alpha \cos \beta = 0,02996}$ 0,03804
$+\frac{ \lg \cos 4^{\circ}42 = \overline{1},99854 }{ \lg \cos 21^{\circ}27 = \overline{1},96883 }$ $\overline{1,96737}$	$-\frac{1 g \ 0,03804 = \overline{2},58024}{\overline{1},96737}}{\overline{2},61287}$

$$-\cos\varphi_p = \cos(180 - \varphi_p) = \cos 87^{\circ}39$$
$$\varphi_p = 92^{\circ}21.$$

По формуле (2) имеем:

Ŧ

$$\begin{aligned} \operatorname{ctg} \varphi_{r} &= \frac{\operatorname{ctg} 94^{\circ}42}{\operatorname{ctg} 111^{\circ}27 \sin 92^{\circ}21} + \operatorname{ctg} 92^{\circ}21 = \frac{\operatorname{tg} 4^{\circ}42}{\operatorname{tg} 21^{\circ}27 \cos 2^{\circ}21} - \operatorname{tg} 2^{\circ}21 \\ &+ \frac{\overline{|\operatorname{lg} \operatorname{tg} 21^{\circ}27 = \overline{1}, 59429|}}{\operatorname{lg} \cos 2^{\circ}21 = \overline{1}, 99963} & -\operatorname{lg} \operatorname{tg} 4^{\circ}42 = \overline{2}, 91495 \\ \overline{1}, 59392 & \overline{1}, 32103 \\ &- \underbrace{0, 20942}_{\overline{1}, 59392} & \overline{1}, 32103 \\ &- \underbrace{\operatorname{ctg} \varphi_{r} = \overline{0, 16838}}_{\varphi_{r}} = 80^{\circ}26, 5. \end{aligned}$$

По формуле (3b) имеем:

$$tg \rho_r = -\frac{ctg \, 111^{\circ}27}{\sin 80^{\circ}26,5} = \frac{tg \, 21^{\circ}27}{\sin 80^{\circ}26,5} - \frac{1g \, tg \, 21^{\circ}27 = \overline{1},59429}{1g \sin 80^{\circ}26,5 = \overline{1},99393}$$
$$lg \ g \ \rho_r = \overline{1},60036$$
$$\underline{\rho_r = 21^{\circ}43,5}.$$

φ_п вычисляем по формуле (6):

$$\operatorname{ctg} \varphi_{\mu} = \frac{(1,8315 - \cos 94^{\circ}42) \cdot 1,1551 \cdot \sin 111^{\circ}27}{(1,8315 - 1,1551 \cdot \cos 111^{\circ}27) \cdot \sin 94^{\circ}42 \sin 92^{\circ}21} + \operatorname{ctg} 92^{\circ}21 = \\ = \frac{(1,8315 + \sin 4^{\circ}42) \cdot 1,1551 \cdot \cos 21^{\circ}27}{(1,8315 + 1,1551 \cdot \sin 21^{\circ}27) \cos 4^{\circ}42 \cos 2^{\circ}21} - \operatorname{tg} 2^{\circ}21. \\ + \frac{1,83150}{\operatorname{sin} 4^{\circ}42 = 0,08194} \\ \quad \log 1,91344 = \boxed{0,28181 = \lg (c - \cos \alpha)} \\ \quad + \log 1,1551 = 0,06262 \\ \quad \log \cos 21^{\circ}27 = \overline{1,96883} \\ \hline 0,31326 \\ + \frac{\lg 1,1551 = 0,06262}{\lg \sin 21^{\circ}27 = \overline{1,56311}} \\ \quad \frac{1}{1,62573} \\ \quad \frac{1}{\lg 2,2539} = 0,35293 \\ \quad + \lg \cos 4^{\circ}42 = \overline{1,99854} \\ \quad \log \cos 2^{\circ}21 = \overline{1,99963} \\ \hline 0,35110 \\ \hline 0,35110 \\ \hline 1,96216 \\ \end{array}$$

$$\underline{\varphi_u} = 48^{\circ}48.$$

р_и вычисляем по формуле (7а):

$$tg \rho_{u} = \frac{1,8315 - \cos 94^{\circ}42}{\sin 94^{\circ}42 \sin 43^{\circ}32} = \frac{1,8315 + \sin 4^{\circ}42}{\cos 4^{\circ}42 \sin 43^{\circ}32} + \frac{\lg \cos 4^{\circ}42 = \overline{1},99854}{\lg \sin 43^{\circ}32 = \overline{1},83808} - \frac{0,28181}{\overline{1},83662}$$

$$\underline{\rho_n}=70^\circ 16.$$

§ 2. Моноклинная (моногирная) сингония

<u>α=γ=90°</u>, β, α, c

Подставляя а = ү = 90° в формулы (1) и (2) предыдущего параграфа, получаем:

$$\varphi_p = \varphi_r = 90^\circ. \tag{1}$$

По формуле (3b) получаем:

$$-\operatorname{tg} \rho_r = \operatorname{ctg} \beta; \quad \operatorname{ctg} (90^\circ + \rho_r) = \operatorname{ctg} \beta; \quad 90 + \rho_r = \beta; \\ \rho_r = \beta - 90^\circ.$$
(2)

Формула (6) преобразуется в следующую:

$$\operatorname{tg} \varphi_{u} = \frac{c - a \cos \beta}{a c \sin \beta} = \frac{1}{a \sin \beta} - \frac{1}{c \operatorname{tg} \beta}.$$
(3)

Наконец, из формулы (7а) получим:

$$tg \rho_u = \frac{c}{\cos \varphi_u}.$$
 (4)

Пример. Диопсид (ср. пример на стр. 104 и фиг. 63). Дано: $\alpha = \gamma = 90^{\circ}$; $\beta = 105^{\circ}51$; a:1:c = 1,0937:1:0,5894. Вычислить: φ_{p} , φ_{r} , ρ_{r} , φ_{u} и ρ_{u} . По формуле (1) имеем:

$$\varphi_p = \varphi_r = 90^\circ$$
.

По формуле (2):

e

$$\rho_r = 105^{\circ}51 - 90^{\circ} = 15^{\circ}51.$$

По формуле (3):

$$tg \varphi_{n} = \frac{1}{1,0937 \sin 105^{\circ}51} - \frac{1}{0,5894 tg 105^{\circ}51} = \frac{1}{1,0937 \cos 15^{\circ}51} + \frac{1}{0,5894 ctg 15^{\circ}51} + \frac{1}{0,02207} + \frac{1}{0,0$$

По формуле (4) имеем:

$$tg \rho_{\mu} = \frac{0,5894}{\cos 55^{\circ}04,5}$$

- lg 0,5894 = 1,77041
lg cos 55^{\circ}04 = 1,75796
lg tg \rho_{\mu} = 0,01245
\rho_{\mu} = 45^{\circ}49.

§ 3. Ромбическая (дигирная) сингония

$$\alpha = \beta = \gamma = 90^{\circ}; a, c.$$

Подставляя $\alpha = \beta = \gamma = 90^{\circ}$ в формулу (1) н (2) § 1 (стр. 194) и в формулу (2), § 2, получаем:

$$\varphi_{\rho} = 90^{\circ}; \quad \varphi_{r} = \frac{0}{0}; \quad \rho_{r} = 0^{\circ}.$$
 (1)

Формулы (3) н (4) предыдущего параграфа преобразуются в следующие:

$$\operatorname{ctg} \varphi_{u} = a; \quad \operatorname{tg} \rho_{u} = \frac{c}{\cos \varphi_{u}}. \tag{2}$$

Пример. Топаз (ср. стр. 188 и стр. 114). Дано: $a = \beta = \gamma = 90^{\circ}$; a: 1: c = 0,52854: 1:0,95385.Вычислить: фир для грани (111). По формуле (2) имеем:

$$\operatorname{ctg} \varphi_{111} = a = 0,52854$$

$$\varphi_{111} = 62^{\circ}08,5$$

 $tg\,\rho_{111} = \frac{0,95385}{\cos 62^\circ 08.5}$ $\lg 0,95385 = \overline{1},97948$ $1g \cos 62^{\circ}08, 5 = \overline{1,66958}$ $\lg \lg \varrho_{111} = 0,30990$

$$\rho_{111} = 63^{\circ}54.$$

§ 4. Тетрагональная (тетрагирная) сингоняя

 $\alpha = \beta = \gamma = 90^{\circ}; a = 1; c.$

Из формул предыдущего параграфа получаем:

$$\varphi_{\rho} = 90^{\circ}; \quad \varphi_{r} = \frac{0}{0}; \quad \rho_{r} = 0^{\circ}.$$
 (1)

$$\varphi_u = 45^\circ; \quad \operatorname{tg} \rho_u = \sqrt{2} \cdot c;$$
 (2)

$$\lg \sqrt{2} = 0,150515$$

ри может быть также найдено непосредственно по табл. X.

Пример. Циркон (см. пример на стр. 189).

Дано: c = 0,6402.

Вычислить р₁₁₁. По табл. Х (стр. 274) находим, что величине с = 0,6402 отвечает

§ 5. Гексагональная (гексагирная) сингония

Установка Браве

$$\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}; a = 1; c$$

Подставляя указанные величины в формулы (1), (2) и (3) § 1 (стр. 194), получаем:

$$\varphi_p = 60^\circ; \quad \varphi_r = \frac{0}{0}; \quad \rho_r = 0^\circ. \tag{1}$$

Из формул (6) н (7) § 1 (стр. 195) получим:

$$\varphi_n = 30^\circ; \quad \text{tg } \rho_n = 2c$$
 (2)

Пример. Апатит. Дано: *с* == 0,7337. Вычислить р₁₁₂₁.

$$\operatorname{tg} \rho_{1121} = 2c = 2 \cdot 0,7337 = 1,4674.$$

 $\rho_{11\bar{2}1} = 55^{\circ}43,5.$

$$\alpha = 60; \beta = \gamma = 90^{\circ}; a; c = 1.$$

 $\varphi_p = \frac{0}{0}; \quad \rho_p = 0^\circ; \quad \varphi_q = 0^\circ; \quad \rho_q = 90^\circ; \quad \varphi_r = 120; \quad \rho_r = 90^\circ; \quad \varphi_u = 60^\circ.$ По формуле (6) § 13 (стр. 191) получаем:

1

Пример. Апатит. Дано: *а* == 0,7337. Вычислить _{Р1110}.

$$tg \rho_{1110} = \frac{2}{\sqrt{3}}a.$$

$$+ lg \frac{2}{\sqrt{3}} = 0,06247$$

$$lg a = \overline{1},86552$$

$$lg tg \rho_{1110} = \overline{1},92799$$

$$\rho_{1110} = 40^{\circ}16.$$

§ 6. Тригональная (тригирная, ромбоэдрическая) сингония или гипосингония

 $\alpha = \beta = \gamma; \quad a:1:c=1:1:1.$ $\varphi_q = 0^\circ; \quad \varphi_p = 120^\circ; \quad \varphi_r = -120^\circ; \quad \varphi_u = \frac{0}{0}; \quad \rho_u = 0^\circ; \quad \rho_p = \rho_q = \rho_r.$ Из формулы (2) § 14 (стр. 192) получаем:

$$\cos \rho_p = \frac{1}{\sqrt{3}} \operatorname{tg} \frac{a}{2},$$
$$\operatorname{lg} \frac{1}{\sqrt{3}} = \overline{1}, 76144.$$

Пример: Кальцит. Дано: а == 101°55. Вычислить р₁₀₀.

$$\cos \rho_{100} = \frac{1}{\sqrt{3}} \text{tg } 55^{\circ}57,5$$

$$\log \frac{1}{\sqrt{3}} = \overline{1},76144$$

$$\log \text{tg } 55^{\circ}57,5 = 0,09099$$

$$\log \cos \rho_{100} = \overline{1},85243$$

$$\rho_{100} = 44^{\circ}36.$$

ПРИЛОЖЕНИЕ I

Гномонические проекция и вх связь с другими кристаллографическими проекциями

Графические методы, основанные на применении гномонических проекций, более точны и просты, чем методы, связанные с применением стереографических проекций. Между тем в рекомендованных на стр. 64 руководствах по проекциям

Фиг. 80.

упоминается лишь вскользь о гномонических проекциях. Поэтому дадим здесь рисунки (фиг. 80 и 81) и краткие, лишь самые необходимые, пояснения к ним, достаточные, впрочем, для уяснения того, как строятся гномонические проекции и какова их связь с другими кристаллографическими проекциями. Пояснения даются в предположении, что учащийся уже знаком со стереографическими проекциями.

На фиг. 80 имеем:

Точка S — центр кристаллографического пучка при получении линейных проекций, в том числе — гномонических. Для получения стереографических проекций центр кристаллографического пучка берется в центре сферы проекций, в точке O.

Точка S — для стереографических проекций — "глазная точка".

MN — плоскость проекций, которая обычно берется общей как для линейных, так и для стереографических проекций.

SS' — направление, перпендикулярное плоскости проекций MN, — ось проскций.

R = SO — расстояние от центра пучка S (от глазной точки) до плоскости проекций, радиус сферы проекций и основного круга проекций.

Точка О — центр проекций.

- SB плоскость (грань, плоская сетка и пр.), различные виды проекций которой и изображены на фиг. 80.
- КL линейная проекция плоскости SB. Для изображения линейной (KL) и стереографической (SCS') проекций плоскости SB — плоскость проекций совмещена с чертежом поворотом на 90° около направления MN. SG — перпендикуляр к плоскости SB.
 - р угол GSS' между перпендикуляром (SG) к плоскости SB и осью проекций SS' — полярное расстояние плоскости SB.
- Точка G— линейная проекция перпендикуляра (SG) к плоскости SB, т. е. гномоническая проекция этой плоскости. Как видим из чертежа, расстояние гномонической проекции плоскости от центра проекций

$$OG = R \operatorname{tg} \rho \,. \tag{1}$$

Точка *Р* — стереографическая проекция перпендикуляра к плоскости *SB*(*OC*₁), т. е. гномостереографическая проекция этой плоскости.

$$OP = R \operatorname{tg} \frac{\rho}{2}.$$
 (2)

Дуга SCS' — стереографическая проекция плоскости SB (OC₁).

Точка Р является сферическим центром этой дуги, а точка G — геометрическим центром.

Как видим на фиг. 80, гномоническая проекция плоскости находится на том же меридиане (т. с. на том же радиусе основного круга проекций), что и гномостереографическая проекция этой плоскости, и на вдвое большем угловом расстоянии от центра проекций. Стереографическая проекция (SCS') плоскости проходит через концы диаметра, перпендикулярного диаметру, на котором находятся гномостсреографическая и гномоническая проекции плоскости, и на угловом расстоянии от гномостереографической проекции, равном 90°. Линейная проекция (KL) перпендикулярна тому же днаметру. Для ее построения наносят сначала на этом диаметре точку B на угловом расстоянии от центра, вдвое большем углового расстояния точки C.

Для построения гномонической проекции по сферическим координатам плоскостн (ф и р) поступаем следующим образом. При помощи транспортира, или при помощи сетки Вульфа, или любой другой стереографической сетки проводим меридиан под углом φ к начальному меридиану. На этом меридиане получим гномоническую проекцию, отсчитав при помощи стереографической сетки от центра угол 2р (угол р даст гномостереографическую проекцию). Таким путем можно нанести гномошическую проекцию только в том, конечно, случае, если 2р не превышает 90°, т. е. если гномоническая проекция не выходит за пределы основного круга проекций. В противном случае пользуемся линейкой Федорова или линейкой Гольдшмидта с нанесенными на них делениями по формуле (1). На линейке Федорова деления нанесены при R = 10 см, на линейке Гольдшмидта — при R = 5 см. При отсутствии соответствующей линейки гномоническая проекция плоскости может быть нанесена построением. Проводим меридиан под углом ф к начальному, как указано выше. Пусть это будет MN на фиг. 80. Проводим прямую SS, перпендикулярную этому меридиану. На этой прямой наносим точку S на расстоянии R от центра проекций O (чаще всего нанболее выгодно для гномонических проекций брать R = 5 см). При помощи транспортира проводим теперь прямую SG под углом р к прямой SS'. На пересечении этой прямой с прямой МЛ и получим искомую гномоническую проекцию плоскости с полярным расстоянием р. Если работаем со стереографической сеткой (для них чаще всего берется R = 10 см), то направление прямой SG' можем построить более точно, чем с транспортиром. Для этого на внешнем круге проекции от точки S' откладываем дугу $S'G_1 = 2p$. Гномоническая проекция G находится на пересечении прямой MN с продолжением прямой SG₁. Все же наиболее просто и наиболее точно воспользоваться для нанесения точки G формулой (1).

Находим tgp по табл. II (стр. 215), множим его на R и откладываем при помощи миллиметровой линейки ОС на указанном выше меридиане, найденном по углу φ.

Гномонические проекции вертикальных плоскостей, т. е. параллельных оси проекций, находятся в бесконечности [для них $\rho = 90^\circ$ и tg ρ (формула 1), а следовательно и $OG = \infty$]. Они обычно отмечаются стрелками на соответствующих радиусах или на направлениях, параллельных последним.

На фиг. 81 представлены одновременно гномостереографические и гиомонические проекции одних и тех же граней в одном и том же масштабе, т. е. при одном и том же R. Гномостереографические проекции, помеченные крестиками, обозначены буквами $A_1, B_1, C_1, \ldots, N_1$. Соответствующие же гномонические проекции, помеченные точками, обозначены буквами $A_2, B_2, C_2, \ldots, N_2$. Кроме того, здесь же нанесены проекции ряда зон, в которых находятся данные грани. Зоны изображаются в проекциях в виде проекций плоскостей, перпендикулярных осям.

Фиг. 81.

зон, — иначе говоря, плоскостей, проходящих через перпендикуляры к граням данных зон. Таким образом стереографическая проекция зоны (гномостереографическая проекция оси зоны) изобразится в виде дуги, проходящей через гномостереографические проекции граней данной зоны; линейная же проекция зоны (гномоническая проекция оси зоны) изобразится в виде прямой, проходящей через гномонические проекции граней данной зоны. Эга прямая называется прямой зоны.

На фиг. 80 изображено построение --- кроме стереографической, линейной, гномостереографической и гномонической проекций — также так называемых "натуральных" и "брагговских" проекций плоскости.

Натуральной проекцией называется линейная проекция пучка лучей, отраженного от плоскости, —пучка лучей видимого света, отраженного от грани кристалла,

нли пучка рентгеновских лучей, отраженного от плоской сетки кристалла (точнее, от серин параллельных плоских сеток). Всякая лауэграмма кристалла (например, представленная на фиг. 82) есть натуральная проекция плоских сеток внутри кристалла. При этом плоскостью проекций (МN-фиг. 80) является фотопластинка. Направление первичного пучка — SO. Точка А на фиг. 80 есть натуральная проекция плоскости SB. Если 0 — "брагговский угол", т. с. угол между первичным или отраженным пучками и отражающей плоскостью и R — расстояние от кристалла до фотопластинки, то $OA = R \operatorname{tg} 20$. А так как $\emptyset = 90^{\circ} - \rho$, то $OA = -R \operatorname{tg} 2 p.$

Брагговской проекцией называется стереографическая проекция отраженного пучка лучей. На фиг. 80 брагговская проекция плоскости $SB(OC_1)$ точка B_1 причем $OB = R \operatorname{tg} \theta = R \operatorname{ctg} \rho$.

Чаще всего брагговские проскции получают не на плоскости MN, проходящей через центр сферы проекций, а на параллельной MN плоскости M₁N₁, касательной к сфере проекций. На этой плоскости брагговская проекция плоскости SB является точка *B'*, причем се расстояние от центра проскций (точки *S'*) $S'B' = 2R \operatorname{tg} \theta = 2R \operatorname{ctg} \rho$.

Преимущество второго способа построения брагговских проекций перед первым в том, что положение брагговских проекций при втором способе оказывается близким к положению натуральных проекций (пятен лауэграммы) и вся стереограмма сходна с лауэграммой.

По фиг. 80 видно, что натуральная и брагговская проекции плоскости находятся на том же днаметре, что и гномоннческая и гномостереографическая проекции.

Стереографические проекции (брагговские проекции) пучков лучей, отраженных от плоских сеток одной и той же зоны, располагаются по окружностям, а не по эллипсам, параболам и гиперболам, как в натуральных проекциях. Поэтому брагговские проекции облегчают распределение пятен лауэграмм по зонам, что важно при индицировании пятен.

ПРИЛОЖЕНИЕ 2

Индицирование пятен лауэграмм методом отрезков прямой

Пятна лауэграмм, получающиеся на фотопластинке от рентгеновских лучей, отраженных от плоских сеток одной и той же зоны, располагаются, как известно, по эллипсам, гиперболам,

параболами прямым (фиг. 82). Каждая зона даст обычно на фотопластинке большое количество пятен. Поэтому при индицировании этих пятен (точнее — отвечающих ИМ плоских сеток) особенно удобно применение зональных графических методов (гл. III) и из них — главным образом метода отрезков прямой (§ 8 и 9, стр. 49-55). Вычислительные зональные методы, в том числе метод двойных отношений синусов углов (§ 2, гл. VIII), почти никаких преимуществ не дают, так как само определение углов на лауэграмме производится графически. Времени же для вычислений требуется больше.

Применение метода отрезков прямой к индицированию пятен особенно удобно потому, что для этого метода не требуется предварительного перехода к другим видам проекций,

как при незональных графических методах. Пользуемся непосредственно лауэграммой или отпечатком снее. Натуральная проекция каждой грани (пятно лауэграммы) находнтся на том же диаметре основного круга проекций, что и гномостереографическая и гномоническая проекции (точки *A*, *P* и *G* фиг. 80). При методе же отрезков прямой играют роль лишь эти диаметры (стр. 49). Метод обладает полной общностью и применим без всяких осложнений к кристаллам любой сингонии и при любой ориентировке кристалла относительно первичного пучка рентгеновских лучей.

Как сейчас увидим, к другим графическим или вычислительным методам при индицировании пятен лауэграмм приходится прибегать лишь для единичных пятен.

На фиг. 82 имеем лауэграмму ангидрита, полученную при прохождении рентгеновских лучей параллельно оси [001] (Установка Федорова. Das Krystallreich, стр. 501). Расстояние фотопластинки от кристалла R = 50 мм.

Для примера определим символы пятен 1,2,3,..., 7. В данной зоне известен лишь символ грани [100]. В натуральной проекции она спроектировалась в центре, через который проходят эллипсы. (Гномостереографическая проекция ее совпадает на внешнем круге проекций со стереографической проекцией оси [100].) Обычным способом определим в данной зоне сначала символ хотя бы пятна 3.

Расстояние 1, от центра до пятна 3 равняется 29,3 мм.

ig
$$2\theta_3 = \frac{l_3}{R} = \frac{29,3}{50} = 0,586; \theta_3 = 15^{\circ}11;$$

 $\rho_3 = 90^{\circ} - \theta_3 = 74^{\circ}49.$

 φ_3 отсчитываем транспортиром между пулевым меридианом и меридианом с пятном $3 \cdot \varphi_3 = 14^\circ$. Сферические координаты грани (111) следующие: $\varphi_{111} = 44^\circ 58,5$ и $\rho_{111} = 51^\circ 41$ (при установке Федорова). Символ плоскости 3 может быть определен теперь либо графически [например, методом основного параллелепипеда (§ 7, стр. 25)], либо вычислением.

По формуле (1) (стр. 117) получаем (для упрощения пользуемся формулой для тетрагональной сингонии, а не для ромбической, так как кристаллы очень близки к тетрагональным и так как при вычислении индексов большой точности не требуется):

$$p_3: q_3: r_3 = \sin 14^\circ: \cos 14^\circ: \frac{\operatorname{tg} 51^\circ 41}{\sqrt{2} \cdot \operatorname{tg} 74^\circ 49} = 0.24: 0.97: 0.24 = 1: 4.04: 1.$$

Итак, символ пятна 3-(141).

Необходимы символы трех пятен в данной зоне. Определим еще символ пятна 1. Оно находится на пересечении двух зон: данной зоны, в которой известны символы двух плоских сеток (100) и (141) и зоны [100], в которой известны символы плоских сеток (001) и (010). Поэтому символ пятна 1—(041) проще всего определяется по § 4 (стр. 34) или § 6 (стр. 43).

Принимаем плоские сетки (100) и (041) за основные в зоне и приписываем первой зональный символ (10) и второй — (01). Зональный символ $(m_v n_v)$ плоскости (141) будет (11), так как ее индексы получаются простым суммированием индексов (100) и (041) (стр. 40): 1. (100) + 1. (041) = (141).

Определяем теперь зональные символы $(m_x n_x)$ остальных пятен в данной зоне методом отрезков прямой. Для упрощения выкладок проводим не произвольную прямую, а прямую MN, параллельную радиусу, на котором лежит гномостереографическая проекция грани (100). Проводим радиусы через каждое пятно до пересечения с прямой MN (лучше делать просто соответствующие засечки на прямой MN). Получаем на прямой точки 1,2,3,..., 7. Измеряем отрезки от точки 1 до остальных точек и для определения зональных индексов ($m_x n_x$) берем отношение каждого отрезка к отрезку от 1-й до 3-й точки, пользуясь формулой (1) (стр. 54).

2. $m_2: n_2 = 4,5:9,5 = 0,47:1$	(12)
4. $m_{4}: n_{4} = 14,7:9,5 = 1,54:1$	(32)
5. $m_5: n_5 = 24:9, 5 = 2,53:1$	(52)
6. $m_6: n_6 = 28, 8:9, 5 = 3,03:1$	(31)
7. $m_7: n_7 = 33, 5:9, 5 = 3, 53:1$	(72)

На основании формулы (1b) (стр. 39) множим индексы (100) и (041) на зональные индексы каждого пятна и складываем. Получаем символы пятен данной зоны:

- 1. (041)
- 2. $1 \cdot (100) + 2 \cdot (041) = (182)$
- 3. (141)
- 4. $3 \cdot (100) + 2(041) = (382)$
- 5. $5 \cdot (100) + 2 \cdot (041) = (582)$
- 6. $3 \cdot (100) + 1 \cdot (041) = (341)$
- 7. $7 \cdot (100) + 2 \cdot (041) = (782)$

Так как угол между раднусами, отвечающими граням (041) и (100), принятым нами за основные, равен в данном случае 90°, зональные индексы на основании формулы (2), стр. 168, могут быть просто определены по табл. IV (стр. 250). Транспортиром измеряем углы (ф) между радиусами (фиг. 83) и по табл. IV находим зональные индексы, как это описано на стр. 168.

приложение 3

Упрощение некоторых формул, употребляемых при анализе структуры кристаллов

Некоторые из формул, всегда употребляемых при структурном анализе кристаллов, могут быть значительно упрощены. Это именно формулы, выражающие через параметры (a, b c, a, β п γ) объем примитивного параллеленипеда — U и межплоскостное расстояние — d_{pqr} из серин (pqr). Вывод обычно употребляемых формул давать здесь не буду.¹ Дам лишь

вывод из них более простых формул, требующих меньшего количества выкладок и, при большом количестве вычислений, дающих значительную экономию всемени.

ОБЪЕМ ПРИМИТИВНОГО ПАРАЛЛЕЛЕПИПЕДА V

Триклинная (агирная) сингония

$$V = abc\sqrt{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma}.$$

Преобразуем подкоренное количество, прибавив и вычтя из него cos² a cos² 3:

$$1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma + \cos^2 \alpha \cos^2 \beta - \cos^2 \alpha \cos^2 \beta =$$

= $(1 - \cos^2 \alpha) - \cos^2 \beta (1 - \cos^2 \alpha) - (\cos \gamma - \cos \alpha \cos \beta)^2 =$

$$=(1-\cos^2\alpha)(1-\cos^2\beta)-(\cos\gamma-\cos\alpha\cos\beta)^2=\sin^2\alpha\sin^2\beta-(\cos\gamma-\cos\alpha\cos\beta)^2=$$

$$= (\sin \alpha \sin \beta + \cos \gamma - \cos \alpha \cos \beta) (\sin \alpha \sin \beta - \cos \gamma + \cos \alpha \cos \beta) =$$

$$= [\cos \gamma - \cos (\alpha + \beta)] \cdot [\cos (\alpha - \beta) - \cos \gamma] =$$

$$= 4 \sin \frac{1}{2} (\alpha + \beta + \gamma) \sin \frac{1}{2} (\gamma - \alpha - \beta) \sin \frac{1}{2} (\alpha - \beta + \gamma) \sin \frac{1}{2} (\alpha - \beta - \gamma).$$

Пусть:

$$\frac{1}{2}(\alpha+\beta+\gamma)=\sigma,$$

тогда окончательно найлем:

$$V = 2 \ abc \ \sqrt{\sin \sigma \cdot \sin (\sigma - \alpha) \cdot \sin (\sigma - \beta) \cdot \sin (\sigma - \gamma)}.^{2}$$
(1)

Эта формула может быть еще болес упрощена, если ввести в нее почти всегда известный заранее угол между гранями (100) и (010), который обозначим

¹ Выводы этих формул см. учебники кристаллографии; Р. Niggli, Lehrbuch der Mine-ralogie. I. Allgemeine Mineralogie, 1924, и др. ⁹ Эта формула приведена у Р. Niggli. Ibid.

через φ_{100} . [При обычной ориентировке кристалла угол (100):(010) равен долготе грани (100), т. е. углу φ_{100} .]

$$\cos \gamma = \cos \alpha \cos \beta - \sin \alpha \sin \beta \cos \varphi_{100}$$
.

Найдем отсюда sin 9100.

$$\sin \varphi_{100} = \sqrt{1 - \cos^2 \varphi_{100}} = \frac{\sqrt{\sin^2 \alpha \sin^2 \beta - (\cos \alpha \cos \beta - \cos \gamma)^2}}{\sin \alpha \sin \beta}$$

Затем так же, как и выше, найдем:

$$\sin \varphi_{100} = \frac{2 \sqrt{\sin \sigma \sin (\sigma - \alpha)} \sin (\sigma - \beta) \cdot \sin (\sigma - \gamma)}{\sin \alpha \sin \beta}.$$

Подставив в формулу (1), получим окончательно:

$$V = abc \sin \alpha \sin \beta \sin \varphi_{100}. \tag{1'}$$

Формулы для других сингоний выводятся из формулы (1) подстановкой предельных значений для параметров. За исключением формулы для тригональной сингонии, ничего пового сравнительно с обычными формулами здесь не получается. Приведу лишь формулу для тригональной сингонии.

Тригональная (тригирная, ромбоэдрическая) сингония

$$\alpha = \beta = \gamma; \ \alpha = b = c.$$

$$V = 2 \ a^3 \sqrt{\frac{\sin \frac{3}{2} \alpha \sin^3 \frac{\alpha}{2}}{\sin \frac{3}{2} \alpha \sin^3 \frac{\alpha}{2}}}.$$

МЕЖПЛОСКОСТНОЕ РАССТОЯНИЕ dpar

Обычно межплоскостное расстояние входит в вычисления в виде $\frac{1}{d^2_{pqr}}$.

Триклинная (агирная) сингония

$$\frac{1}{d^2_{pqr}} = \frac{b^2 c^2 \sin^2 \alpha p^2 + a^2 c^2 \sin^2 \beta q^2 + a^2 b^2 \sin^2 \gamma r^2 + 2 abc^2 (\cos \alpha \cos \beta - \cos \gamma) pq}{a^2 b^2 c^2 (1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma)} + \frac{2 ab^2 c (\cos \alpha \cos \gamma - \cos \beta) pr + 2 a^2 bc (\cos \beta \cos \gamma - \cos \alpha) qr}{a^2 b^2 c^2 (1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma)}.$$

Многочлен в знаменателе уже преобразован выше [формула (1) и (1')]. В числителе преобразуем спачала двучлены, стоящие в скобках.

$$\cos \alpha \cos \beta - \cos \gamma = \cos \alpha \cos \beta - \cos \gamma + \sin \alpha \sin \beta - \sin \alpha \sin \beta =$$

$$= \cos (\alpha + \beta) - \cos \gamma + \sin \alpha \sin \beta = -2 \sin \frac{1}{2} (\alpha + \beta + \gamma) \sin \frac{1}{2} (\alpha + \beta - \gamma) +$$

$$+ \sin \alpha \sin \beta = -2 \sin \alpha \sin (\alpha - \gamma) + \sin \alpha \sin \beta,$$
Kak H BHUE

где, как и выше,

$$\sigma = \frac{1}{2} (\alpha + \beta + \gamma)$$

Таким же путем получим:

$$\cos \alpha \cos \gamma - \cos \beta = -2 \sin \sigma \sin (\sigma - \beta) + \sin \alpha \sin \gamma;$$

$$\cos \beta \cos \gamma - \cos \alpha = -2 \sin \sigma \sin (\sigma - \alpha) + \sin \beta \sin \gamma.$$

¹ В. В. Доливо-Добровольский, Тр. Лен. общ. естеств., 58, в. 4. См. также здесь формулу (6а) (стр. 182).

Подставив в числитель, получим:

$$b^{2}c^{2}\sin^{2} \alpha p^{2} + a^{2}c^{2}\sin^{2} \beta q^{2} + a^{2}b^{2}\sin^{2} \gamma r^{2} + 2 abc^{2}\sin \alpha \sin \beta p q + + 2 ab^{2}c \sin \alpha \sin \gamma pr + 2 a^{2}bc \sin \beta \sin \gamma qr - - 4 abc \sin \sigma [c \sin (\sigma - \gamma) pq + b \sin (\sigma - \beta) pr + a \sin (\sigma - \alpha) qr] = = (pbc \sin \alpha + qac \sin \beta + rab \sin \gamma)^{2} - - 4abc \sin \sigma [qra \sin (\sigma - \alpha) + prb \sin (\sigma - \beta) + pqc \sin (\sigma - \gamma)].$$

Разделив числителя и знаменателя на $a^2b^2c^2$, окончательно получим:

$$\frac{1}{d^{2}_{pqr}} = \frac{\left(p\frac{\sin\alpha}{a} + q\frac{\sin\beta}{b} + r\frac{\sin\gamma}{c}\right)^{2} - 4\sin\sigma\left(qr\frac{\sin(\sigma-\alpha)}{bc} + pr\frac{\sin(\sigma-\beta)}{ac} + pq\frac{\sin(\sigma-\gamma)}{ab}\right)}{4\sin\sigma\sin(\sigma-\alpha)\sin(\sigma-\beta)\sin(\sigma-\gamma)}$$

или, если известно Ф100:

$$\frac{1}{d^{3}_{pqr}} = \frac{\left(p\frac{\sin\alpha}{a} + q\frac{\sin\beta}{b} + r\frac{\sin\gamma}{c}\right)^{2} - 4\sin\sigma\left(qr\frac{\sin(\sigma-\alpha)}{bc} + pr\frac{\sin(\sigma-\beta)}{ac} + pq\frac{\sin(\sigma-\gamma)}{ab}\right)}{\sin^{2}\alpha\sin^{2}\beta\sin^{2}\varphi_{100}}$$

Моноклинная (моногирная) сингония

Обычная формула:

$$\frac{1}{d^{2}_{pqr}} = \frac{p^{2}}{a^{2}\sin^{2}\beta} + \frac{q^{2}}{b^{2}} + \frac{r^{2}}{c^{2}\sin^{2}\beta} - \frac{2pr\cos\beta}{ac\sin^{2}\beta}$$

поддается только незначительному упрощению.

В правой части равенства прибавим и вычтем

$$\frac{r^2\cos^2\beta}{c^2\sin^2\beta}$$

и после соответствующих преобразований окончательно получим:

$$\frac{1}{d^2_{pqr}} = \left(\frac{p}{a\sin\beta} - \frac{r}{c}\operatorname{ctg}\beta\right)^2 + \left(\frac{q}{b}\right)^2 + \left(\frac{r}{c}\right)^2.$$

Формулы для остальных сингоний не могут быть упрощены за исключением формулы для тригональной сингонии. Приведу только последнюю.

Тригональная (тригирная, ромбоэдрическая) сингония

Подставляя в формулу для триклинной сингонии

$$a = b = c$$
 и $\alpha = \beta = \gamma$,

получим:

$$\frac{1}{d^2_{pqr}} = \frac{\sin^2 \alpha \left(p+q+r\right)^2}{4 a^2 \sin \frac{3}{2} \alpha \sin^3 \frac{\alpha}{2}} - \frac{pq+pr+qr}{a^2 \sin^2 \frac{\alpha}{2}}.$$

ПРИЛОЖЕНИЕ 4

Межплоскостные расстояния в сложных параллелепипедальных системах

Решение в общем виде задачи о межплоскостных расстояниях в сложных параллелепипедальных системах имеет большое значение при структурном анализе кристаллов. При рентгеноанализе кристаллов мы можем получить не примитивный параллелепипед повторяемости и даже не один из сложных параллелепипедов Браве, чде межилоскостные расстояния определяются сравнительно просто, а какой-либо более сложный параллелепипед, с большим количеством точек внутри и на сторонах, чем в параллелепипедах Браве. И в этих случаях, конечно, важно для анализа рентгенограмм уметь определять межплоскостные расстояния для различных плоских сеток. Решение задачи в общем виде важно также и для анализа "тонкой структуры" кристаллов.

Решение задачи опирается на некоторые теоремы, доказательство которых приведено у Б. Н. Делоне¹ и у других авторов. Доказательства этих теорем я не привожу.

Пусть некоторая параллелепипедальная система задана каким-либо непримитивным параллелепипедом, т. е. таким параллелепипедом, у которого точки системы находятся не только в вершинах, но и впутри и на сторонах его. Параллелепипедальную систему, заданную непримитивным параллелепипедом, я называю здесь сложной системой в отличие от простой системы, заданной примитивным параллелепипедом, т. е. пустым параллелепипедом, с точками только в вершинах.² Предположим, что каждому параллелепипеду принадлежит *n* точек, считая и одну точку в вершине.

В одном из таких параллелепипедов OABC, в котором отрезки OA, OB, OC — три его непараллельные друг другу ребра, примем O за начало координат, а направления OA, OB, OC — за координатные оси. Тогда числовые координаты (количество отрезков OA, OS, OC по соответствующим осям, заключающихся в геометрических координатах) для точек, находящихся в вершинах параллелепипедов, будут выражены некоторыми целыми числами — x, y, z. Числовые координаты остальных точек системы будут иметь вид:

$$x_o + x_i; y_o + y_i; z_o + z_i,$$

где x_0, y_0, z_0 — целыс числа, а x_i, y_i, z_i — правильные дроби [i = 1, 2, 3, ..., (n - 1)]. Точки с целыми числовыми координатами будем в дальнейшем называть "целыми точками", а с дробными числовыми координатами — "дробными точками".³

Из дробных точек будем в далынейшем брать только те, числовые координаты которых выражены правильными дробями — x_i , y_i , z_i , иначе говоря — те точки, которые принадлежат параллелепипеду OABC, одну из целых точек которого (O) мы приняли за начало координат. Вследствие параллельно-переносной повторяемости, присущей всякой параллелепипедальной системе, то, что будет найдено для этих точек, справодливо и для всех других дробных точек системы.

Возьмем систему плоских сеток, параллельных друг другу и параллельных какой-либо возможной грани (pqr), где p, q, r — индексы, взятые в той же системе координат — OABC. Часть этих плоских сеток пройдет через целые точки, другая же часть может проходить только через дробные точки. Пусть d — межплоскостное расстояние между сетками, проходящими через целые точки. Это расстояние определяется по известным формулам Браве. Обозначим через d' межплоскостное расстояние между двумя любыми соседними (ближайшими друг к другу) сетками, считая и те плоские сетки, которые проходят только через дробные точки:

$$|d' \leq d$$

Задача и заключается в определении d', если известно: 1) d, 2) количество точек (n) в каждом испримитивном параллелепипеде данной параллелепипедальной системы и 3) числовые координаты (x_i, y_i, z_i) дробных точек какого-либо параллелепи-

¹ Б. Делоне, Н. Падуров, А. Александров, Математические основы структурного анализа кристаллов, 1934, стр. 75.

² Б. Н. Делоне называет такой параллеленинед основным. Там же.

^а Термины заимствованы у Б. Н. Делоне, там же, стр. 74.

педа *OABC*, в котором одна из целых точек (*O*) принята за начало координат.

Числовые координаты целых точек (x, y, z) удовлетворяют уравнению:

$$px + qy + rz = K, \tag{1}$$

где *К*—целое число.¹

Через каждую целую точку обязательно проходит одна из плоских сеток (*pqr*). Но плоские сетки, проходящие через целые точки, могут захватывать также и некоторое число дробных точек. Определим, какие дробные точки параллелепипеда *OABC* будут содержаться в какой-либо плоской сетке, в которую входят и целые точки. Для этого подставим числовые координаты каждой дробной точки параллелепипеда *OABC* в уравнение (1):

$$px_i + qy_i + rz_i = Q. \tag{2}$$

Определение величины Q—суммы произведений индексов грани на правильнодробные части числовых координат дробныхточек—является достаточным для определения, какие дробные точки входят в плоские сетки с целыми точками. Это определение величины Q иявляется основным в решении всей поставленной задачи.

Q может быть числом целым и дробным. Если данная дробная точка *i* находится в одной из плоских сеток (*pqr*), проходящих через целые точки, числовые координаты этой дробной точки будут удовлетворять уравнению (1) и число Qв уравнении (2) получится целым. Величины Q и K в этом случае тождественны, так как плоские сетки проходят также и через целые точки. [Уравнение (1) выводится из уравнения плоскости $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, где x, y, z — координаты любой точки на плоскости, а не какой-либо определенной точки.] Если дробная точка *i* не лежит ни в одной из плоских сеток (*pqr*) с целыми точками, ее числовые координаты не удовлетворяют уравнению (1) и число Q уравнения (2) получится дробным, так как если бы Q получилось целым, то нашлась бы какая-либо плоская сетка (*pqr*), содержащая целую точку.¹

Таким образом, определив, для каких дробных точек параллелепипеда OABCчисло Q получается целым, тем самым мы определим, какие дробные точки этого параллелепипеда входят в плоские сетки (pqr) с целыми точками. Вследствие свойства параллельно-переносной повторяемости системы и в других параллелепипедах те же точки (точки с теми же правильнодробными частями числовых координат) будут захвачены плоскими сетками (pqr) с целыми точками.

Подсчитаем, сколько дробных точек параллелепипеда OABC входит в плоские сетки с целыми точками, т. е. для скольких точек число Q получается целым. Пусть таких точек будет m-1, так что вместе с одной целой точкой всего в таких плоских сетках будет m точек одного параллелепипеда.

Плоские сетки, содержащие исключительно дробные точки, расположатся между плоскими сетками с целыми точками. А так как в любой параллелепипедальной системе ретикулярная плотность всех параллельных плоских сеток одинакова, то и плоские сетки с исключительно дробными точками также будут включать в себе по *m* точек каждого параллелепипеда.

Итак, всех точек в каждом параллелепипеде *OABC* n и все эти n точек захватываются плоскими сетками, каждая из которых содержит m точек параллелепипеда. Отсюда непосредственно следует, что число плоских сеток, захватывающих все n точек параллелепипеда, будет $\frac{n}{m}$. При этом межплоскостное расстояние всех этих плоских сеток одинаково вследствие параллельно-переносной повторяемости системы.

¹ Б. Н. Делоне, там же, стр. 69.

Через одну целую точку, принадлежащую каждому параллелепипеду $OABC_r$ проходит одна плоская сетка. Через все *n* точек его проходит $\frac{n}{m}$ плоских сеток. Следовательно, расстояние между двумя соседними плоскими сетками d' будет в $\frac{n}{m}$ раз меньше расстояния d между плоскими сетками с целыми точками:

$$d' = d : \frac{n}{m} = \frac{m}{n} d. \tag{3}$$

Итак, чтобы определить межплоскостное расстояние d^r в параллелепипедальной системе, заданной пепримитивным параллелепипедом OABC с n точкамн и числовыми координатами каждой точки— x_i , y_i , z_i , надо: 1) вычислить по формулам Браве расстояние между плоскими сетками с целыми точками d; 2) подставить числовые координаты n точек в формулу (2); 3) найти число m, показывающее, для скольких точек число Q в формуле (2) получится целым, и 4) разделить d на $\frac{n}{m}$.

Полученная величина и будст межплоскостное расстояние d'.

Задача решена в общем виде.

Решим ее для наиболее важных частных случаев. Этими случаями являются сложные решетки Браве, а именно: 1) центрированная решетка (октаэдрическая структура), 2) центрогранная решетка (додекаэдрическая структура) и 3) базоцентрированная решетка.

Числовые координаты дробных точек — x_i , y_i , z_i во всех этих решетках равны либо 1/2, либо 0. Поэтому плоские сетки со всеми возможными индексами можно подразделить на три группы по признаку четности их индексов и решать задачу сразу для целой группы: а) плоские сетки с тремя нечетными индексами (ННН), b) — с двумя нечетными индексами (ННЧ), (НЧН), (ЧНН) и с) — с одним нечетным индексом (НЧЧ), (ЧЧН).

1. ЦЕНТРИРОВАННАЯ (ОКТАЭДРИЧЕСКАЯ) РЕШЕТКА

В каждый параллелепипед входят две точки: одна целая точка, другая дробная; n = 2. Числовые координаты дробной точки (x_i, y_i, z_i) равны $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$. **а) (ННН)**

По формуле (2) находим:

$$Q = H \cdot \frac{1}{2} + H \cdot \frac{1}{2} + H \cdot \frac{1}{2} = \frac{1}{2} (H + H + H) =$$
дробное число.

Дробные точки не входят в плоские сетки с целыми точками.

Из двух точек только одна точка каждого параллелепипеда входит в каждую плоскую сетку. Поэтому m = 1. По формуле (3)

$$d' = \frac{m}{n} d = \frac{1}{2} d$$

b) (HH4)

$$Q = \frac{1}{2}(H + H + H) =$$
 целое число.

Дробные точки находятся в плоских сетках с целыми точками m = n = 2:

$$d' = \frac{m}{n} d = d.$$

Для плоских сеток (НЧН) и (ННЧ) результат получится тот же d' = d.

с) (НЧЧ)

$$Q = \frac{1}{2} (H + H + H) =$$
 дробное число.
 $m = 1; d' = \frac{1}{2} d.$

Для (ЧНЧ) и (ЧЧН) результат тот же.

Отсюда известное общее правило: в центрированной (октаэдрической) решетке для плоских сеток с одним или тремя иечетными индексами (с нечетной суммой индексов) межплоскостное расстояние в два раза меньше, чем в том случае, если бы дробные точки в решетке отсутствовали (если бы решетка была гексаэдрической); для плоских сеток с двумя нечетными индексами (с четной суммой индексов) межплоскостное расстояние не меняется.

2. ЦЕНТРОГРАННАЯ (ДОДЕКАЭДРИЧЕСКАЯ) РЕШЕТКА

Одна точка целая и три точки дробные; n = 4. Числовые координаты дробных точек (x_i, y_i, z_i) равны:

1)
$$\frac{1}{2}$$
 $\frac{1}{2}$ 0
2) $\frac{1}{2}$ 0 $\frac{1}{2}$
3) 0 $\frac{1}{2}$ $\frac{1}{2}$

a) (HHH)

$$Q_1 = Q_2 = Q_3 = \frac{1}{2} (H + H) =$$
 целое число.

$$m = n = 4; d' = \frac{m}{n} d = d.$$

b) (HH4)

$$Q_1 = \frac{1}{2} (H + H) =$$
 целое число.
 $Q_2 = Q_3 = \frac{1}{2} (H + H) =$ дробное число.

Одна дробная точка входит в плоские сетки с целыми точками; поэтому: m = 2 (1 целая точка + 1 дробная):

$$d' = \frac{m}{n} d = \frac{1}{2} d.$$

Для плоских сеток (НЧН) и (ЧНН) также $d' = \frac{1}{2}d$. c) (НЧЧ)

$$Q_1 = Q_2 = \frac{1}{2} (H + H) =$$
 дробное число.
 $Q_3 = \frac{1}{2} (H + H) =$ целое число.
 $m = 2; d' = \frac{m}{n} d = \frac{1}{2} d.$

Для (НЧН) и (ННЧ) результат тот же: $d' = \frac{1}{2} d$.

Отсюда известное правило: в центрогранной (додекаэдрической) решетке для граней с одним или двумя нечетными индексами (со смешанными индексами) межплоскостное расстояние в два раза меньше, чем в том случае, если бы дробных точек не было (если бы решетка была гексаэдрической); для плоских сеток с тремя нечетными индексами (с несмешанными индексами) расстояние не меняется.

З. БАЗОЦЕНТРИРОВАННАЯ РЕШЕТКА

Одна точка целая, другая дробная; n = 2. Числовые координаты дробной точки равны: $\frac{1}{2}$ $\frac{1}{2}$ 0.

$$Q = \frac{1}{2}(H + H) =$$
 целое число.

$$m=n=2; d'=\frac{m}{n}d=d.$$

b) (HH4)

$$Q = \frac{1}{2} (H + H) =$$
 целое число

m = n = 2; d' = d.

(HYH)

$$Q = \frac{1}{2}(H + 4) =$$
дробное число.
 $m = 1; d' = \frac{1}{2}d.$

1

(HHH)

То же самое:

c) (HYY)

 $Q = \frac{1}{2} (H + Y) =$ дробное число.

$$m=1; d'=\frac{1}{2}d.$$

 $d' = \frac{1}{2} d.$

(444)

То же самое:

(**ЧЧH**)

$$Q = \frac{1}{2} (\Psi + \Psi) =$$
 целое число.
 $m = n = 2; d' = d.$

Отсюда известное правило:

В базоцентрированной решетке для плоских сеток, имеющих первый и второй индексы различной четности, межплоскостное расстояние в два раза меньше, чем оно было бы, если бы дробных точек не было. Для плоских сеток с одинаковой четностью первого и второго индексов межплоскостное расстояние не меняется.

$$d' = \frac{1}{2}d.$$

ТАБЛИЦЫ
$0.05000 = \frac{1}{20}$	$0.15790 = \frac{3}{19}$	$0.30769 = \frac{4}{13}$	$0.45000 = \frac{9}{20}$	$0.60000 = \frac{3}{5}$	$0.73684 = \frac{14}{19}$
$0.05263 = \frac{1}{19}$	$0.16666 = \frac{1}{6}$	$0.31250 = \frac{5}{16}$	$0.45455 = \frac{5}{11}$	$0.61111 = \frac{11}{18}$	$0.75000 = \frac{3}{4}$
$0.05555 = \frac{1}{18}$	$0.17647 = \frac{3}{17}$	$0.31579 = \frac{6}{19}$	$0.46154 = \frac{6}{13}$	$0.61538 = \frac{8}{13}$	$0.76470 = \frac{13}{17}$
$0.05882 = \frac{1}{17}$	$0.18182 = \frac{2}{11}$	$0.33333 = \frac{1}{3}$	$0.46667 = \frac{7}{15}$	$0.62500 = \frac{5}{8}$	$0.76923 = \frac{10}{13}$
$0.06250 = \frac{1}{16}$	$0.18750 = \frac{3}{16}$	$0.35000 = \frac{7}{20}$	$0.47058 = \frac{8}{17}$	$0.63158 = \frac{12}{19}$	$0.77778 = \frac{7}{9}$
$0.06667 = \frac{1}{15}$	$0.20000 = \frac{1}{5}$	$0.35294 = \frac{6}{17}$	$0.47368 = \frac{9}{19}$	$0.63636 = \frac{7}{11}$	$\frac{3}{0.78572 = \frac{11}{11}}$
$0.07143 = \frac{1}{14}$	$0.21053 = \frac{4}{19}$	$0.35715 = \frac{5}{14}$	$0.50000 = \frac{1}{2}$	$0.64286 = \frac{9}{14}$	14 0 78947 $=$ 15
$0.07692 = \frac{1}{13}$	$0,21429 = \frac{3}{14}$	$0.36364 = \frac{4}{11}$	$0.52631 = \frac{10}{19}$	$0.64705 = \frac{11}{17}$	0.10011 - 19
$0.08233 = \frac{1}{12}$	$0.22222 = \frac{2}{9}$	$0.36842 = \frac{7}{19}$	$0.52941 = \frac{9}{17}$	$0.65000 = \frac{13}{20}$	$\frac{0.80000 = \frac{13}{5}}{13}$
$0.09091 = \frac{1}{11}$	$0.23077 = \frac{3}{13}$	$0.37500 = \frac{3}{8}$	$0.53333 = \frac{8}{15}$	$0.66667 = \frac{2}{3}$	$0.81250 = \frac{16}{16}$
$0.10000 = \frac{1}{10}$	$0.23529 = \frac{4}{17}$	$0.38461 = \frac{5}{13}$	$0.53846 = \frac{7}{13}$	$0.68421 = \frac{13}{10}$	$0.81818 = \frac{3}{11}$
$0.10526 = \frac{2}{19}$	$0.25000 = \frac{1}{4}$	$0.38889 = \frac{7}{18}$	$0.54546 = \frac{6}{11}$	$0.68750 = \frac{11}{16}$	$0.82353 = \frac{14}{17}$
$0.11111 = \frac{1}{9}$	$\frac{1}{0.26316} = \frac{5}{10}$	$0.40000 = \frac{2}{5}$	$0.55000 = \frac{11}{20}$	$0.69221 = \frac{9}{10}$	$0.83333 = \frac{5}{6}$
$0.11764 = \frac{2}{17}$	$0.26667 = \frac{4}{15}$	$\frac{1}{0.41176 = \frac{7}{17}}$	$0.55555 = \frac{5}{9}$	13 0.70000 $= \frac{7}{10}$	$0.84210 = \frac{16}{19}$
$0.12500 = \frac{1}{8}$	$0.27273 = \frac{3}{11}$	$0.41666 = \frac{5}{12}$	$0.56250 = \frac{9}{16}$	10 $0.70588 = \frac{12}{17}$	$0.87500 = \frac{7}{8}$
$0.12333 = \frac{2}{15}$	$0.27778 = \frac{5}{18}$	$0.42105 = \frac{8}{12}$	$0.57143 = \frac{4}{7}$	$0.71429 = \frac{5}{7}$	$0.88888 = \frac{8}{9}$
$0.14286 = \frac{1}{7}$	$0.28572 = \frac{2}{7}$	$0.42858 = \frac{3}{7}$	$0.57143 = \frac{11}{19}$	$\frac{7}{0.72222} = \frac{13}{13}$	$0.89473 = \frac{17}{19}$
$0.15000 = \frac{3}{20}$	$0.29411 = \frac{5}{17}$	$\frac{7}{0.43750 = \frac{7}{10}}$	$0.58333 = \frac{7}{12}$	$0.72727 = \frac{8}{3}$	$0.94444 = \frac{17}{18}$
$0.15384 = \frac{2}{13}$	17 $0.30000 = \frac{3}{10}$	16 0.44444 = $\frac{4}{2}$	$0.58823 = \frac{10}{17}$	$0.73333 = \frac{11}{11}$	$0.94730 = \frac{18}{10}$
	10	9		15	19

Таблица I. Десятичные эквиваленты

Объяснение к таблице І

Таблица служит для выражения десятничых дробей обыкновенными, что часто приходится делать при определении символов. Она применима только в тех случаях, когда один из индексов символа приведен к единице.

Если десятичная дробь содержит целое число, то определяется се десятичный эквивалепт, полагая вместо целого числа нуль; целое же число приписывается затем к обыкновенной дроби и вместе с дробью выражается в виде неправильной дроби.

В таблице приведены наиболее простые дроби, чаще всего встречающиеся при определении символов граней или плоских сеток. Наиболее часто встречающиеся дроби подчеркнуты.

Таблица II. Натуральные котангенсы и тангенсы

,	0°	1°	2°	3°	4°	5°	6°	7°	8°	,
			Нату	раль	ные	котан	гснс	ы		
+		57.2900	28.6363	19.0811	14.3007	11.4301	9.51436	8.14435	7-11537	60
1	3437.75	56.3506	28.3994	18.9755	14.2411	11.3919	9.48781	8.12481	7.10038	59
2	1718.87	55.4415	28.1664	18.8711	14.1821	11.3540	9.46141	8.10536	7.08546	58
3	1145.92	54.5613	27.9372	18.7678	14.1235	11.3163	9.43515	8.08600	7.07059	57
4	859.436	53.7086	27.7117	18.6656	14.0655	11.2789	9.40904	8.06674	7.05579	56
5	687.549	52.8821	27.4899	18.5645	14.0079	11.2417	9.38307	8.04756	7.04105	55
Ű	001 010	02 0021						0		
6	572.957	52.0807	27.2715	18.4645	13.9507	11.2048	9.35724	8.02848	7.02637	54
7	491.106	51.3032	27.0566	18.3655	13.8940	11.1681	9.33155	8.00948	7.01174	53
8	429.718	50.5485	26.8450	18.2677	13.8378	11.1316	9.30599	7.99058	6.99718	52
9	381.971	49.8157	26.6367	18.1708	13•7821	11.0954	0-28058	7.97176	6.98268	51
10	343.774	49.1039	26 4316	18.0750	13.7267	11.0594	9.25530	7.95302	6.96823	50
			00.0000	1- 0000	10 0710		0.00010		0.05005	40
11	312.521	48.4121	26.2296	17.9802	13.6719	11.0237	9.23016	7.93438	6.95385	49
12	286.478	47.7395	26.0307	17.8863	13.6174	10.9881	9.20516	7.91582	6.93952	48
13	264.441	47.0853	25.8348	17.7934	13.5634	10.9528	9-18028	7.89734	6.92525	47
14	245.552	46-4489	25.6418	17.7015	13.5098	10.9178	9.15554	7.87895	6.91104	46
15	229.182	45.8294	25.4517	17.6106	13.4566	10.8829	9.13093	7.86064	6.89688	45
16	214.858	45.2261	25.2644	17.5205	13.4039	10-8483	9.10646	7.84242	6.88278	44
17	202.219	44.6386	25.0798	17•4314	13.3515	10.8139	9.08211	7.82428	6.86874	43
18	190.984	44.0661	24.8978	17.3432	13.2996	10.7797	9.05789	7.80622	6.85475	42
19	180.932	43.5081	24.7185	17.2558	13.2480	10.7457	9.03379	7.78825	6.84082	41
20	171.885	42.9641	24.5418	17.1693	13.1960	10.7119	9.00983	7.77035	6.82694	40
$21 \cdot$	163.700	42•4335	$24 \cdot 3675$	17.0837	13.1461	10.6783	8.98598	7.75254	6.81312	39
22	156.259	41.9158	$24 \cdot 1957$	16.9990	13.0958	10.6450	8.96227	7.73480	6.79936	38
23	$149 \cdot 465$	41.4106	$24 \cdot 0263$	16.9150	13.0458	10.6118	8.93867	7.71715	6.78564	37
24	$143 \cdot 237$	40.9174	23.8593	16.8319	12.9962	10.5789	8.91520	7.69957	6.77199	36
25	137.507	40.4358	23.6945	16.7496	12.9469	10.5462	8.89185	7.68208	6.75838	35
00	100 010	20.0055	00 5001	10 0001	10,0001	10 5100	0.0000		0 74400	
26	132.219	39.9655	23.5321	16.6681	12.8981	10.5136	8.86862	7.66466	6.74483	34
27	127.321	39.5059	23.3718	16.5874	12.8496	10.4813	8.84551	7.64732	6.73133	33
28	122.774	39.0568	23.2137	16.5075	12.8014	10.4491	8.82252	7.63005	6.71789	32
29	118.510	38.6177	23.0577	16.4283	12.7536	10.4172	8.79964	7.61287	6.70450	31
30	114.589	38.1885	22.9038	16.3499	12.7062	10.3854	8.77689	7.59575	6.69116	
	Нат	урали	ынс	танг	енсы		I 	I - ·	I	<u>' </u>
		· ·							<u></u>	
1	.89°	88°	87°	86°	85°	84°	83°	82°	81°	1.

¹ T. V. Barker, Crystallographic tables and formulae.

1	0°	1°	2°	3°	4°	5°	6°	7°	8°	,
			Нату	раль	пыс і	котаг	гепс	ы		
¥ 31	110.892	37.7686	22.7519	16.2722	12.6591	10.3538	8.75425	7.57872	6.67787	29
32	107.426	37 • 3579	22.6020	16.1952	12.6124	10.3224	8.73172	7.56176	6.66463	28
33	104.171	36.9560	22•4541	16.1190	12.5660	10-2913	8.70931	7.54487	6.65144	27
34	101.107	36•5627	22.3081	16.0435	12.5199	10.2602	8.68701	7.52806	6.63831	26
35	98 ·2179	36.1776	22.1640	15.9687	12.4742	10.2294	8.66482	7.51132	6.62523	25
36	95•4895	35.8006	22.0217	15.8945	12•4288	10.1988	8.64275	7.49465	6.61219	24
37	92.9085	35•4313	21.8813	15.8211	12.3838	10.1683	8.62078	7 • 47806	6.59921	23
38	90.4633	35.0695	21.7426	15.7483	12.3390	10.1381	8.59893	7.46154	6.58627	22
39	88.1436	34.7151	$21 \cdot 6056$	15.6762	12.2946	10.1080	8.57718	7.44509	6.57339	21
40	85-9398	34.3678	21.4704	15.6048	12.2505	10.0780	8.55555	7.42871	6.56055	20 [,]
41	83.8435	34.0273	21.3369	15•5340	12.2067	10.0483	8.53402	7•41240	6.54777	19
42	81.8470	33.6935	21.2049	15.4638	12.1632	10.0187	8.51259	7.39616	6.53503	18
43	79 •9434	33•3662	21.0747	15.3943	12.1201	9•98931	8.49128	7.37999	6.52234	17
44	78.1263	33.1452	20.9460	15.3254	12.0772	9.96007	8.47007	7.36389	6.50970	16
45	76•3900	32.7303	20.8188	15-2571	12.0346	9-93101	8.44896	7.34786	6.49710	15
46	74.7292	32.4213	20.6932	15.1893	11.9923	9-90211	8-42795	7.33190	6 • 48456	14
47	73.1390	32.1181	20.5691	15.1222	11.9504	9.87338	8-40705	7.31600	6·47206	13
48	71.6151	31.8205	20.4465	15.0557	11.9087	9.84482	8.38625	7.30018	6.45961	12
49	70.1533	31.5284	20.3253	14.9898	11.8673	9.81641	8.36555	7 •28442	6.44720	11
50	68.7501	31.2416	20.2056	14.9244	11.8262	9.78817	8.34496	7.26873	6 • 43484	10
51	67 • 4019	30.9599	20.0872	13.8596	11.7853	9.76009	8.32446	7.25310	6.42253	· 9
52	66.1055	30.6833	19.9702	14.7954	11.7448	9.73217	8.30406	7.23754	6.41026	8
53	64.8580	30.4116	19.8546	14.7317	11.7045	9.70441	8.28376	7.22204	6,•39804	7
54	63.6567	30.1446	19.7403	14.6685	11.6645	9.67680	8.26355	7.20661	6.38587	6
55	62.4992	29.8823	19.6273	14.6059	11.6248	9.64935	8.24345	7.19125	6.37374	5
56	61.3829	29.6245	19.5156	14.5438	11.5853	9.62205	8.22344	7.17594	6.36165	4
57	60.3058	29.3711	19.4051	14.4823	11.5461	9.59490	8.20352	7.16071	6.34961	3
58	59.2659	29.1220	19.2959	14.4212	11.5072	9.56791	8.18370	7.14553	6.33761	2
59	58.2612	28.8771	19.1879	14.3607	11.4685	9.54106	8.16398	7.13042	6.32566	1
60	57.2900	28.6363	19.0811	14.3007	11.4301	9.51436	8.14435	7.11537	6.31375	0
	Нат	уралы	ьные	танг	епсы	·				<u> </u>
-	89°	88°	87°	86°	85°	84°	83°	82°	81°	,

,	9°	10°	11°	12°	1 3°	14°	15°	16°	17°	,
			Нату	раль	пыст	сотан	гепс	Ы		
0	6.31375	5.67128	5.14455	4.70463	4.33,148	4.01078	3.73205	3.48741	3.27085	60
1	6.30189	5.66165	5.13658	4.69791	4.32573	4.00582	3.72771	3.48359	3.26745	59
2	6.29007	5.65205	5.12862	4.69121	4.32001	4.00086	3.72338	3.47977	3-26406	58
3	6.27829	5.64248	5.12069	4.68452	4.31430	3.99592	3.71907	3.47596	3.26067	57
4	6.26655	5.63295	5.11279	4.67786	4.30860	3.99099	3.714/6	3.4/210	3.25729	56
Э	6.23480	5.02344	5.10490	4.0/121	4.30291	3.99001	3.71040	3.40037	3.25392	55
6	6.24321	5.61397	5.09704	4.66458	4.29724	3.98117	3.70616	3.46458	3.25055	54
7	6.23160	5.60452	5.08921	4.65797	4.29159	3.97627	3.70188	3.46080	3.24719	53
8	6.22003	5.59511	5.08139	4.65138	4·28595	3.97139	3.69761	3.45703	3.24383	52
9	6.20851	5.58573	5.07360	4.64480	$4 \cdot 28032$	3.96651	3.69335	3•45327	3.24049	51
10	6.19703	5.57638	5.06584	4.63825	4.27471	3.96165	3.68909	3.44951	3.23714	50
11	6.18559	5.56706	5.05809	4.63171	4.26911	3.95680	3.68485	3•44576	3.23381	49
12	6.17419	5.55777	5.05037	4.26518	4.26352	3.95196	3-68061	3.44202	3.23048	48
13	6.16283	5.54851	5.04267	4.61868	4.25795	3.94713	3.67638	3.43829	3.22715	47
14	6 • 15151	5.53927	5.03499	4.61219	4.25239	3.94232	3.67217	3.43456	3.22384	46
15	6.14023	5.53007	5.02734	4.60572	4.24685	3.93751	3.66796	3.43084	3.22053	45
16	6.12899	5.52090	5.01971	4.59927	4.24132	3.93271	3.66376	3.42713	3.21722	44
17	6-11779	5.51176	5.01210	4.59283	4.23580	3.92793	3.65957	3.42343	3.21392	43
18	6.10664	5.50264	5.00451	4.58641	4.23030	3.92316	3.65538	3.41973	3.21063	42
19	6.09552	5.49356	4.99695	4.58001	4.22481	3.91839	3.65121	3.41604	3.20734	41
20	6.08444	5.48451	4.98940	4.57363	4.21933	3.91364	3.64705	3-41236	3.20406	40
21	6.07340	5.47548	4.98188	4.56726	4.21387	3.90890	3.64289	3.40869	3.20079	39
22	6.06240	5.46648	4.97438	4.56091	4.20842	3.90417	3.63874	3.40502	3.19752	38
23	6.05143	5.45751	4.06600	4.55458	4.20208	3.80045	3.63461	3.40136	3,10426	37
24	6.04051	5.44857	4.05045	4 54996	4 10756	3.80474	2 62049	3.30771	3.10100	36
25	6.02962	5.43966	4.95201	4.54196	4.1975	3.89004	3.62636	3.39406	3.18775	35
26	6 01979	5 43077	1 04460	4 52560	4 10675	2 00526	2 60004	2 20042	0 10451	21
20	6 00707	5 40102	4.94400	4.53508	4.18075	3.88030	3.62224	3.39042	3.18431	0+ 22
21	5 00700	5 41200	4.93721	4.52941	4.18137	3.88008	3.01814	3.38079	3.10121	00 00
28	5.99720	5.41309	4.92984	4.52316	4.17500	3.8/601	3.61405	3.38317	3.17804	32 01
29	5.98646	0.40429	4.92249	4.51693	4.17064	3.87136	3.60996	3.37955	3.17481	31
30	5.97576	5.39552	4.91516	4.51071	4.16530	3.86671	3.60588	3.37594	3·17159	30 ▲
	Нат	урал	ьные	танг	енсы.					
,	80°	79°	78°	77°	76°	75°	74°	. 73°	72°	,

ſ	,	9°	10°	11°	12°	13°	14°	15°	16°	17°	,
			·	Нату	раль	пые	котан	генс	ы		1
	↓ 31	5.96510	5.38677	4.90785	4.50451	4.15997	3.86208	3.60181	3.37234	3.16838	29
	32	5-95448	5.37805	4.90056	4.49832	• 4 • 15465	3.85745	3.59775	3.36875	3.16517	28
	33	5-94390	5.36936	4.89330	4.49215	4.14934	3.85284	3.59370	3.36516	3-16197	27
	34	5.93335	5.36070	4.88605	4.48600	4.14405	3.84824	3-58966	3.36158	3.15877	26
	35	5.92283	5.35206	4.87882	4.47986	4 • 13877	3-84364	3.58562	3.35800	3.15558	25
	36	5.91236	5.34345	4.87162	4.47374	4.13350	3.83906	3.58160	3 · 35443	3.15240	24
	37	5.90191	5.33487	4.86 444	$4 \cdot 46764$	4.12825	3.83449	3.57758	3.35087	3.14922	23
	38	5.89151	5.32631	4.85727	$4 \cdot 46155$	4.12301	3.82992	3.57357	3.34732	3.14605	22
1	39	5-88114	5.31778	4.85013	4.45548	4.11778	3-82537	3.56957	3.34377	3.14288	21
	40	5.87080	5.30928	4.84300	4.44942	4.11256	3.82083	3.56557	3.34023	3.13972	20
	41	5.86051	5-30080	4.83590	4.44338	4.10736	3.81630	3.56159	3.33670	3.13656	19
,	42	5 ·8 5024	5.29235	4.82882	4 • 43735	4.10216	3.81177	3.55761	3.33317	3.13341	18
	43	5.84001	5.28393	4.82175	4.43134	4 ·0 9699	3.80726	3.55364	3.32965	3.13027	17
1	44	5.82982	5.27553	4.81471	4 • 42534	4.09182	3.80276	3 • 54968	3.32614	3.12713	16
	45	5-81966	5.26715	4.80769	4.41936	4.08666	3.79827	3.54573	3.32264	3.12400	15
	46	5.80953	5.25880	4.80068	4.41340	4 •0 8152	3.79378	3.54179	3.31914	3.12087	14
	47	5.79944	5.25048	4.79370	4.40745	4.07639	3.78931	3 • 53785	3.31565	3.11775	13
	48	5.78938	5.24218	4•78673	4 • 40152	4.07127	3.78485	3.53393	3.31216	3.11464	12
	49	5.77936	5.23391	4.77978	4.39560	4.06616	3.78040	3.53001	3-30868	3.11153	11
	50	5-76937	$5 \cdot 22566$	4.77286	4.38969	4.06107	3.77595	3.52609	3.30521	3 .10842	10
	51	5.75941	5.21744	4.76595	4.38381	4.05599	3.77152	3.52219	3.30174	3.10532	9
	52	5.74949	5.20925	4.75906	4.37793	4.05092	3.7670 9	3.51829	3.29829	3-10223	8
	53	5.73960	5.20107	4.75219	4.37207	4.04586	3.76268	3.51441	3.29483	3∙0991 4	7
1	54	5.72974	5.19293	4 ∙74534	4.36623	4.04081	3.75828	3.51053	3.29139	3.09606	6
	55	5.71992	5.18480	4.73851	4.36040	4.03578	3.75388	3.50666	3.28795	3.09298	5
	56	5.71013	5.17671	4.73170	4.35459	4.03076	3.74950	3.50279	3.28452	3.08991	4
1	57	5.70037	5.16863	4·72490	4.34870	4.02574	3.74512	3.49894	3.28109	3.08685	3
	58	5.69034	5.16058	4.71813	4.34300	4.02074	4.74075	3.49509	3.27767	3.08379	2
	59	5.68094	5.15256	4.71137	4.33723	4.01576	3.73640	3.49125	3.27426	3.08073	1
	60	5.67128	5.14455	4.70463	4.33148	4.01078	3.73205	3•48741	3.27085	3.07768	0
1		Нат	урал	ьпые	танг	епсы.				_	
	,	80°	79°	78°	77°	76°	75°	74°	73°	72°	,

. 1	18°	19°	20°	21°	22°	23°	24°	25°	26°	,
			-Нату	раль	ные	котан	игенс	ы		•
0	3.07768	2.90421	2.74748	2.60509	2.47509	2.35585	2.24604	2.14451	2.05030	60
1	3.07464	2.90247	2.74499	2.60283	2.47302	2.35395	2.24428	2.14288	2.04879	59
2	3.07160	2.89873	2.74251	2.60057	2.47095	2.35205	2.24252	2.14125	2.04728	58
3	3.06857	2.89600	2.74004	2.59831	2.46888	2.35015	2.24077	2.13963	2.04577	57
4	3.06554	2-89327	2.73756	2.59606	2.46682	2.34825	2.23902	2.13801	2.04426	56
5	3.05252	2.89055	2.73509	2.59381	2.46476	2.34636	2.23727	2.13639	2.04276	55
6	3.05950	2.88783	2.73263	2.59156	2.46270	2.34447	2.23553	2.13477	2.04125	54
7	3.05649	2.88511	2.73017	2.58932	2.46065	2-34258	2.23378	2.13316	2.03975	53
8	3.05349	2.88240	2.72771	2.58708	2.45860	2.34069	2.23204	2.13154	2.03825	52
9	3.05049	2.87970	2.72526	2.58484	2.45655	2.33881	2.23030	2.12993	2.03675	51
10	3.04749	2.87700	2.72281	2.58261	2•45451	2.33693	2.22857	2.12832	2 •03 526	50
11	3.04450	2.87430	2.72036	2.58038	2.45246	2.33505	2.22683	2.12671	2 03376	49
12	3.04152	2.87161	2.71792	2.57815	2.45043	2-33317	2.22510	2.12511	2.03227	48
13	3.03854	2.86892	2.71548	2.57593	2.44839	2.33130	2.22337	2-12350	2.03078	47
14	3.03556	2.86624	2.71305	2.57371	2.44636	2.32943	2.22164	2.12190	2.02929	46
15	3.03260	2.86356	2.71062	2.57150	2•44433	2.32756	2.21992	2.12030	2.02780	45
16	3.02963	2.86089	2.70819	2.56928	2.44230	2.32570	2.21819	2.11871	2.02631	44
17	3.02667	2.85822	2.70577	2.56707	2.44027	2-32383	2.21647	2.11711	2.02483	43
18	3.02372	2.85555	2.70335	$2 \cdot 56487$	$2 \cdot 43825$	2.32197	2.21475	2.11552	2.02335	42
19	3.02077	2.85289	2.70094	$2 \cdot 56266$	2.43623	2.32012	2.21304	2.11392	2.02187	41
20	3.01783	2.85023	2.69853	2.56045	2.43422	2.31826	2.21132	2.11233	2.02039	40
21	3.01489	2.84758	2.69612	2.55827	2.43220	2.31641	2.20961	2.11075	2.01891	39
22	3.01196	2.84494	2.69371	2.55608	2.43019	2.31456	2.20790	2.10916	2.01743	38
23	3.00903	2.84229	2.69131	2.55389	2.42819	2.31271	2.20619	2.10758	2.01596	37
24	3.00611	2.83965	2.68892	2.55170	2.42618	2.31086	2.20449	2.10300	2.01449	36
25	3.00319	2.83702	2.68653	2.54952	2•42418	2.30902	2.20278	2.10442	2.01302	35
26	3.00028	2.83439	2.68414	2.54734	2.42218	2.30718	2.20108	2.10284	2.01155	34
27	2.99738	2.83176	2.68175	2.54516	2.42019	2.30534	2.19938	2.10126	2.01008	33
28	2.99447	2.82914	2.67937	2.54299	2.41819	2.30351	2.19769	2.09969	2.00862	32
29	2.99158	2.82653	2.67700	2.54082	2.41620	2.30167	2.19599	2.09811	2.00715	31
30	2.98868	2.82391	2.67462	2.53865	2•41421	2.29984	2.19430	2.09654	2.00569	30
	Нат	урал	ь́ные	танг	енсы.		I 	I	1	<u></u> ↑
		700		0			0.55			
Ĺ	/1°	/ 70°	69°	68°	67°	66°	63°	64°	63°	

1	18°	19°	20°	21°	22°	23°	24°	25°	26°	,
<u> </u>			Нату	раль	пыен	сотан	генс	ы		•
↓ 31	2.98580	2.82130	2.67225	2.53648	2.41223	2.29801	2.19261	2.09498	2.00423	29
32	2.98292	2.81870	2.66989	2.53432	2-41025	2.29619	2.19092	2.09341	2.00277	28
33	2.98004	2.81610	2.66752	2.53217	2.40827	2.29437	2.18923	2.09184	2.00131	27
34	2.97717	2.81350	2.66516	2.53001	2.40629	2.29254	2.18755	2.09028	1.99986	26
35	2.97430	2.81091	2.66281	2.52786	2.40432	2.29073	2.18587	2.08872	1.99841	25
36	2.97144	2.80833	2.66046	2.52571	2.40235	2.28891	2.18419	2.08716	1.99695	24
37	2.96858	2.80574	2.65811	2-52357	2.40038	2.28710	2.18251	2.08560	1.99550	23
38	2.96573	2.80316	2.65576	2.52142	2.39841	2.28528	2.18084	2.08405	1.99406	22
39	2.96288	2.80059	2.65342	2.51929	2.39645	2.28348	2.17916	2.08250	1.99261	21
40	2.96004	2.79802	2.65109	2.51715	2.39449	2.28167	2.17749	2.08094	1.99116	20
41	2.95721	2.79545	2.64875	2.51502	2.39253	2.27987	2.17582	2.07939	1.98972	19
42	2.95437	2.79289	2.64642	2.51289	2.39058	2.27806	2.17416	2.07785	1.98828	18
43	2.95155	2.79033	2.64410	2.51076	2.38863	2.27626	2.17249	2.07630	1.98684	17
4 4	2.94872	2.78778	2.64177	2.50864	2.38668	2.27447	2.17083	2.07476	1.98540	16
45	2.94591	2.78523	2.63945	2.50652	2.38473	2.27267	2.16917	2.07321	1.98396	15
46	2.94309	2.78269	2.63714	2.50440	2.38279	2.27088	2.16751	2.07167	1.98253	14
47	2.94028	2.78014	2.63483	2.50229	2.38084	2.26909	2.16585	2.07014	1.98110	13
48	2.93748	2.77761	2.63252	2.50018	2.37891	2.26730	2.16420	2.06860	1.97966	12
49	2.93468	2.77507	2.63021	2.49807	2.37697	2.26552	2.16255	2.06706	1.97823	11
50	2.93189	2.77254	2.62791	2.49597	2.37504	2.26374	2.16090	2.06553	1.97681	10
51	2.92910	2.77002	2.62561	2.49386	2.37311	2.26196	2.15925	2.06400	1.97538	9
52	2-92632	2.76750	2.62332	2.49177	2.37118	2.26018	2.15760	2.06247	1.97395	8
53	2.92354	2.76498	2.62103	2.48967	2.36925	2.25840	2.15596	2.06094	1-97253	7
54	2.92076	2.76247	2.61874	2.48758	2.36733	2.25663	2.15432	2.05942	1.97111	6
. 55	2.91799	2.75996	2.61646	2.48549	2.36541	2.25486	2.15268	2.05790	1.96969	5
56	2.91523	2.75746	2.61418	2.48340	2.36349	2.25309	2.15104	2.05637	1.96827	4
57	2.91246	2.75496	2.61190	2-48132	2.36158	2.25132	2.14940	2.05485	1-96685	3
58	2.90971	2.75246	2.60963	2.47924	2.35969	2.24956	2.14777	2.05333	1.96544	2
59	2.90696	2.74997	2.60736	2.47716	2.35776	2.24780	2.14614	2.05181	1.96402	1
60	2.90421	2.74748	2.60509	2.47509	2.35585	2.24604	2.14451	2.05030	1.96261	0
	Нат	урал	ьные	танг	енсы			<u> </u>		
'	71°	70°	69°	68°	67°	66°	65°	64°	65°	/

•

3		_				 				
1	27°	28°	29°	30°	.31°	32°	33°	3 4°	35°	'
		<u></u>	Нату	раль	ные	кота	пгенс	ы	<u> </u>	-
1 0 -	1.96261	1.88073	1.80405	1.73205	1.66428	1.60033	1.53986	1.48256	1.42815	60
1	1.96120	1.87941	1.80281	1.73089	1.66318	1.59930	1.53888	1.48163	1.42726	59
2	1.95979	1.87809	1.80158	1 - 72973	1.66209	1.59826	1.53791	1.48070	1.42638	58
3	1.95838	1.87677	1.80034	1.72857	1.66099	1.59723	1.53693	1•47977	1.42550	57
4	1.95698	1.87546	1.79911	1.72741	1.65990	1.59620	1.53595	1.47885	1.42462	56
5	1.95557	1.87415	1-79788	1.72625	1.65881	1.59517	1.53497	1.47792	1.42374	55
6	1.95417	1.87283	1.79665	1.72509	1.65772	1.59414	1.53400	1.47699	1.42286	54
7	1.95277	1.87152	1.79542	1.72393	1.65663	1.53311	1.53302	1.47607	1.42196	53
8	1.95137	1.87021	1.79419	1.72278	1.65554	1.59208	1.53205	1.47514	1.42110	52
9	1.94997	1-86891	1.79296	1.72163	1.65445	1.59105	1.53107	1.47422	1.42022	51
10	1.94858	1-86760	1.79174	1.72047	1.65337	1.59002	1.53010	1.47330	1-41934	50
11	1.94718	1.86630	1.79051	1.71932	1.65228	1.58900	1.52913	1.47238	1-41847	49
12	1.94579	1.86499	1.78929	1.71817	1.65120	1.58797	1.52816	1.47146	1.41759	48
13	1-94440	1.86369	1.78807	1.71702	1.65011	1.58695	1.52719	1.47053	1.41672	47
14	1.94301	1.86239	1.78685	1.71588	1.64903	1.58593	1.52622	1.46962	1.41584	46
15	1.94162	1.86109	1.78563	1.71473	1.64795	1.58490	1.52525	1.46870	1 41497	45
16	1.94023	1.85979	1.78441	1.71358	1.64687	1.58388	1.52429	1.46778	1•41409	44
17	1.93885	1.85850	1.78319	1.71244	1.64579	1.58286	1.52332	1.46686	1.41322	43
. 18	1.93746	1.85720	1.78198	1.71129	1.64471	1.58184	1.52235	1 • 46595	1.41235	42
19	1.93608	1.85591	1.78077	1.71015	1.64363	1.58083	1.52139	1.46503	1.41148	41
20	1.93470	1.85462	1.77955	1.70901	1.64255	1.57981	1.52043	1-46411	1.41061	40
21	1.93332	1.85333	1.77834	1.70787	1.64148	1.57879	1.51946	1 • 46320	1•40974	39
22	1.93195	1.85204	1.77713	1.70673	1.64041	1.57778	1.51850	$1 \cdot 46229$	1.40887	38
23	1.93057	1.85075	1.77592	1.70560	1.63934	1.57676	1.51754	1.46137	1.40800	37
24	1.92920	1.84946	1.77471	1.70446	1.63826	1.57575	1.51658	1.46046	1.40714	36
25	1.92782	1.84818	1.77351	1.70332	1.63719	1.57474	1.51562	$1 \cdot 45955$	1 • 40527	35
26	1.92645	1.84689	1.77230	1.70219	1.63612	1.57372	1.51466	$1 \cdot 45864$	1.40540	34
27	1.92508	1.84561	1.77110	1.70106	1.63505	1.57271	1.51370	1.45773	1.40454	33
28	1.92371	1.84433	1.76990	1.69992	1.63398	1.57170	1.51275	1.45682	1.40367	32
29	1.92235	1.84305	1.76869	1.69879	1.63292	1.57069	1.51179	1.45592	1.40281	31
30	1-92098	1.84177	1.76749	1.69766	1.63185	1.56969	1.51084	1.45501	1.40195	30
	Нат	урал	ьные	танг	епсы_				I	
/	62°	61°	60°	59°	58°	57°	56°	55°	54°	,

1	27°	28°	29°	30°	31°	32°	33°	34°	3 5°	,
			Нату	раль	пыс	котал	гепс	ы		•
¥ 31	1.91962	1.84049	1.76630	1.69653	1.63079	1.56868	1.50988	1.45410	1.40109	29
32	1.91826	1.83922	1.76510	1.69541	1.62972	1.56767	1.50893	1.45320	1.40022	28
33	1.91690	1.83794	1.76390	1.69428	1.62866	1-56637	1.5)797	1.45229	1.39936	27
34	1.91552	1.83667	1.76271	1.69316	1.62760	1.56566	1.50702	1.45139	1.39850	26
3 5	1.91418	1.83540	1.76151	1.69203	1.62654	1.56466	1.50607	1.45049	1.39764	25
36	1.91282	1.83413	1.76032	1.69091	1.62548	1.56366	1.50512	1.44958	1.39679	24
37	1.91147	1.33286	1.75913	1.68979	1.62442	1.56265	1.50417	1.44868	1.39593	23
38	1.91012	1.83159	1.75794	1.68866	1.62336	1.56165	1.50322	1.44778	1.39507	22
39	1.90876	1.83033	1.75675	1.68754	1.62230	1.56065	1.50228	1.44688	1.39421	21
40	1.90741	1.82906	1.75556	1.68643	1.62125	1.55966	1.50133	1 • 44598	1.39336	20
41	1.90607	1.82780	1.75437	1.68531	1.62019	1.55866	1.50038	1.44508	1.39250	19
42	1.90472	1.82654	1.75319	1.68419	1.61914	1.55766	1.49944	1.44418	1.39165	18
43	1.90337	1.82528	1.75200	1.68308	1.61808	1.55666	1.49849	1•44329	1.39079	17
44	1.90203	1.82402	1.75082	1.68196	1.61703	1.55567	$1 \cdot 49755$	1.44239	1.38994	16
45	1.90069	1.82276	1.74964	1.68085	1.61598	1.55467	1 • 49661	1-44149	1.38909	15
46	1.89935	1.82150	1.74846	1.67974	1.61493	1.55368	, ¹ •49566	1.44060	1.38824	14
47	1.89801	1.82025	1.74728	1.67863	1.61388	1.55269	1.49472	1.43970	1.38738	13
48	1.89667	1.81899	1.75610	1.67752	1.61283	1.55170	1.49378	1 • 43881	1•38653	12
49	1.89533	1.81774	1.74492	1.67641	1.61179	1.55071	1•49284	$1 \cdot 43792$	1.38568	11
50	1.89400	1:81649	1.74375	1.67530	1.61074	1.54972	1.49190	1.43703	1.38484	10
51	1.89266	1.81524	1.74257	1.67419	·1·60970	1.54873	1.49097	1.43614	1.38399	9
52	1.89133	1.81399	1.74140	1.67309	1.60865	1.54774	1.49003	1 • 43525	1•38314	8
53	1.89000	1.81274	1.74022	1.67198	1·60761	1.54675	1.48909	1.43436	1.38229	7
54	1.88867	1.81150	1.73905	1.67088	1.60657	1.54576	$1 \cdot 48816$	1.43347	1.38145	6
55	1.88734	1.81025	1.73788	1.66978	1.60553	1.54478	1.48722	1.43258	1.38050	5
56	1.88602	1.80901	1.73671	1.66867	1.60449	1.54379	1.48629	1.43169	1.37976	4
、57	1.88469	1.80777	1.73555	1.66757	1.60345	1.54281	1.48536	1.43080	1.37891	3
58	1.88337	1.80653	1.73438	1.66647	1.60241	1.54183	$1 \cdot 48442$	1•42992	1.37807	2
59	1.88205	1.80529	1.73321	1.66538	1.60137	1.54085	1•48349	$1 \cdot 42903$	1.37722	1
60	1.88073	1.80405	1.73205	1.66428	1.60033	1.53986	1 • 48256	1.42815	1.37638	0
	Нат	урали	ьные	танг	сн с ы-					
,	62°	61°	60°	59°	58°	57°	56°	55°	54°	,

,	36°	37°	38°	39°	40°	41°	42°	43°	44°	1
Ţ			Нату	раль	пые	котан	гепс	Ы		
0	1.37638	1.32704	$1 \cdot 27994$	$1 \cdot 23490$	1.19175	1.15037	1.11061	1.07237	1.03553	60
1	1.37554	1.32624	1.27917	1.23416	1.19105	1.14969	1.10996	1.07174	1.03493	59
2	1.37470	1.32544	1.27841	1.23343	1.19035	1.14902	1.10931	1.07112	1.03433	58
3	1.37386	1.32464	1.27764	1.23270	1.18964	1.14834	1.10867	1.07049	1.03372	57
4	1.37302	1.32384	1.27688	1.23196	1.18894	1.14/67	1.10802	1.06987	1.03312	56
Э	1•37218 	1.32304	1.27611	1.23123	1.18824	1.14099	1.10737	1.06925	1.03252	55
6	1.37134	1.32224	1.27535	1.23050	1.18754	1.14632	1.10672	1.06862	1.03192	54
7	1.37050	1.32144	1.27458	1.22977	1.18684	1.14565	1.10607	1.06800	1.03132	53
· 8	1.36967	1.32064	1.27382	1.22904	1 18614	1.14498	1.10543	1.06738	1.03072	52
9	1.36883	1.31984	1.27306	1.22831	1.18544	1.14430	1.10478	1.06676	1.03012	51
10	1.36800	1.31904	1.27230	1.22758	1.18474	1.14363	1.10414	1.06613	1.02952	50
11	1.36716	1.31825	1.27153	1.22685	1.18404	1.14296	1.10349	1.06551	1.02892	49
12	1.36633	1.31745	1.27077	1.22612	1.18334	1.14229	1.10285	1.06489	1.02832	48
13	1.36549	1.31666	1.27001	1.22539	1.18264	1.14162	1.10220	1.06427	1.02772	47
14	1.36466	1.31586	1 - 26925	1.22467	1.18194	1.14095	1.10156	1.06365	1.02713	46
15	1.36383	1.31507	1.26849	1.22394	1.18125	1.14028	1.10091	1.06303	1.02653	45
16	1.36300	1.31427	1.26774	1.22321	1.18055	1.13961	1.10027	1.06241	1.02593	44
17	1.36217	1.31348	1.26698	1-22249	1.17986	1.13894	1.09963	1.06179	1.02533	43
18	1.36134	1.31269	1.26622	1.22176	1.17916	1.13828	1.09899	1.06117	1.02474	42
19	1.36051	1.31190	1.26546	1.22104	1.17846	1.13761	1.09834	1.06056	1.02414	41
20	1.35968	1.31110	1.26471	1.22031	1 • 17777	1.13694	1.09770	1.05994	1.02355	40
21	1.35885	1.31031	1.26395	1.21959	1.17708	1.13627	1.09706	1.05932	1.02295	39
22	1.35802	1.30952	1.26319	1.21886	1.17638	1.13561	1.09642	1.05870	1.02236	38
23	1.35719	1.30873	1.26244	1.21814	1.17569	1.13494	1.09578	1.05809	1.02176	37
24	1.35637	1.30795	1.26169	1.21742	1.17500	1.13428	1.09514	1.04747	1.02117	36
25	1.35554	1.30716	1.26093	1.21670	1.17430	1.13361	1.09450	1.05685	1.02057	35
26	1.35472	1.30637	1.26018	1.21598	1.17361	1.13295	1.09386	1.05624	1.01998	34
27	1.35389	1-30558	1.25943	1.21526	1.17292	1.13228	1.09322	1-05562	1.01939	33
28.	1.35307	1.30480	1.25867	1.21454	1.17223	1.13162	1.09258	1.05501	1.01879	32
29	1.35224	1.30401	1.25792	1.21382	1.17154	1.13096	1.09195	1.05439	1.01820	31
30	1-35142	1.30323	1.25717	1.21310	1.17085	1.13029	1.09131	1.05378	1.01761	30
	Нат	уралі	ьные	танг	епсы.		· .	1		
,									1	
,	აკ	52°	51°	50°	49°	48°	47°	46°	45°	1

Таблица II. Продолжение

1	36°	37°	38°	39°	40°	41°	42°	43°	44°	,
			Нату	раль	ные	котан	гепс	ы		• •
31	1.35060	1 ·30 244	$1 \cdot 25642$	1.21238	1.17016	1.12963	1.09067	1.05317	1.01702	29
-32	1.34978	1.30166	1.25567	1.21166	1.16947	1.12897	1.09003	1.05255	1.01642	28
-33	1 - 3 1896	1.30087	1.25492	1.21094	1.16878	1.12831	1.08940	1.05194	1.01583	27
34	1.34814	1.30009	1.25417	1.21023	1.16809	1.12765	1.08876	1.05133	1.01524	26
35	1.34732	1.29931	1.25343	1.20951	$1 \cdot 16741$	1.12699	1.08813	1.05072	1.01465	25
36	1-34650	1.29853	1.25268	1.20879	1 • 16672	1.12633	1.08749	1.05010	1.01406	24
37	1.34568	1.29775	1.25193	1.20808	1.16608	1.12567	1.08686	1.04949	1.01347	23
38	1-34487	1.29695	1.25118	1.20736	1/16535	1.12501	1.08622	1.04888	1.01288	22
39	1.34405	1.29618	$1 \cdot 25044$	1.20665	1.16466	1.12435	1.08559	1.04827	1.01229	21
40	1.34323	1.29541	1.24969	1.20593	1.16398	1.12369	1.08496	1.04766	1.01170	20
-41	1-34242	1.29463	1.24895	1.20522	1.16329	1.12303	1.08432	1.04705	1.01112	19
42	1-34160	1.29385	1.24820	1.20451	1.16261	1.12238	1.08369	1.04644	1.01053	18
43	1-34079	1.29307	1.24746	1.20379	1.16192	1.12172	1.08306	1.04583	1.00994	17
44	1-33998	1.29229	1.24672	1-20308	1.16124	1.12106	1.08243	1.04522	1.00935	16
45	1-33916	1.29152	1.24597	1.20237	1.16056	1.12041	1.08179	1.04461	1.00876	15
45	1-33835	1.29074	1 • 24523	1.20165	1.15987	1.11975	1.08116	1.04401	1.00818	14
47	1.33754	1.28997	1.24449	1.20095	1.15919	1.11909	1.08053	1.04340	1.00759	13
48	1-33673	1.28919	1.24375	1.20024	1.15851	1.11844	1.07990	1.04279	1.00701	12
49	1.33592	1.28842	1.24301	1.19953	1.15783	1.11778	1.07927	1.04218	1 00642	11
50	1.33511	1.28764	1.24227	1.19882	1 • 15715	1.11713	1.07864	1.04158	1.00583	10
.51	1.33430	1.28687	1.24153	1.19811	1.15647	1.11648	1.07801	1.04097	1.00525	9
52	1.33349	1.28610	1.24079	1.19740	1.15579	1.11582	1.07738	1.04035	1.00467	8
53	1.33268	1.28533	1.24005	1.19669	1 • 15511	1.11517	1.07676	1.03976	1.00408	7
54	1.33187	1.28456	1 • 23931	1.19599	1.15443	1.11452	1.07613	1.03915	1.00350	6
55	1-33107	1.28379	1.23858	1.19528	1.15375	1.11387	1.07550	1.03855	1.00291	5
-56	1-33026	1.28302	1 • 23784	1.19457	1.15308	1.11321	1.07487	1.03794	1.00233	4
57	1.32946	1.28225	1.23710	1.19387	1.15240	1.11256	1.07425	1.03734	1.00175	3
58	1.32865	1.28148	1.23637	1.19316	1 • 15172	1-11191	1.07362	1.03674	1.00116	2
59	1.32785	1.28071	1.23563	1 · 19246	1.15104	1.11126	1.07299	1.03613	1.00058	1
60	1-32704	1.27994	1.23490	1.19175	1 • 15037	1.11061	1.07237	1.03553	1.00000	0
1	Нат	уралн	ьные	танг	енсы.				<u>.</u>	<u> </u>
,	53°	52° ·	51°	50°	49°	48°	47°	46°	45°	/

,	45°	463	47°	48°	49°	50°	51°	52°	53°	-
			Нату	раль	ные	котан	гсыс	ы		-
0	1.00000	0.93539	0.93252	0.90040	0.83929	0.83910	0-80978	0.78129	0.75355	60
1	0.99942	0.93513	0.93197	0.89988	0.83378	0.83350	0.80330	0.78082	0.75310	59
2	0.99884	0.93457	0.93143	0.89935	0.83827	0.83811	0.80882	0.78035	0.75264	58
. 3	0.99826	0.95400	0.93388	0.89883	0.83773	0.83731	0.80834	0.77988	0.75219	57
4	0.99768	0.93344	0.93034	0.89830	0.83725	0.83712	0.80786	0.77941	0.75173	56
5	0.99710	0.93288	0.92980	0.89777	0.85574	0.83352	0.80738	0.77895	0.75128	55
6	0.99352	0.93232	0.92923	0.89725	0-83323	0.83313	0.80390	0.77848	0.75082	54
7	0.99594	0.93176	0.92872	0.89372	0.85572	0.83534	0.83542	0.77801	0.75037	53
8	0.99535	0-93120	0.92817	0.89320	0.83521	0.83514	0.80594	0.77754	0.74991	52
9	0.99478	0•93034	0.92733	0.89537	0.83470	0.83435	0.80543	0.77708	0.74946	51
10	0.99420	0.93008	0•9270Э	0.89515	0.83419	0.83415	0.80498	0.77631	0•74900	50
11	0.99352	0.95952	0.92355	0.89153	0.85338	0.83355	0.80450	0.77615	0.74855	49
12	0.99304	0.95897	0.92301	0.89410	0.83318	0.83317	0.80402	0.77538	0.74810	48
13	0.99247	0.95841	0.92547	0.89358	0.85237	0.83238	0.80354	0.77521	0.74764	47
14	0.99189	0.95785	0.92493	0.89303	0.85216	0.83218	0.80325	0.77475	0.74719	46
15	0.99131	0.95729	0.92139	0.89253	0.86166	0.83169	0.80258	0.77428	0.74674	45
16	0.00073	0.05973	0.02385	0.80201	0.85115	0.83120	0.80211	0.77382	0.74628	44
17	0.00016	0.05610	0.92000	0.09201	0.03110	0.03071	0.90163	0.77335	0.74020	42
10	0.99010	0.93018	0.92331	0.89149	0.00014	0.02000	0.00105	0.77000	0.74530	40
18	0.98938	0.95552	0.92211	0.89791	0.80014	0.03022	0.000113	0.77040	0.74038	42
19	0.98901	0.95505	0.92224	0.89015	0.85953	0.82972	0.80057	0.77242	0.74492	41
20	0.98843	0.95451	0.92170	0.88992	0.85912	0.82923	0.80020	0.77195	0.74447	40
21	0•98783	0.95395	0.92116	0.88940	0.85852	0.82874	0.79972	0.77149	0.74402	39
22	0.98728	0.95340	0.92032	0.88888	0.85811	0.82825	0.79924	0.77103	0.74357	38
23	0.98571	0.95284	0.92008	0.88833	0.85731	0.82776	0.79877	0.77057	0.74312	37
' 24	0.98513	0.95229	0.91955	0.88784	0.85710	0.82727	0.79829	0.77010	0.74237	36
25	0.98556	0.95173	0.91901	0.88732	0.85630	0.82678	0•79781	0.76954	0.74221	35
26	0.98499	0.95118	0.91847	0.88380	0.85309	0-82329	0.79734	0.76918	0.74176	34
27	0.98441	0.95032	0.91794	0.88328	0.85559	0.82580	0.79385	0.76871	0.74731	33
28	0.98384	0.95007	0.91740	0.88576	0.85509	0.82531	0.79539	0.76825	0.74086	32
29	0.98327	0.94952	0.91687	0.88524	0.85458	0.82483	0.79591	0.76779	0.74041	31
30	0 •98270	0.94895	0.91633	0.88473	0.85408	0.82434	0.79544	0.76733	0·73996	30
	Нат	урали	ьпые	танг	енсы.			· · · · · · · · · · · · · · · · · · ·	. , , ,	
,	44°	43°	42°	41°	40°	39°	38°	37°	36°	-

,	45°	46°	47°	48°	49°	50°	51°	52°	53°	
, T			Нату	раль	нысы	котан	генс	ы		
♦ 31	0.98213	0.94841	0.91580	0.88421	0.85358	0.82385	0.79496	0.76686	0.73951	29
32	0 ∙98155	0.94786	0.91526	0.88369	0-85308	0.82336	0.79449	0.76640	0.73906	28
33	0.98098	0·947 3 1	0.91473	0-88317	0.85257	0.82287	0.79401	0.76594	0.73861	27
34	0.98041	0.94676	0.91419	0.88265	0.85207	0.82238	5.79354	0.76548	0.73816	26
35	0 •97984	0.94620	0.91366	0.88214	0.85157	0.82190	0.79306	0.76502	0.73771	25
36	0.97927	0.94565	0.91313	0.88162	0.85107	0.82141	0.79259	0.76456	0.73726	24
37	0.97870	0.94510	0.91259	0.88110	0-85057	0.82092	0.79212	0.76410	0.73681	23
38	0.97813	0.94555	0.91206	0.88059	0.85006	0.82044	0.79164	0.76364	0.73637	22
39	0.97756	0.94400	0.91153	0.88007	0.84956	0.81995	0.79117	0.76318	0.73592	21
40	0.97700	0.94345	0.91099	0.87955	0.84906	0.81946	0.79070	0.76272	0.73547	20
41	0.97643	0.94290	0.91046	0.87904	0.84856	0.81898	0.79022	0.76226	0.73502	19
42	0.97586	0-94235	0.90993	0.87852	0.84806	0.81849	0.78975	0.76180	0.73457	18
43	0.97529	0.94180	0.90940	0.87801	0.84756	0.81800	0.78928	0.76134	0.73413	17
44	0.97472	0.94125	0.90887	0-87749	0.84706	0.81752	0.78881	0.76088	0.73368	16
45	0.97416	0.94071	0.90834	0.87698	0.84656	0.81703	0•78834	0.76042	0.73323	15
46	0.97359	0.94016	0.90781	0.87646	0.84606	0.81655	0.78786	0.75996	0.73278	14
47	0.97302	0.93961	0.90727	0.87595	0.84556	0.81606	0.78739	0•75950	0.73234	13
48	0.97246	0.93906	0.90674	0.87543	0.84507	0.81558	0.78692	0.75904	0.73189	12
49	0.97189	0.93852	0.90621	0.87492	0.84457	0.81510	0.78645	0.75858	0.73144	11
50	0.97133	0.93797	0.90569	0.87441	0.84407	0.81461	0.78598	0.75812	0.73100	10
51	0.97076	0.93742	0.90516	0.87389	0.84357	0.81413	0.78551	0.75767	0.73055	9
52	0.97020	0.93688	0.90463	0.87338	0.84307	0.81364	0.78504	0.75721	0.73010	8
53	0.96963	0.93633	0.90410	0.87287	0.84258	0.81316	0.78457	0.75675	0.72966	7
54	0.96907	0.93578	0.90357	0.87236	0.84208	0.81268	0-78410	0•75629	0-72921	6 [,]
55	0.96850	0.93524	0.90304	0.87184	0.84158	0.81220	0.78363	0.75584	0.72877	5
56	0.96794	0.93469	0.90251	0.87133	0.84108	0.81171	0.78316	0.75538	0.72832	4
57	0.96738	0.93415	0.90199	0.87082	0.84059	0.81123	0.78269	0.75492	0.72788	3
58	0.96681	0.93360	0.90146	0.87031	0.84009	0.81075	0.78222	0.75447	0.72743	2
59	0.96625	0.93306	0.90093	0.86980	0.83960	0.81027	0.78175	0.75401	0.72699	1
60	0.96569	0.93252	0.90040	0-86929	0.83910	0.80978	0.78129	0.75355	0.72654	0
	Нат	уралы	ьные	танго	енсы.			· · · · · · · · · · · · · · · · · · ·		_1
1	44°	43°	42°	41°	40°	39°	38°	37°	36°	1

'	54°	55°	56°	57°	58°	59°	60°	61°	62°	-
			Нату	раль	пые	котан	генс	ы	·	-
0	0.72654	0.70021	0.67451	0.64941	0.62487	0.60086	0.57735	0.55431	0.53171	60
1	0.72610	0.69977	0.67409	0.64899	0.62446	0.60046	0.57696	0.55393	0.53134	59
2	0.72565	0.69934	0.67366	0.64858	0.62406	0.60007	0.57657	0.55355	0.53096	58
3	0.72521	0.69891	0.67324	0.64817	0.62366	0.59967	0.57619	0.55317	0.53059	57
4	0.72477	0.69847	0.67282	0.64775	0.62325	0-59928	0.57580	0.55279	0.53022	56
5	0.72432	0.69804	0.67239	0.64734	0.62285	0.59888	0.57541	0.55241	0.52985	55
6	0.72388	0.69761	0.67197	0.64693	0.62245	0 • 59849	0.57503	0.55203	0.52947	54
7	0.72344	0.69718	0.67155	0.64652	0.62204	0.59809	0.57464	0.55165	0.52910	53
8	0.72299	0.69675	0.67113	0.64610	0.62164	0.59770	0.57425	0.55127	0.52873	52
9	0.72255	0.69631	0.67071	0.64569	0.62124	0.59730	0.57386	0.55089	0.52836	51
10,	0.72211	0.69588	0.67028	0.64528	0.62083	0.59691	0.57348	0.55051	0.52798	50
11	0.72167	0.69545	0.66986	0.64487	0.62043	0.59651	0.57309	0.55013	0.52761	49
12	0.72122	0.69502	0.66944	0.64446	0.62003	0.59612	0.57271	0.54975	0.52724	48
13	0.72078	0.69459	0.66902	0.64404	0.61962	0.59573	0.57232	0.54938	0.52687	47
14	0.72034	0.69416	0.66860	0.64363	0.61922	0.59533	0.57193	0.54900	0.52650	46
15	0.71990	0.69372	0.66818	0.64322	0.61882	0.59494	0.57155	0.54862	0.52613	45
16	0.71946	0.69329	0.66776	0.64281	0.61842	0.59454	0.57116	0.54824	0.52575	44
17	0.71901	0.69286	0.66734	0.64240	0.61801	0-59415	0.57078	0.54786	0.52538	43
18	0.71857	0.69243	0.66692	0.64199	0.61761	0.59376	0.57039	0.54748	0.52501	42
19	0.71813	0.69200	0.66650	0.64158	0.61721	0.59336	0.57000	0.54711	0.52464	41
20	0.71769	0.69157	0.66608	0.64117	0.61681	0.59297	0.56962	0.54673	0.52427	40
21	0.71725	0.69114	0.66566	0.64076	0.61641	0.59258	0.56923	0.54635	0.52390	39
22	0.71681	0.69071	0.66524	0.64035	0.61601	0.59218	0.56885	0.54597	0.52353	38
23	0.71637	0.69028	0.66482	0.63994	0.61561	0.59179	0.56846	0.54560	0.52316	37
24	0.71593	0.68985	0.66440	0.63953	0.61520	0.59140	0.56808	0.54522	0.52279	36
25	0.71549	0.68942	0.66398	0.63912	0.61480	0.59101	0.56769	0.54484	0.52242	35
26	0.71505	0.68900	0.66356	0.63871	0.61440	0.59061	0.56731	0.54446	0.52205	34
27	0.71461	0.68857	0.66314	0.63830	0.61400	0.59022	0.56693	0.54409	0.52168	33
28	0.71417	0.68814	0.66272	0.63789	0.61360	0.58983	0.56654	0.54371	0.52131	32
29	0.71373	0.68771	0.66230	0.63748	0.61320	0.58944	0.56616	0.54333	0.52094	31
30	0.71329	0-68728	0.66189	0 63707	0.61280	0.58905	0.56577	0·54296	0.52057	30
. '	Нат	урали	ыные	танг	енсы			· · · · · · · · · · · · · · · · · · ·		
I										
	35°	34°	33°	32°	31°	30°	29°	28°	27° די ייגריו	

*

1	54°	55°	56°	57°	58°	59°	60°	61°	62°	,
1			Нату	раль	пыс н	сотан	гепс	ы		•
∀ 31	0.71285	0.68685	0.66147	0.63666	0.61240	0.58865	0.56539	0.54258	0.52020	29
32	0.71242	0.68642	0.66105	0.63625	0.61200	0.58826	0.56501	0.54220	0.51983	28
33	0.71198	0.68600	0.66053	0.63584	0.61160	0.58787	0.56462	0.54183	0 51946	27
34	0.71154	0.68557	0.66021	0.63544	0.61120	0.58748	0 .56424	0.54145	0.51909	26
35	0.71110	0.68514	0.65980	0.63503	0.61080	0.58709	0.56385	0.54107	0.51872	25
36	0.71066	0.68471	0.65938	0.63462	0.61040	0.58670	0.56347	0.54070	0.51835	24
37	0.71023	0.68429	0.65896	0.63421	0.61000	0.58631	0.56309	0.54032	0.51798	23
38	0.70979	0.68386	0.65854	0.63380	0.60960	0.58591	0.56270	0.53995	0.51761	22
39	0.70935	0.68343	0.65813	0.63340	0.60921	0.58552	0.56232	0.53957	0.51724	21
40	0.70891	0.68301	0.65771	0.63299	0.60881	0.58513	0.56194	0.53920	0.51688	20
41	0.70848	0.68258	0.65729	0.63258	0.60841	0.58474	0.56156	0.53882	0.51651	19
42	0.70804	0.68215	0.65688	0.63217	0.60801	0.58435	0.56117	0.53844	0.51614	18
43	0.70760	0.68173	0.65646	0.63177	0.60761	0.58396	0.56079	0.53807	0.51577	17
44	0.70717	0.68130	0.65604	0.63136	0.60721	0.58357	0.56041	0.53769	0.51540	16
45	0.70673	0.68088	0.65563	0.63095	0.60681	0.58318	0.56003	0 .53732	0.51503	15
46	0 •70629	0.68045	0.65521	0.63055	0.60642	0.58279	0.55964	0.5 3694	0.51467	14
47	0.70586	0.68002	0 .65480	0.63014	0.60602	0 .58240	0.55926	0.53557	0.51430	13
48	0 .70542	0.67960	0.65438	0.62973	0.60562	0.58201	0.55888	0.53620	0.51393	12
49	0.70499	0.67917	0.65397	0.62933	0.60522	0.58162	0 · 5 5850	0.53582	0.51356	11
50	0.70455	0.67875	0.65355	0.62892	0 ∙60483	0.58124	0.55812	0.53545	0.51319	10
51	Q.70412	0.67832	0.65314	0.62852	0.60443	0.58085	0.55774	0.53507	0.51283	9
52	0.70368	0.67790	0.65272	0.62811	0.60403	0.58046	0.55736	0.53470	0.51246	8
53	0.70325	0.67748	0.65231	0.62770	0.60364	0.58007	0.55697	0.53432	0.51209	7
54	0.70281	0.67705	0.65189	0.62730	0.60324	0.57958	0.55659	0.53395	0.51173	6
55	0.70238	0.67663	0.65148	0.62689	0.60284	0.57929	0.55621	0.53358	0.51136	5
5 6	0.70194	0.67620	0.65106	0.62649	0.60245	0.57890	0.55583	0.53320	0.51099	4
57	0.70151	0.67578	0.65065	0.62608	0.60205	0.57851	0.55545	0.53283	0.51033	3
58	0.70107	0.67536	0.65024	0.62568	0.60165	0.57813	0.55507	0.53246	0.51026	2
59	0.70064	0.67493	0.64982	0.62527	0.60126	0.57774	0.55469	0.53208	0.50989	1
60	0.70021	0.67451	0.64941	0.62487	0.60086	0.57735	0.55431	0.53171	0.50953	0
	Нат	урал	ьные	танг	енсы-	·				1
,	35°	-34°	33°	32°	31°	30°	2 9 °	28°	27°	

,	63°	64°	65°	66°	67°	68°	69°	70°	71°	1
1			Нату	раль	иые н	котан	ггенс	Ы		
Ψ. 0	0.50953	0.48773	0.46631	0.44523	0.42447	0.40403	0.38386	0.36397	0.34433	60
1	0.50916	0.48737	0.46595	0.44488	0.42413	0.40369	0.38353	0.36364	0.34400	59
2	0.50879	0.48701	0.46560	0.41453	0.42379	0.40335	0.38320	0.36331	0.34368	·58
3	0.50843	0.48665	0.46525	0.44418	0.42345	0.40301	0.38286	0.35298	0.34335	57
4	0.50806	0.48629	0.46489	0.44384	0.42310	0.40267	0.38253	0.36265	0.34303	56
э	0.20169	0+48593	0.40404	0.44349	0.42276	0.40234	0.38220	0.36232	0.34270	55 -
6	0.50733	0.48557	0.46418	0.44314	0.42242	0.40200	0.38186	0.36199	0.34238	54
7	0.50696	0.48521	0.46383	0.44279	0.42207	0.40166	0.38153	0.36167	0.34205	53
8	0.50660	0•48486	0.46348	0.44244	0.42173	0.40132	0.38120	0.36134	0.34173	52
9	0.50623	0.48450	0.46312	0.44210	0.42139	0.40098	0.38086	0.36101	0.34140	51
10	0.50587	0·48414	0.46277	0.44175	0.42105	0.40065	0.38053	0.36068	0.34108	50
11	0.50550	0.48378	0.46242	0.44140	0.42070	0.40031	0.38020	0.36035	0.34075	49
12	0.50514	0.48342	0.46206	0.44105	0.42036	0.39997	0.37986	0.36002	0.34043	48
13	0.50477	0.48306	0.46171	0.44071	0.42002	0.39963	0.37953	0.35969	0.34010	47
14	0.50441	0.48270	0.46136	0.44036	0.41968	0.39930	0.37920	0.35937	0.33978	46
15	0.50404	0.48234	0.46101	0.44001	0.41933	0.39896	0.37887	0.35904	0.33945	45
16	0.50368	0.48198	0.46065	0.43966	0.41899	0.39862	0.37853	0.35871	0.33913	44
17	0.50331	0.48163	0.46030	0.43932	0.41865	0.39829	0.37820	0.35838	0.33881	43
18	0.50295	0.48127	0.45995	0.43897	0.41831	0.39795	0.37787	0.35805	0.33848	42
19	0.50258	0.48091	0.45960	0.43862	0.41797	0.39761	0.37754	0.35772	0.33816	41
20	0.50222	0.48055	0.45924	0.43828	0.41763	0.39727	0.37720	0.35740	0.33783	40
21	0.50185	0.48019	0.45889	0•43793	0 •41728	0.39694	0.37687	0.35707	0.33751	39
2 2	0.50149	0.47984	0.45854	0.43758	0.41694	0.39660	0.37654	0.35674	0.33718	38
2 3	0.50113	0.47948	0.45819	0.43724	0.41660	0.39626	0.37621	0.35641	0.33686	37
24	0.50076	0.47912	0.45784	0.43689	0.41626	0.39593	0.37588	0-35608	0.33654	36
25	0.50 040	0.47876	0.45748	0.43654	0 •41592	0.39559	0.37554	0.35576	0.33621	35
26	0.50004	0.47840	0.45713	0.43620	0.41558	0.39526	0.37521	0.35543	0.33589	34
27	0.49967	0.47805	0.45678	0.43585	0.41524	0.39492	0.37488	0.35510	0.33557	33
28	0 •49931	0.47769	0.45643	0.43550	0.41490	0.39458	0.37455	0.35477	0.33524	32
29	0.49894	0.47733	0.45608	0.43516	0.41455	0.39425	0.37422	0.35445	0.33492	31
30	0.49858	0·47698	0.45573	0.43481	0.41421	0.39391	0.37388	0.35412	0.33460	30
	Нат	ураль	ьные	танг	енсы_					
,	000	0.50	940	0.00	000	010	000	100	100	,
,	26*	25*	24°	23	22°	21-	20-	19.	19-	·

.

1	63°	64°	65°	66°	67°	68°	69°	70°	71°	,
			Нату	раль	ные	котан	генс	ы		
∳ 31	0.49822	0.47662	0.45538	0.43447	0.41387	0.39357	0.37355	0.35379	0.33427	29
32	0.49786	0.47626	0.45502	0.43412	0.41353	0.39324	0.37322	0.35346	0.33395	28
33	0.49749	0.47590	0.45467	0.43378	0.41319	0.39290	0.37289	0.35314	0.33363	27
34	0.49713	0.47555	0.45432	0.43343	0-41285	0.39257	0.3725 6	0.35281	0.33330	26
35	0.49677	0.47519	0.45397	0.43308	0.41251	0.39223	0.37223	0.35248	0.33298	25
96 26	0 40640	0.47489	0 15369	0 43974	0 41917	0.30100	0 27100	0.25216	0.33266	24
27	0.49040	0.47448	0.45397	0.43230	0.41183	0.30156	0.37150	0.35183	0.33233	23
38	0.40568	0.47419	0.452027	0.43205	0.41140	0.30122	0.37197	0.35150	0.33201	22
30	0.49539	0.47377	0.45252	0.43170	0.41115	0.30080	0.37000	0.35118	0.33169	21
40	0.40405	0.47341	0.45227	0.43136	0.41081	0.30055	0.37057	0.35085	0.33136	20
40	0.49493	0.41041	0.40222	0.43100	0.41001	0.03005	0.07007	0.00000	0.00100	20
41	0.49459	0.47305	0.45187	0.43101	0.41047	0.39022	0.37024	0.35052	0.33104	19
42	0.49423	0.47270	0 45152	0.43067	0.41013	0.38988	0.36991	0.35020	0.33072	18
43	0.49387	0•47234	0.45117	0.43032	0.40979	0.38955	0.36958	0.34987	0.33040	17
44	0.49351	0.47199	0.45082	0.42998	0.40945	0.38921	0.36925	0·34954	0.33007	16
45	0.49315	0.47163	0.45047	0.42963	0.40911	0.38888	0.36892	0.34922	0.32975	15
46	0·49278	0.47128	0.45012	0.42929	0.40877	0.38854	0.36859	0.34889	0.32943	14
47	0 •49242	0.47092	0.44977	0.42894	0.40843	0.38821	0.36826	0-34856	0.32911	13
48	0.49206	0.47056	0.44942	0.42860	0.40809	0.38787	0.36793	0.34824	0.32878	12
49	0.49170	0.47021	0.44907	0.42826	0.40775	0.38754	0.36760	0.34791	0.32846	11
50	0.49134	0.46985	0.44872	0.42791	0.40741	0.38721	0.36727	0.34758	0.32814	to
51	0.49098	0.46950	0.44837	0.42757	0.40707	0.38687	0.36694	0.34726	0.32782	Q
52	0.49062	0.46914	0.44802	0.42722	0.40674	0.38654	0.36661	0.34693	0.32749	-8
53	0.49026	0.46879	0.44767	0.42688	0.40540	0.38620	0.36628	0.34661	0.32717	7
54	0.48989	0.46843	0.44732	0.42654	0.40506	0.38587	0.36595	0.34628	0.32685	6
55	0.48953	0.46808	0.44697	0.42619	0.40572	0.38553	0.36562	0.34596	0.32653	5
50	0 (0017	0 40770	0 44000	0 10505		0.00500	0.00500	0.04500	0.00001	
56	0.48917	0.46772	0.44662	0.42585	0.40538	0.38520	0.36529	0.34563	0.32621	4
57	0-48881	0.46737	0.44627	0.42551	0.40504	0.38487	0.36496	0.34530	0.32588	3
58	0.48815	0.46702	0.44593	0.42516	0.40470	0.38453	0.36463	0.34498	0.32556	2
59	0.48809	0.46666	0.44558	0.42482	0.40436	0.38420	0.36430	0.34465	0.32524	1
60	0.48773	0.46631	0.44523	0.42447	0.40403	0.38386	0.36397	0.34433	0.32492	0 ▲
	Нат	урали	ыные	танг	енсы.					
,	26°	25°	24°	23°	22°	21°	20°	19°	18°	1

·	72°	73°	74°	75°	76°	77°	78°	79°	80°	
<u>-</u>			Нату	раль	ные	кота	нгенс	Ы		i
0	0.32492	0.30573	0.28675	0.25795	0.24933	0.23087	0.21256	0.19438	0.17633	6 0
1	0.32460	0.30541	0.28543	0.26764	0.24902	0.23056	0.21225	0·19408	0.17603	5 9
2	0.32428	0.30509	0.28312	0.23733	0.24871	0.23026	0.21195	0.19378	0.17573	58
3	0.32395	0.30478	0-23580	0.26701	0.24840	0.22995	0.21164	0.19347	0.17543	57
4	0.32353	0.30146	0.28549	0.26570	0.24809	0.22964	0.21134	0.19317	0.17513	56
5	0.32331	0.30414	0.28517	0.25539	0.24778	0.22934	0.21104	0.19287	0.17483	55
6	0.32299	0.30382	0.28486	0.26608	0.24747	0.22903	0.21073	0·19257	0.17453	54
7	0.32267	0.30351	0.28454	0.26577	0.24717	0.22872	0.21043	0.19227	0.17423	53
8	0.32235	0-30319	0.28423	0·265 46	0.24686	0.22812	0.21013	0.19197	0.17393	52
9	0.32203	0.30287	0.28391	0.26515	0.24655	0.22811	0.20982	0.19166	0.17363	51
10	0.32171	0.30255	0·28350	0.23483	0.24624	0.22781	0.20952	0.19136	0.17333	50
11	0.32139	0.3022 4	0.28329	0 · 2 6452	0.24593	0.22750	0.20921	0.19103	0.17303	49
12	0.32103	0·30192	0.28297	0·26421	0.24562	0.22719	0.20891	0.19076	0.17273	48
13	0.32074	0.30160	0·28235	·0·26390	0.24532	0.22689	0.20861	0 .19046	0 • 17243	47
14	0.32042	0.3 0128	0.28234	0.26359	0.24501	0.22658	0.20830	0.19016	0.17213	46
15	0-32010	0.30097	0.28203	0.26328	0.24470	0.22628	0.20800	0.18986	0.17183	45
16	0.31978	0.30035	0.2817 2	0.26297	0.24439	0.22597	0·20770	0.18955	0 · 17153	4 4
17	0.31946	0.30033	0·28140	0.26236	0.24408	0.22567	0.20739	0 · 18925	0.17123	43
18	0.31914	0.30001	0.28109	0.26235	0.24377	0.22536	0.20709	0.18895	0.17093	42
19	0.31882	0.29970	0.28077	0.26203	0.24347	0.22505	0.20379	0.18865	0.17033	41
20	0.31850	0.29938	0.28046	0.26172	0.24316	0.22475	0.20348	0.18835	0.17033	40
21	0.31818	0.29903	0.28015	0.26141	0.24285	0.22444	0.20318	0.18805	0.17004	39
22	0.31786	0.29875	0.27983	0.26110	0.24254	0.22414	0.20588	0.18775	0.16974	38
23	0.31754	0.29843	0·27952	0.26079	0.24223	0.22383	0.20557	0.18745	0.16944	37
24	0.31722	0.29811	0·27921	0.26048	0.24193	0.22353	0.20527	0.18714	0.16914	36
25	0.31690	0.29780	0.27889	0.26017	0.24162	0.22322	0-20497	0.18384	0.16884	35
2 6	0 ·31658	0.29748	0·27858	0.25985	0.24131	0.22292	0·20466	0.18654	0.16854	34
27	0.31626	0.29716	0.27826	0.25955	0.24100	0.22261	0.20436	0.18624	0.16824	33
28	0.31594	0.29585	0.27795	0.25924	0.24039	0.22231	0.20406	0.18594	0.16794	.32
29	0.31562	0.29353	0.27764	0.25893	0.24039	0.22200	0.20376	0.18564	0.16764	31
30	0.31530	0.29321	0.27732	0.25862	0.24008	0 ·22169	0.20345	0.18534	0.16734	30
	Нат	урал)	ьные	танг	енсы-				•	
-	17°	16°	15°	14°	13°	12°	11°	10°	9°	-

1	72°	73°	74°	75°	76°	77°	78°	79°	80°	<i>.</i>
			Нату	раль	н ыс н	отан	гснс	ы		
↓ 31	0.31498	0.29590	0.27701	0.25831	0.23977	0.22139	0.20315	0.18504	0.16704	29
32	0.31466	0.29558	0.27670	0.25800	0.23946	0.22108	0.20285	0.18474	0.16674	28
33	0.31434	0.29526	0.27638	0.25769	0.23916	0.22078	0.20254	0.18444	0.16645	27
34	0.31402	0.29495	0.27607	0.25738	0.23885	0.22047	0.20224	0.18414	0.16615	26
35	0.31370	0.29463	0.27576	0.25707	0.23854	0.22017	0.20194	0.18384	0.16585	25
36	0:31338	0.29432	0.27545	0.25676	0.23823	0.21986	0.20164	0.18353	0.16555	24
37	0.31306	0.29400	0.27513	0.25645	0.23793	0.21956	0.20133	0.18323	0.16525	23
38	0.31274	0.29368	0.27482	0.25614	0.23762	0.21925	0.20103	0.18293	0.16495	22
39	0.31242	0.29337	0.27451	0.25583	0.23731	0.21895	0.20073	0.18263	0.16465	21
40	0.31210	0.29305	0.27419	0.25552	0.23700	0.21864	0.20042	0.18233	0.16435	20
41	0.31178	0.29274	0.27388	0.25521	0.23670	0.21834	0.20012	0.18203	0.16405	19
42	0.31147	0.29242	0.27357	0.25490	0.23639	0.21804	0.19982	0.18173	0.16376	18
43	0.31115	0.29210	0.27326	0.25459	0.23608	0.21773	0.19952	0.18143	0.16346	17
44	0.31083	0.29179	0.27294	0.25428	0.23578	0.21743	0.19921	0.18113	0.16316	16
45	0.31051	0.29147	0.27263	0.25397	0.23547	0.21712	0.19891	0.18083	0.16286	15
46	0.31019	0.29116	0.27232	0.25366	0.23516	0.21682	0.19861	0.18053	0.16256	14
47	0.30987	0.29084	0.27201	0.25335	0.23485	0.21651	0.19831	0.18023	0.16226	13
48	0.30955	0.29053	0.27169	0.25304	0.23455	0.21621	0.19801	0.17993	0.16196	12
49	0.30923	0.29021	0.27138	0.25273	0.23424	0.21590	0.19770	0.17963	0.16167	11
50	0.30891	0.28990	0.27107	0.25242	0.23393	0.21560	0.19740	0.17933	0.16137	10
51	0.30860	0.28958	0.27076	0.25211	0.23363	0.21529	0.19710	0.17903	0-16107	9
52	0, 30828	0.28920	0.27044	0.25180	0.23332	0.21499	0.19680	0.17873	0.16077	- 8
53	0.30796	0.28895	0.27013	0.25149	0.23301	0.21469	0.19649	0.17843	0.16047	7
54	0.30764	0.28864	0.26982	0.25118	0.23271	0.21438	0.19619	0.17813	0.16017	6
55	0.30732	0.28832	0.26951	0.25087	0.23240	0.21408	0.19589	0-17783	0.15988	5
56	0.30700	0.28801	0.26920	0.25056	0.23209	0.21377	0.19559	0.17753	0 • 15958	4
57	0.30669	0.28769	0.26888	0.25026	0.23179	0.21347	0.19529	0.17723	0.15928	· 3
58	0.30637	0.28738	0.26857	0.24995	0.23148	0.21316	0.19498	0.17693	0.15898	2
59	0.30605	0.28706	0.26826	0.24964	0.23117	0.21286	0.19468	0.17663	0.15868	. 1
60	0.30573	0.28675	0.26795	0.24933	0.23087	0.21256	0.19438	0.17633	0.15838	Ó
	Нату	урали	ыпре	танг	енс ы		•		• 	
,	17°	16°	15°	14°	13°	12°	11°	10°	9°	

,	81°	82°	83°	84°	85°	86°	87°	88°	89°	,
	<u></u>		Нату	раль	ные	котаг	renc	Irl	<u></u>	
0	0.15838	0.14054	0.12278	0.10510	0.08749	0.06993	0.05241	0.03492	0.01746	60
1	0.15809	0.14024	0.12249	0.10481	0.08720	0.06963	0.05212	0.03463	0.01716	59
2	0.15779	0.13995	0.12219	0.10452	0.08690	0.06934	0.05182	0.03434	0.01687	58
3	0.15749	0.13965	0.12190	0.10422	0.08661	0.06905	0.05153	0.03405	0.01658	57
4	0.15719	0.13935	0.12160	0.10393	0.08632	0.06876	0.05124	0.03376	0-01629	56
5	0.15689	0.13906	0.12131	0.10363	0.08602	0.06847	0.05095	0.03346	0.01600	55
6	0.15660	0.13876	0.12101	0.10334	0.08573	0.06817	0.05066	0.03317	0.01571	54
.7	0.15630	0.13846	0.12072	0.10305	0.08544	0.06788	0.05037	0.03288	0.01542	53
- 8	0.15600	0.13817	0.12042	0.10275	0.08514	0.06759	0.05007	0.03259	0.01513	52
9	0.15570	0.13787	0.12013	0.10246	0.08485	0.06730	0.04978	0.03230	0.01484	51
10	0.15540	0.13758	0.11983	0.10216	0.08456	0.06700	0.04949	0.03201	0.01455	50
11	0.15511	0.13728	0.11954	0.10187	0.08427	0.06671	0.04920	0.03172	0.01425	49
12	0.15481	0.13698	0.11924	0.10158	0.08397	0.06642	0.04891	0.03143	0.01396	48
13	0.15451	0.13669	0.11895	0.10128	0.08368	0.06613	0.04862	0.03114	0.01367	47
14	0.15421	0.13639	0.11865	0.10099	0.08339	0.06584	0.04833	0.03084	0.01338	46
15	0.15391	0.13609	0.11836	0.10069	0.08309	0.06554	0.04803	0.03055	0.01309	45
-16	0.15362	0.13580	0.11806	0.10040	0.08280	0.06525	0.04774	0.03026	0.01280	44
17	0.15332	0.13550	0.11777	0.10011	0.08251	0.06496	0.04745	0.02997	0.01251	43
18	0.15302	0.13521	0.11747	0.09981	0.08221	0.06467	0.04716	0.02968	0.01222	42
19	0.15272	0.13491	0.11718	0.09952	0.08192	0.06438	0.04687	0.02939	0.01193	41
20	0.15243	0.13461	0.11688	0.09923	0.08163	0.06408	0.04658	0.02910	0.01164	40
21	0.15213	0.13432	0.11659	0.09893	0.08134	0.06379	0.04628	0.02881	0.01135	39
22	0.15183	0.13402	0.11629	0.09864	0.08104	0.06350	0.04599	0.02851	0.01105	38
23	0.15153	0.13372	0.11600	0.09834	0.08075	0.06321	0.04570	0.02822	0.01076	· 37
24	0.15124	0.13343	0.11570	0.09805	0.08046	0.06291	0.04541	0.02793	0.01047	36
25	0.15094	0.13313	0.11541	0.09776	0.08017	0.06262	0.04512	0.02764	0.01018	35
26	0.15064	0.13284	0.11511	0.09746	0.07987	0.06233	0.04483	0.02735	0.00989	34
27	0.15034	0.13254	0.11482	0.09717	0.07958	0.06204	0.04454	0.02706	0.00960	33
28	0.15005	0.13224	0.11452	0.09688	0.07920	0.06175	0.04424	Ö•02677	0.00931	3 2
29	0.14975	0.13195	0.11423	0.09658	0.07899	0.06145	0.04395	0.02648	0.00902	31
30	0.14945	0.13165	0.11394	0.09629	0.07870	0.06116	0.04366	0.02619	0.00873	30 °
	Нат	урал:	ыпые	танг	енсы-		· · ·			1
								1		
1	- 8°	7° -	6°	5°	4°	3°	2°	l°	0°	,

'	81°	82°	83°	84°	85°	8 6°	87°	88°	89°	,
1			Нату	раль	нысы	котан	гепс	ы		•
♦ 31	0.14915	0.13136	0.11364	0.09300	0.07841	0.05087	0.04337	0.02589	0.00844	29
32	0.14886	0.13106	0.11335	0.09570	0.07812	0.03058	0.04308	0.02560	0.00815	28
33	0.14856	0 · 13076	0.11305	0.09541	0.07782	0.03029	0.04279	0.02531	0.00785	27
34	0.14826	0 · 13047	0.11276	0.09511	0.07753	0.05999	0.04250	0.02502	0.00755	26
35	0.14796	0.13017	0.11246	0.09482	0.07724	0.05970	0.04220	0.02473	0.00727	25
36	0.14767	0.12988	0.11217	0.09453	0.07695	0.05941	0.04191	0.02444	0.00398	24
37	• 0 • 14737	0.12958	0.11187	0.09423	0.07665	0.05912	0.04162	0.02415	0.00669	23
38	0.14707	0.12929	0.11158	0.09394	0.07633	0.05883	0.04133	0.02386	0.00340	22
39	0.14678	0.12899	0.11128	0.09365	0.07607	0.05854	0.04104	0.02357	0.00611	21
40	0.14648	0.12839	0.11099	0.09335	0.07578	0.05824	0.04075	0.02328	0.00582	20
41	0.14618	0.12840	0 •11070	0.09305	0.07548	0.05795	0.04045	0.02298	0.00553	19
42	0 • 14588	0 .12810	0.11040	0.09277	0.07519	0.05766	0.04016	0.02269	0.00524	18
43	0.14559	0.12781	0.11011	0• 0 9247	0.07490	0.05737	0.03987	0.02240	0.00495	17
44	0.14529	0.12751	0.10981	0.09218	0.07461	0.05708	0.03958	0.02211	0.00465	16
45	0 .14499	0·12722	0.10952	0.09189	0.07431	0.05578	0.03929	0.02182	0.00136	15
46	0.14470	0.12692	0.10922	0.09159	0.07402	0.05549	0.03900	0.02153	0.00407	14
47	0.14440	0 .12662	0.10893	0.09130	0.07373	0.05320	0.03871	0.02 124	0.00378	13
48	0.14410	0.12633	0.10853	0.09101	0 .07344	0.05591	0.03842	0.02095	0.00349	12
49	0.14381	0.12503	0.10834	0.09071	0.0731 4	0.05562	0.03812	0.02066	0.00320	11
50	0.14351	0 · 12574	0.10805	0.09042	0.07285	0.05533	0.03783	0.02035	0.00291	10
51	0.14321	0.12544	0.10775	0.09013	0.07256	0.05503	0.03754	0.02007	0.00262	9
52	0.14291	0.12515	0.10746	0.08983	0.07227	0.05474	0.03725	0.01978	0.00233	8
53 [°]	0.14262	0.12485	0.10716	0.08954	0.07197	0.05145	0.03593	0.01949	0.00204	7
54	0.14232	0.12458	0.10387	0.08925	0.07168	0.05416	0.03667	0.01920	0.00175	6
55	0.14202	0.12426	0.10657	0.08895	0.07139	0.05387	0.03638	0.01891	0.00145	5
56	0.14173	0.12397	0.10628	0.08866	0.07110	0.05357	0.03609	0.01862	0.00116	4
57	0.14143	0.12357	0.10599	0.08837	0.07080	0.05328	0.03579	0.01833	0.00087	3
58	0.14113	0.12338	0.10569	0.08807	0.07051	0.05299	0.03550	0.01804	0.00058	2
59	0 · 14084	0.12308	0.10540	0.08778	0.07022	0.05270	0.03521	0.01775	0.00029	1
60	0.14054	0.12278	0.10510	0.08749	0.03993	0.05241	0.03492	0.01746	0.00000	0
ľ	Нат	уралі	ыые	танг	енсы-		· · · · · · · · · · · · · · · · · · ·			
,	8°	7°	6°	5°	4°	3°	2°	۱°	0°	,

Таблица III. Кратные тангенсы и котангенсы¹

Объяснение к таблице см. стр. 249.

1 (5°00-	— 9 °57)	2 (9° 55–	–19°20)	3(14°42-	-27°45)	4(19º17-		5(23°38-	-41°15)
1	2	3	4	5	1	2	3	4	5
5°00 5 03 5 06 5 09 5 12	9°55 10 01 10 07 10 13 10 19	14°42 14 51 14 59 15 08 15 16	19°17 19 28 19 39 19 50 20 00	$\begin{array}{ccc} 23^{\circ}38 \\ 23 & 50 \\ 24 & 03 \\ 24 & 16 \\ 24 & 28 \end{array}$	7° 30 7 33 7 36 7 39 7 42	14°45 14 51 14 57 15 02 15 08	21°33 2141 2149 2157 2205	$\begin{array}{c} 27^{\circ} 46 \\ 27 56 \\ 28 05 \\ 28 15 \\ 28 24 \end{array}$	$\begin{array}{c} 33^{\circ}21\\ 33 \ 32\\ 33 \ 43\\ 33 \ 53\\ 34 \ 04 \end{array}$
5°15 518 521 524 527	$10^{\circ} 25 \\ 10 31 \\ 10 37 \\ 10 42 \\ 10 48$	$15^{\circ} 25 \\ 15 33 \\ 15 42 \\ 15 50 \\ 15 58 \\$	$\begin{array}{c} 20^{\circ}11\\ 20\ 22\\ 20\ 32\\ 20\ 43\\ 20\ 53 \end{array}$	$\begin{array}{ccc} 24^{\circ}41 \\ 24 & 53 \\ 25 & 05 \\ 25 & 18 \\ 25 & 30 \end{array}$	7°45 748 751 754 757	15°14 15 19 15 25 15 31 15 36	$\begin{array}{cccc} 22^{\circ} 13 \\ 22 & 20 \\ 22 & 28 \\ 22 & 36 \\ 22 & 44 \end{array}$	28° 34 28 43 28 53 29 02 29 11	$\begin{array}{ccc} 34^{\circ}14\\ 34 & 24\\ 34 & 35\\ 34 & 45\\ 34 & 55\end{array}$
5°30 5 33 5 36 5 39 5 42	$10^{\circ}54 \\ 11 00 \\ 11 06 \\ 11 12 \\ 11 17 $	$16^{\circ} 07$ 16 15 16 23 16 32 16 40	21°04 21 14 21 25 21 35 21 46	$\begin{array}{c} 25^{\circ}42 \\ 25 \ 55 \\ 26 \ 07 \\ 26 \ 19 \\ 26 \ 31 \end{array}$	8°00 8 03 8 06 8 09 8 12	$15^{\circ} 42 \\ 15 48 \\ 15 53 \\ 15 59 \\ 16 05$	22° 52 22 59 23 07 23 15 23 23	29° 21 29 30 29 39 29 48 29 58	$\begin{array}{c} 35^{\circ}06\ 35\ 16\ 35\ 26\ 35\ 36\ 35\ 46\ 35\ 46\end{array}$
5°45 5 48 5 51 5 54 5 57	$ \begin{array}{r} 11^{\circ} 23 \\ 11 \ 29 \\ 11 \ 35 \\ 11 \ 41 \\ 11 \ 46 \\ \end{array} $	16°48 16 57 17 05 17 13 17 22	$\begin{array}{c} 21^{\circ}56\\ 22 \\ 07\\ 22 \\ 17\\ 22 \\ 28\\ 22 \\ 38\\ \end{array}$	26°43 2656 2708 2720 2731	8°15 8 18 8 21 8 24 8 27	$ \begin{array}{r} 16^{\circ}10\\ 16&16\\ 16&22\\ 16&27\\ 16&33\\ \end{array} $	23°30 23 38 23 45 23 54 24 01	$30^{\circ} 07$ 30 16 30 25 30 34 30 43	$\begin{array}{cccc} 35^{\circ} 56 \\ 36 & 06 \\ 36 & 16 \\ 36 & 26 \\ 35 & 36 \end{array}$
6°00 6 03 6 06 6 09 6 12	$11^{\circ}52 \\ 11 58 \\ 12 04 \\ 12 10 \\ 12 15 $	17°30 1738 1747 1755 1803	$\begin{array}{c} 22^{\circ}48\\ 22 \\ 59\\ 23 \\ 09\\ 23 \\ 19\\ 23 \\ 29\end{array}$	27°43 27 55 28 07 28 19 28 31	8° 30 8 33 8 36 8 39 8 42	16°38 1644 1650 1655 1701	$\begin{array}{c} 24^{\circ}\ 09\\ 24\ 17\\ 24\ 24\\ 24\ 32\\ 24\ 39\end{array}$	30°52 31 01 31 10 31 19 31 28	36° 46 36 56 37 06 37 15 37 25
6°15 6 18 6 21 6 24 6 27	12°21 12 27 12 33 12 39 12 44	18°11 18 20 18 28 18 36 18 44	$\begin{array}{ccc} 23^{\circ} 39 \\ 23 50 \\ 24 00 \\ 24 10 \\ 24 20 \end{array}$	28°42 28 54 29 06 29 17 29 29	8°45 8 48 8 51 8 54 8 57	17°07 17 12 17 18 17 23 17 29	$24^{\circ}47$ 24 55 25 02 25 10 25 17	31°37 31 46 31 55 32 04 32 13	37°35 37 44 37 54 .38 04 38 13
6°30 633 636 639 642	12°50 1256 1302 1308 1313	18°52 19 00 19 09 19 17 19 25	$24^{\circ}30$ 24 40 24 50 25 00 25 10	29°40 29 52 30 03 30 14 30 26	9°00 9 03 9 06 9 09 9 12	17°35 17 40 17 46 17 51 17 57	$25^{\circ}2525$ 25 32 25 39 25 47 25 55	$32^{\circ} 21$ 32 30 32 39 32 48 32 56	38°23 38 32 38 41 38 51 39 00
$6^{\circ}45 \\ 6 48 \\ 6 51 \\ 6 54 \\ 6 57$	13° 19 13 25 13 31 13 36 13 42	19°33 19 41 19 49 19 57 20 05	$\begin{array}{c} 25^{\circ}20\\ 25 \ 30\\ 25 \ 40\\ 25 \ 50\\ 26 \ 00 \end{array}$	$30^{\circ} 37$ 30 48 30 59 31 11 31 22	9°15 918 921 924 927	$ 18^{\circ}02 \\ 18 08 \\ 18 14 \\ 18 19 \\ 18 25 $	$\begin{array}{ccc} 26^{\circ} 02 \\ 26 & 10 \\ 26 & 17 \\ 26 & 25 \\ 26 & 32 \end{array}$	33° 05 33 14 33 22 33 31 33 39	39°09 39 19 39 28 39 37 39 46
7°00 7 03 7 06 7 09 7 12	13°48 1354 1359 1405 1411	20° 13 20 21 20 29 20 37 20 45	26° 09 26 19 26 29 26 39 26 49	31°33 31 44 31 55 32 06 32 17	9°30 9 33 9 36 9 39 9 42	$ 18^{\circ} 30 \\ 18 36 \\ 18 41 \\ 18 47 \\ 18 52 $	26° 39 26 47 26 54 27 02 27 09	$33^{\circ}48$ 33 56 34 05 34 13 34 22	$\begin{array}{c} 39^{\circ}55\\ 40\ 04\\ 40\ 13\\ 40\ 22\\ 40\ 31 \end{array}$
7°15 7 18 7 21 7 24 7 27	$\begin{array}{r} 14^{\circ}17\\ 14 \ 22\\ 14 \ 28\\ 14 \ 34\\ 14 \ 39 \end{array}$	20°53 21 01 21 09 21 17 21 25	26° 58 27 08 27 18 27 27 27 37	32°28 32 38 32 49 33 00 33 11	9°45 9 48 9 51 9 54 9 57	18°58 19 03 19 09 19 15 19 20	27°16 27 24 27 31 27 38 27 45	34°30 34 38 34 47 34 55 35 03	40° 40 40 49 40 58 41 07 41 15

' T. V. Barker, Crystallographic tables and formulae.

Кратные тангенсы и котангенсы

1(10°00-	–14°57)	2(19°26-	-28°06)	3(27°53-	—38°42)	4(35°12-	—46°53)	5 (4 1°24-	—53°10)
1	2	3	4	5	1	2	3	4	5
10°00 10 03 10 06 10 09 10 12	19°26 1931 1937 1942 1948	27° 53 28 00 28 07 28 14 28 22	$35^{\circ}12$ $35\ 20$ $35\ 28$ $35\ 36$ $35\ 45$	41°24 41 03 41 41 41 50 41 59	$ \begin{array}{r} 12^{\circ} 30 \\ 12 \ 33 \\ 12 \ 36 \\ 12 \ 39 \\ 12 \ 42 \end{array} $	$\begin{array}{ccc} 23^{\circ}55\\ 24 & 00\\ 24 & 05\\ 24 & 10\\ 24 & 16\\ \end{array}$	33° 38 33 44 33 51 33 57 34 04	41°34 41 41 41 48 41 55 42 02	47°57 48 04 48 11 48 18 48 25
10°15 10 18 10 21 10 24 10 27	$19^{\circ} 53 \\ 19 58 \\ 20 04 \\ 20 09 \\ 20 15$	$\begin{array}{c} 28^{\circ}29\\ 28 \ 36\\ 28 \ 43\\ 28 \ 50\\ 28 \ 57\end{array}$	$35^{\circ}53$ 36 01 36 09 36 17 36 25	$\begin{array}{r} 42^{\circ} 07 \\ 42 \ 15 \\ 42 \ 42 \\ 42 \ 32 \\ 42 \ 41 \end{array}$	$\begin{array}{c} 12^{\circ}45\\ 12 \ 48\\ 12 \ 51\\ 12 \ 54\\ 12 \ 57\end{array}$	24°21 24 26 24 31 24 37 24 42	$\begin{array}{r} 34^{\circ}10\\ 34 \ 17\\ 34 \ 23\\ 34 \ 30\\ 34 \ 36\\ \end{array}$	42°09 42 16 42 23 42 30 42 36	48°32 48 39 48 45 48 52 48 52 48 59
10°30 10 33 10 36 10 39 10 42	$\begin{array}{c} 20^{\circ}20\\ 20 \ 26\\ 20 \ 31\\ 20 \ 37\\ 20 \ 42 \end{array}$	29°04 29 12 29 19 29 26 29 33	36°33 3641 3649 3657 3705	$42^{\circ}49$ 42 58 43 06 43 14 43 22	13°00 13 03 13 06 13 09 13 12	$\begin{array}{ccc} 24^{\circ}47 \\ 24 & 52 \\ 24 & 57 \\ 25 & 03 \\ 25 & 08 \end{array}$	34°42 34 49 34 55 35 02 35 08	42°43 42 50 42 57 43 04 43 10	49°06 49 13 49 19 49 26 49 33
10°45 10 48 10 51 10 54 10 57	20°48 2053 2058 2104 2109	29°40 29 47 29 54 30 01 30 08	37°13 3721 3729 3736 3744	43°31 43 39 43 47 43 55 44 03	$\begin{array}{c} 13^{\circ}15\\ 13 \ 18\\ 13 \ 21\\ 13 \ 24\\ 13 \ 27\end{array}$	$\begin{array}{c} 25^{\circ}13\\ 25 \ 18\\ 25 \ 23\\ 25 \ 28\\ 25 \ 34\\ \end{array}$	35°14 35 21 35 27 35 33 35 40	43°17 43 24 43 30 43 37 43 44	49°39 49 46 49 53 49 59 50 06
11°00 11 03 11 06 11 09 11 12	21°15 2120 2125 2131 2136	30°15 30 22 30 29 30 36 30 43	37°52 38 00 38 07 38 15 38 23	$\begin{array}{r} 44^\circ11\\ 44\ 19\\ 44\ 27\\ 44\ 35\\ 44\ 43\end{array}$	13°30 13 33 13 36 13 39 13 42	$\begin{array}{ccc} 25^{\circ} 39 \\ 25 44 \\ 25 49 \\ 25 54 \\ 25 59 \end{array}$	$\begin{array}{c} 35^{\circ} 46 \\ 35 52 \\ 35 58 \\ 36 05 \\ 36 11 \end{array}$	43°50 43 57 44 04 44 10 44 17	50°12 50 19 50 25 50 32 50 38
11°15 11 18 11 21 11 24 11 27	21°42 21 47 21 52 21 58 22 03	30°50 30 56 31 03 31 10 31 17	38°30 38 38 38 46 38 53 39 01	44°51 44 58 45 06 45 14 45 22	$\begin{array}{c} 13^{\circ}45\\ 13 \ 48\\ 13 \ 51\\ 13 \ 54\\ 13 \ 57\end{array}$	$\begin{array}{ccc} 26^{\circ}05 \\ 26 & 10 \\ 26 & 15 \\ 26 & 20 \\ 26 & 25 \end{array}$	36° 17 - 36 23 36 29 36 35 36 42	44°23 44 30 44 36 44 43 44 49	50°44 50 51 50 57 51 03 51 10
11°30 11 33 11 36 11 39 11 42	22°08 22 14 22 19 22 25 22 30	31°24 31 31 31 37 31 44 31 51	39°08 39 16 39 23 39 31 39 38	$\begin{array}{r} 45^{\circ}19\\ 45 \ 37\\ 45 \ 45\\ 45 \ 52\\ 46 \ 00\\ \end{array}$	$\begin{array}{ccc} 14^{\circ}00\\ 14 & 03\\ 14 & 06\\ 14 & 09\\ 14 & 12\\ \end{array}$	$\begin{array}{c} 26^{\circ} 30 \\ 26 35 \\ 26 40 \\ 26 45 \\ 26 51 \end{array}$	36°48 3654 3700 3706 3712	44°55 45 02 45 08 45 14 45 21	51°16 51 22 51 28 51 34 51 41
11°45 11 48 11 51 11 54 11 57	$\begin{array}{c} 22^{\circ}35\\ 22 \ 41\\ 22 \ 46\\ 22 \ 51\\ 22 \ 57\end{array}$	31°58 32 05 32 11 32 18 32 25	$39^{\circ}46$ 39 53 40 00 40 08 40 15	$\begin{array}{r} 46^{\circ}07\\ 46 \ 15\\ 46 \ 22\\ 46 \ 30\\ 46 \ 37\end{array}$	$\begin{array}{c} 14^{\circ}15\\ 14 \ 18\\ 14 \ 21\\ 14 \ 24\\ 14 \ 27\end{array}$	$\begin{array}{c} 26^{\circ}56\\ 27 \ 01\\ 27 \ 06\\ 27 \ 11\\ 27 \ 16\\ \end{array}$	37°18 37 24 37 30 37 36 37 42	45°27 45 33 45 40 45 46 45 52	51°47 51 53 51 59 52 05 52 11
12°00 12 03 12 06 12 09 12 12	23°02 23 07 23 12 23 18 23 23	$32^{\circ}31$ 32 38° 32 4532 5132 58	40°22 40 30 40 37 40 44 40 51	$\begin{array}{r} 46^{\circ} 45 \\ 46 52 \\ 46 59 \\ 47 07 \\ 47 14 \end{array}$	14°30 14 33 14 36 14 39 14 42	$\begin{array}{c} 27^{\circ} 21 \\ 27 \ 26 \\ 27 \ 31 \\ 27 \ 36 \\ 27 \ 41 \end{array}$	$\begin{array}{c} 37^{\circ}48\\ 37\ 54\\ 38\ 00\\ 38\ 06\\ 38\ 12\\ \end{array}$	45°58 46 04 46 11 46 17 46 23	52°17 52 23 52 29 52 35 52 41
12°15 12 18 12 21 12 24 12 27	23° 28 23 34 23 39 23 44 23 49	33° 05 33 11 33 18 33 24 33 31	40°58 41 06 41 13 41 20 41 27	47°21 47 28 47 35 47 42 47 50	14°45 14 48 14 51 14 54 14 57	27°46 27 51 27 56 28 01 28 06	38°18 38 24 38 30 38 36 38 42	46°29 46 35 46 41 46 47 46 53	52° 47 52 53 52 58 53 04 53 10

·

Кратные тангенсы и котангенсы

1(15°00-	–19°57)	2(28°11-	—35°59)	3(38°48-	—47°26)	4(46°59	—55°27)	5(53°16	—61°09)
1 .	2	3	4	5	1	2	3	4	5
$\begin{array}{c} 15^{\circ}00\\ 1503\\ 1506\\ 1509\\ 1512\end{array}$	28°11	38° 48	$46^{\circ}59$	53°16	17°30	32°14	43°24	$51^{\circ}35$	57°37
	28 16	38 53	47 05	53 21	1733	32 19	43 30	51 40	57 41
	28 21	33 59	47 11	53 27	1736	32 24	48 35	51 46	57 46
	28 26	39 05	47 17	53 33	1739	32 28	43 40	51 51	57 51
	28 31	39 11	47 23	53 38	1742	32 33	43 45	51 56	57 56
15°15	28°36	39°17	47°29	53°44	17°45	32°38	$\begin{array}{r} 43^{\circ}50\\ 43\ 56\\ 44\ 01\\ 44\ 06\\ 44\ 11\end{array}$	$52^{\circ}01$	58°00
15 18	28 41	3923	47 35	53 50	1748	32 42		$52\ 06$	58 05
15 21	28 46	3928	47 41	53 55	1751	32 47		$52\ 11$	58 09
15 24	28 51	3934	47 46	54 01	1754	32 52		$52\ 16$	58 14
15 27	28 56	3940	47 52	54 07	1757	32 56		$52\ 21$	59 19
15°30	29°01	39°46	$47^{\circ}58$	$54^{\circ}12$	18°00	33°01	44°16	52°25	58°23
1533	29 06	39 51	48 04	54 18	18 03	33 06	44 21	52 30	58 28
1536	29 11	39 57	48 10	54 24	18 06	33 10	44 26	52 35	58 32
1539	29 16	40 03	48 15	54 29	18 09	33 15	44 31	52 40	58 37
1542	29 21	40 08	48 21	54 34	18 12	33 20	44 36	52 45	58 41
15°45	29°26	40°14	48° 27	54°39	18°15	33°24	44°41	52°50	58°46
15 48	29 30	40°20	48 32	54 45	18 18	33 29	44 46	52 55	58 50
15 51	29 35	40°25	48 38	54 50	18 21	33 34	44 51	53 00	58 55
15 54	29 40	40°31	48 44	54 56	18 24	33 38	44 57	53 04	58 59
15 57	29 45	40°37	48 49	55 01	18 27	33 43	45 02	53 09	59 04
16°00	29°50	$\begin{array}{r} 40^{\circ}42\\ 40 \ 48\\ 40 \ 53\\ 40 \ 59\\ 41 \ 04 \end{array}$	48°55	55°06	18°30	33° 47	45°07	53°14	59°08
16 03	29 55		49 01	55 12	1833	33 52	45 11	53 19	59 12
16 06	30 00		49 06	55 17	1836	33 57	45 16	53 24	59 17
16 09	30 05		49 12	55 22	1839	34 01	45 21	53 28	59 21
16 12	30 10		49 17	55 27	1842	34 06	45 26	53 33	59 25
16°15	30°14	41°10	49°23	55°33	18°45	$\begin{array}{r} 34^{\circ}10\\ 34\ 15\\ 34\ 20\\ 34\ 24\\ 34\ 29\end{array}$	45°31	53°38	59°30
16 18	30 19	41 16	49 28	5538	18 48		4536	53 42	59 34
16 21	30 24	41 21	49 34	5543	18 51		4541	53 47	59 38
16 24	30 29	41 27	49 39	5548	18 54		4546	53 52	59 43
16 27	30 34	41 32	49 45	5553	18 57		4551	53 56	59 47
16°30	30°39	41°38	49°50	$55^{\circ}58$	19°00	34°33	$\begin{array}{r} 45^{\circ}56\\ 46\ 01\\ 46\ 05\\ 46\ 10\\ 46\ 15\end{array}$	$54^{\circ}01$	59°51
1633	30 43	41 43	49 56	56 03	19 03	34 38		$54 \ 06$	5955
1636	30 48	41 48	50 01	56 09	19 06	34 42		$54 \ 10$	6000
1639	30 53	41 54	50 06	56 14	19 09	34 47		$54 \ 15$	6004
1642	30 58	41 59	50 12	56 19	19 12	34 51		$54 \ 20$	6008
16°45	31°03	42°04	50°17	$56^{\circ}24$	19°15	34°56	$\begin{array}{r} 46°20\\ 46~25\\ 46~30\\ 46~34\\ 46~39\end{array}$	$54^{\circ}24$	60°12
16 48	31 08	42 10	50 22	56 29	1918	35 00		$54^{\circ}29$	60 16
16 51	31 12	42 16	50 28	56 34	1921	35 05		$54^{\circ}33$	60 20
16 54	31 17	42 21	50 33	56 39	1924	35 09		$54^{\circ}38$	60 24
16 57	31 22	42 26	50 38	56 44	1927	35 14		$54^{\circ}42$	60 28
17°00 17 03 17 06 17 09 17 12	31°27 31 31 31 36 31 41 31 46	42°32 4237 4242 4248 4253	50°44 50 49 50 54 50 59 51 04	56°48 5653 5658 5703 5708	19°30 1933 1936 1939 1942	35°18 3523 3527 3532 3532 3536	46° 44 46 49 46 53 46 58 47 03	54°47 54 51 54 56 55 00 55 05	60°33 60 37 60 41 60 45 60 49
17°15	31°50	42°58	51°10	57°13	19°45	35° 41	47°08	55°09	60° 53
17 18	31 55	43 03	51 15	57 18	1948	35 45	47 12	55 13	60 57
17 21	32 00	43 09	51 20	57 23	1951	35 50	47 17	55 18	61 01
17 24	32 05	43 14	51 25	57 27	1954	35 54	47 22	55 22	61 05
17 27	32 09	43 19	51 30	57 32	1957	35 59	47 26	55 27	61 09

Кратные тангенсы и котангенсы

1(20°00-	—24°57)	2(36°03-	—42°56)	3(47°31 <i>-</i>	–54°23)	4(55°31-	—61°45)	5(61°13-	—63°44)
1	2	3	4	5	1	2	3	4	5
$\begin{array}{c} 20^{\circ}00\\ 2003\\ 2006\\ 2009\\ 2012 \end{array}$	$36^{\circ}03$ $36\ 08$ $36\ 12$ $36\ 16$ $36\ 21$	47°31 47 36 47 40 47 45 47 49	55°31 55 35 55 40 55 44 55 48	$\begin{array}{c} 61^{\circ}13\\ 61 \ 17\\ 61 \ 21\\ 61 \ 24\\ 61 \ 28 \end{array}$	22°30 22 33 22 36 22 39 22 42	39° 38 39 43 39 47 39 51 39 55	51°10 51 15 51 19 51 2 3 51 27	58°53 58 57 59 01 59 04 59 08	64°14 64 17 64 20 64 24 64 27
20° 15 20 18 20 21 20 24 20 27	36°25 36 30 36 34 36 39 36 43	47°54 47 59 48 03 48 08 48 12	55°53 55 57 56 01 56 05 56 10	61°32 61 36 61 40 61 44 61 48	$\begin{array}{c} 22^{\circ}45\\ 22 \ 48\\ 22 \ 51\\ 22 \ 54\\ 22 \ 57\end{array}$	39°59 40 03 40 07 40 12 40 16	51°31 51 35 51 39 51 43 51 47	59°12 59 16 59 19 59 23 59 26	64°30 64 33 64 37 64 40 64 43
20°30 2033 2036 2039 2042	36°47 3652 3656 3700 3705	48°17 48 21 48 26 48 30 48 35	56°14 56 18 56 22 56 26 56 31	61°51 61 55 61 59 62 03 62 07	23°00 23 03 23 06 23 09 23 12	40°20 40 24 40 28 40 32 40 36	51°51 51 56 52 00 52 04 52 08	59°30 59 34 59 37 59 41 59 45	$\begin{array}{c} 64^{\circ} 46 \\ 64 50 \\ 64 53 \\ 64 56 \\ 64 56 \\ 64 59 \end{array}$
20° 45 20 48 20 51 20 54 20 57	37°09 37 13 37 18 37 22 37 27	48°40 48 44 48 48 48 53 48 53	$56^{\circ}35$ 56 39 56 43 56 47 56 51	$\begin{array}{c} 62^{\circ}10\\ 6214\\ 6218\\ 6221\\ 6221\\ 6225\end{array}$	23°15 23 18 23 21 23 24 23 27	40°40 40 44 40 48 40 53 40 57	$\begin{array}{c} 52^{\circ}12\\ 52\ 16\\ 52\ 20\\ 52\ 24\\ 52\ 28\end{array}$	59°48 59 52 59 55 59 59 60 03	$\begin{array}{c} 65^{\circ}02\\ 65\ 05\\ 65\ 09\\ 65\ 12\\ 65\ 15\end{array}$
21°00 21 03 21 06 21 09 21 12	37°31 37 35 37 40 37 44 37 48	49°02 49 06 49 11 49 15 49 19	56°55 57 00 57 04 57 08 57 12	$\begin{array}{c} 62^{\circ}29\\ 62 \ 32\\ 62 \ 36\\ 62 \ 40\\ 62 \ 43\\ \end{array}$	23°30 23 33 23 36 23 39 23 42	41°01 41 05 41 09 41 13 41 17	52°32 52 35 52 39 52 43 52 47	60°06 60 10 60 13 60 17 60 20	65°18 65 21 65 24 65 27 65 30
21°15 21 18 21 21 21 24 21 27	37°52 3757 3801 3805 3810	49°24 49 28 49 33 49 37 49 41	57°16 5720 5724 5728 5732	$\begin{array}{ccc} 62^{\circ} 47 \\ 62 & 51 \\ 62 & 54 \\ 62 & 58 \\ 63 & 01 \end{array}$	23°45 23 48 23 51 23 54 23 57	41°21 41 25 41 29 41 33 41 37	52°51 52 55 52 59 53 03 53 07	60°24 60 27 60 31 60 34 60 38	65°33 65 36 65 39 65 43 65 46
21°30 21 33 21 36 21 39 21 42	38°14 38 18 38 22 38 27 38 31	49°46 49 50 49 54 49 59 50 03	57°36 57 40 57 41 57 48 57 52	63°05 63 08 63 12 63 15 63 19	$\begin{array}{c} 24^{\circ}00\\ 2403\\ 2406\\ 2409\\ 2412\\ \end{array}$	41°41 41 45 41 49 41 53 41 57	$53^{\circ}11$ 53 15 53 18 53 22 53 26	$\begin{array}{c} 60^{\circ}41\\ 60\ 45\\ 60\ 48\\ 60\ 51\\ 60\ 55\end{array}$	65°49 65 52 65 55 65 58 66 01
21°45 21 48 21 51 21 54 21 57	38°35 38 39 38 44 38 48 38 52	$50^{\circ} 07$ 50 12 50 16 50 20 50 24	57°56 58 00 58 03 58 07 58 11	63°22 63 26 63 29 63 33 63 36	$\begin{array}{ccc} 24^{\circ}15\\ 24&18\\ 24&21\\ 24&24\\ 24&24\\ 24&27\\ \end{array}$	42°01 42 05 42 09 42 13 42 17	$53^{\circ}30 \\ 53 & 34 \\ 53 & 38 \\ 53 & 41 \\ 53 & 45 \\ 53 & 45 \\ \end{array}$	$\begin{array}{c} 60^{\circ}58\\ 61 & 02\\ 61 & 05\\ 61 & 08\\ 61 & 12\\ \end{array}$	66°04 66 07 66 10 66 13 66 15
22°00 20 03 22 06 22 09 22 12	38°56 39 01 39 05 39 09 39 13	$50^{\circ}29$ 50 33 50 37 50 41 50 45	$58^{\circ}15$ 58 19 58 23 58 27 58 30	63°40 63 43 63 47 63 50 63 53	$\begin{array}{ccc} 24^\circ 30 \\ 24 & 33 \\ 24 & 36 \\ 24 & 39 \\ 24 & 42 \end{array}$	42°21 42 25 42 29 42 33 42 37	53°49 5353 5357 5400 5404	61°15 61 18 61 22 61 25 61 28	66°18 6621 6624 6627 6630
$\begin{array}{c} 22^{\circ} 15 \\ 22 & 18 \\ 22 & 21 \\ 22 & 24 \\ 22 & 27 \end{array}$	39°17 39 22 39 26 39 30 39 34	50°50 50 54 50 58 51 02 51 06	58°34 58 38 58 42 58 46 58 49	$\begin{array}{c} 63^{\circ}57\\ 64 \ 00\\ 64 \ 04\\ 64 \ 07\\ 64 \ 10 \end{array}$	24°45 24 48 24 51 24 54 24 57	42°41 42 45 42 48 42 52 42 56	$54^{\circ}08$ 54 12 54 15 54 19 54 23	61°32 61 35 61 38 61 42 61 45	66°33 66 36 66 39 66 41 66 44

Кратные тангенсы и котангенсы

1(25°00-	–29°57)	2(43°00-	—49°0 3)	3(54°27-	–59°57)	4 (61°48-	66°33)	5(66°47	—70°51)
1	2	3	4	5	1	2	3	4	5
25°00	43°00	$54^{\circ}27$	61°48	66° 47	27°30	46°09	57°22	$\begin{array}{c} 64^{\circ}21 \\ 64 \ 24 \\ 64 \ 27 \\ 64 \ 29 \\ 64 \ 32 \end{array}$	68° 59
25 03	43 04	54 30	61 51	66 50	27 33	46 13	57 25		69 01
25 06	43 08	54 34	61 55	66 53	27 36	46 17	57 29		69 04
25 09	43 12	54 38	61 58	66 56	27 39	46 20	57 32		69 06
25 12	43 16	54 41	62 01	66 58	27 42	46 24	57 35		69 09
25°15	43° 20	54°45	62°04	67°01	27°45	46°28	57°39	$64^{\circ}35$	69°11
25 18	43 24	54 49	62 08	67 04	27 48	46 31	57 42	$64^{\circ}38$	69 14
25 21	43 27	54 52	62 11	67 07	27 51	46 35	57 45	$64^{\circ}41$	69 16
25 24	43 31	54 56	62 14	67 10	27 54	46 38	57 48	$64^{\circ}43$	69 18
25 27	43 35	55 00	62 17	67 12	27 57	46 42	57 52	$63^{\circ}46$	69 21
25°30	43°39	55°03	62°20	67°15	$\begin{array}{ccc} 28^{\circ}00\\ 28 & 03\\ 28 & 06\\ 28 & 09\\ 28 & 12\\ \end{array}$	46°46	57°55	64°49	69°23
25 33	43 43	55 07	62 24	6718		46 49	5758	64 52	69 26
25 36	43 47	55 11	62 27	6721		46 53	5801	64 55	69 28
25 39	43 51	55 14	62 30	6723		46 56	5805	64 57	69 30
25 42	43 54	55 18	62 33	6726		47 00	5808	65 00	69 33
25° 45	$\begin{array}{r} 43^{\circ}58\\ 44\ 02\\ 44\ 06\\ 44\ 10\\ 44\ 13\end{array}$	55°21	$62^{\circ}36$	67°29	28°15	47°04	58°11	65°03	69°35
25 48		55 25	$62^{\circ}39$	67 32	28 18	47 07	58 14	65 06	69 37
25 51		55 28	$62^{\circ}42$	67 34	28 21	47 11	58 18	65 08	69 40
25 54		55 32	$62^{\circ}45$	67 37	28 24	47 14	58 21	65 11	69 42
25 57		55 35	$62^{\circ}49$	67 40	28 27	47 18	58 24	65 14	69 44
$26^{\circ}00$	44°17	55°39	$\begin{array}{c} 62^{\circ} 52 \\ 62 55 \\ 62 58 \\ 63 01 \\ 63 04 \end{array}$	67°42	28°30	47°22	$58^{\circ}27$	65°17	69°47
$26^{\circ}03$	44 21	55 43		67 45	28 33	4725	58 30	65 19	69 49
$26^{\circ}06$	44 25	55 46		67 48	28 36	4729	58 34	65 22	69 51
$26^{\circ}09$	44 29	55 50		67 50	28 39	4732	58 37	65 25	69 54
$26^{\circ}12$	44 32	55 53		67 53	28 42	4736	58 40	65 27	69 56
26°15	44°36	55°57	63°07	67°55	28° 45	47° 39	58°43	65°30	69°58
26 18	44 40	56 00	63 10	6758	28 48	47 43	58 46	6533	70 01
26 21	44 44	56 04	63 13	6801	28 51	47 46	58 49	6535	70 03
26 24	44 48	56 07	63 16	6803	28 54	47 50	58 53	6538	70 05
26 27	44 51	56 11	63 19	6806	28 57	47 53	58 56	6541	70 07
26°30	44°55	$56^{\circ}14$	63°22	68°09	29°00	47°57	58°59	65°43	70°10
26 33	44 59	56 18	63 25	68 11	29 03	48 00	59 02	65 46	70 12
26 36	45 03	56 21	63 28	68 14	29 06	48 04	59 05	65 49	70 14
26 39	45 06	56 24	63 31	68 16	29 09	48 07	59 08	65 51	70 16
26 42	45 10	56 28	63 34	68 19	29 12	48 11	59 11	65 54	70 19
26° 45	$\begin{array}{r} 45^{\circ}14\\ 45 \ 18\\ 45 \ 21\\ 45 \ 25\\ 45 \ 29\end{array}$	56°31	63°37	68°22	29°15	48°14	59°14	65°57	70°21
26 48		56 35	63 40	68 24	29 18	48 18	59 17	6559	70 23
26 51		56 38	63 43	68 27	29 21	48 21	59 20	6602	70 25
26 54		56 42	63 46	68 29	29 24	48 25	59 24	6604	70 27
26 57		56 45	63 49	68 32	29 27	48 28	59 27	6607	70 30
27°00	45°32	56°48	63°52	68°34	29°30	48°32	59°30	$\begin{array}{c} 66^{\circ}10\\ 66 12\\ 66 15\\ 66 15\\ 66 17\\ 66 20\\ \end{array}$	70°32
27 03	45 36	56 52	63 55	68 37	2933	48 35	5933		70 34
27 06	45 40	56 55	63 58	68 39	2936	48 39	5936		70 36
27 09	45 44	56 59	64 01	68 42	2939	48 42	5939		70 38
27 12	45 47	57 02	64 04	68 44	2942	48 46	5942		70 41
27°15 27 18 27 21 27 24 27 27	45°51 4555 4558 4602 4606	57°05 57 09 57 12 57 15 57 19	$64^{\circ}06$ 64 09 64 12 64 15 64 18	$\begin{array}{c} 68°47\\ 68 \\ 49\\ 68 \\ 52\\ 68 \\ 54\\ 68 \\ 56\end{array}$	29° 45 29 48 29 51 29 54 29 57	48°49 48 53 48 56 49 00 49 03	59°45 59 48 59 51 59 54 59 57	$\begin{array}{c} 66^{\circ}23\\ 6625\\ 6628\\ 6630\\ 6633\end{array}$	70°43 70 45 70 47 70 49 70 51

Кратные тангенсы и котангенсы

1 (30°00–	-34°57)	2(49°06	—54°25)	3(60°00-	-64°30)	4(66°35	—70°19)	5(70°54	—74°02)
1	2	3	4	5	1	2	3	4	5
30°00 30 03 30 06 30 09 30 12	49°06 49 10 49 13 49 17 49 20	$60^{\circ}00$ 60 03 60 06 60 09 60 12	66°35 6638 6640 6643 6643	70°54 70 56 70 58 71 00 71 02	32°30 32 33 32 36 32 39 32 42	$51^{\circ} 52 \\ 51 56 \\ 51 59 \\ 52 02 \\ 52 05$	$62^{\circ}23$ 6226 6228 6231 6234	68°34 68 37 63 39 68 41 68 43	72°34 7236 7238 7240 7242
$\begin{array}{c} 30^{\circ}15\\ 30\ 18\\ 30\ 21\\ 30\ 24\\ 30\ 27 \end{array}$	49°23 49 27 49 30 49 34 49 37	$\begin{array}{c} 60^{\circ}15\ 60\ 18\ 60\ 21\ 60\ 24\ 60\ 27\end{array}$	66°48 66 50 66 53 66 55 66 58	71°04 71 06 71 08 71 11 71 13	32°45 32 48 32 51 32 54 32 57	$\begin{array}{ccc} 52^{\circ}08 \\ 52 & 12 \\ 52 & 15 \\ 52 & 18 \\ 52 & 21 \end{array}$	$\begin{array}{c} 62^{\circ}36\\ 62 \\ 39\\ 62 \\ 42\\ 62 \\ 44\\ 62 \\ 47 \end{array}$	$\begin{array}{c} 68^{\circ} 46 \\ 68 \\ 68 \\ 68 \\ 50 \\ 68 \\ 52 \\ 68 \\ 54 \end{array}$	72°44 72 46 72 47 72 49 72 51
30° 30 30 33 30 36 30 39 30 42	49°40 49 44 49 47 49 51 49 54	60°30 6733 6036 6039 6041	67°00 67 03 67 05 67 08 67 10	71°15 71 17 71 19 71 21 71 23	$\begin{array}{c} 33^{\circ}00\\ 3303\\ 3306\\ 3309\\ 3312 \end{array}$	52°24 52 28 52 31 52 34 52 37	62°50 62 52 62 55 62 53 63 00	68° 57 68 59 69 01 69 03 69 05	72°53 72 55 72 47 72 58 73 00
30°45 30 48 30 51 30 54 30 57	49°57 50 01 50 04 50 07 50 11	$\begin{array}{c} 60^{\circ}44\\ 60 \ 47\\ 60 \ 50\\ 60 \ 53\\ 60 \ 56\end{array}$	67°12 67 15 67 17 67 20 67 22	71°25 71 27 71 29 71 31 71 33	$\begin{array}{c} 33^{\circ}15\\ 33\ 18\\ 33\ 21\\ 33\ 24\\ 33\ 27\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63°03 63 06 63 08 63 11 63 14	69°07 69 10 69 12 69 14 69 16	73°02 73 04 73 06 73 08 73 09
31°00 31 03 31 06 31 09 31 12	$\begin{array}{c} 50^{\circ}14\\ 50 \ 17\\ 50 \ 21\\ 50 \ 24\\ 50 \ 27\\ \end{array}$	60°59 61 02 61 05 61 07 61 10	67°24 6727 6729 6732 6734	71°35 71 37 71 39 71 41 71 43	33°30 33 33 33 36 33 39 33 42	$\begin{array}{c} 52^{\circ}56\\ 52\ 59\\ 53\ 02\\ 53\ 05\\ 53\ 08\\ \end{array}$	$\begin{array}{c} 63^{\circ}16\\ 63 \ 19\\ 63 \ 21\\ 63 \ 24\\ 63 \ 27\end{array}$	69°18 69 21 69 23 69 25 69 27	73°11 73 13 73 15 73 17 73 18
31°15 31 18 31 21 31 24 31 27	50°31 50`34 50 37 50 41 50 44	61°13 61 16 61 19 61 23 61 25	67°37 6739 6741 6743 6746	71°45 71 47 71 49 71 51 71 53	33°45 3348 3351 3354 3354 3357	53°12 53 15 53 18 53 21 53 24	63°29 63 32 63 34 63 37 63 40	69°29 69 31 69 33 69 36 69 38	73°20 7322 7824 7326 7327
$31^{\circ}30$ 31 3331 3631 3931 42	50°47 50 51 50 54 50 57 51 00	61°27 61 30 61 33 61 36 61 39	67°48 67 51 67 53 67 55 67 58	71°55 71 57 71 59 72 01 72 03	$34^{\circ}00 \\ 3403 \\ 3406 \\ 3409 \\ 3412 $	53°27 53 30 53 33 53 36 53 39	63°42 63 45 63 47 63 50 63 52	$\begin{array}{c} 69^{\circ}40\\ 6942\\ 6944\\ 6946\\ 6948\\ 6948\\ \end{array}$	73° 29 73 31 73 33 73 34 73 36
31°45 31 48 31 51 31 54 31 57	51°04 51 07 51 10 51 14 51 17	$\begin{array}{c} 61^{\circ}41 \\ 61 \ 44 \\ 61 \ 47 \\ 61 \ 50 \\ 61 \ 53 \end{array}$	68°00 68 02 68 05 68 07 68 09	$\begin{array}{c} 72^{\circ}05\\ 72 \ 07\\ 72 \ 09\\ 72 \ 11\\ 72 \ 13 \end{array}$	$\begin{array}{r} 34^\circ 15 \\ 34 \ 18 \\ 34 \ 21 \\ 34 \ 24 \\ 34 \ 27 \end{array}$	$\begin{array}{c} 53^{\circ}42\\ 53 & 46\\ 53 & 49\\ 53 & 52\\ 53 & 55\\ 53 & 55\\ \end{array}$	$\begin{array}{c} 63^{\circ}55\\ 63\ 58\\ 64\ 00\\ 64\ 03\\ 64\ 05\\ \end{array}$	69°50 69 52 69 54 69 57 69 59	73° 38 73 40 73 41 73 43 73 45
32°00 32 03 32 06 32 09 32 12	51°20 51 23 51 27 51 30 51 33	$\begin{array}{c} 61^{\circ}55\\ 61 58\\ 62 01\\ 62 04\\ 62 06\end{array}$	68°12 68 14 68 16 68 19 68 21	72°15 72 17 72 19 72 21 72 23	$34^{\circ}30$ 34 3334 3634 3934 42	$\begin{array}{c} 53^{\circ}58\\ 54 & 01\\ 54 & 04\\ 54 & 07\\ 54 & 10\\ \end{array}$	$\begin{array}{c c} 64^{\circ}08 \\ 64 & 10 \\ 64 & 13 \\ 64 & 15 \\ 64 & 18 \end{array}$	70°01 70 03 70 05 70 07 70 09	73°46 73 48 73 50 73 52 73 53
32°15 32 18 32 21 32 24 32 24 32 27	51°36 51 39 51 43 51 46 51 49	62°09 62 12 62 15 62 17 62 20	68°23 68 25 68 28 68 30 68 32 	72°25 72 27 72 29 72 31 72 32	34°45 34 48 34 51 34 54 34 57	$\begin{array}{c c} 54^{\circ} 13 \\ 54 & 16 \\ 54 & 19 \\ 54 & 22 \\ 54 & 25 \\ 54 & 25 \\ \end{array}$	64°20 64 23 64 25 64 28 64 30	70°11 70 13 70 15 70 17 70 19	73°55 73 57 73 58 74 00 74 02

Кратные тангенсы и котангенсы

1(35°00–	–39°57)	2(54°28-	—59°10)	3(64° 33 -	-68°18)	4(70°21;	 73°23)	5(74°04	—76°34)
1	2	3	4	5	1	2	3	4	5
35°00 35 03 35 06 35 09 35 12	$54^{\circ}28$ 54 31 54 34 54 37 54 40	$\begin{array}{c} 64^{\circ}33\\ 64 \\ 35\\ 64 \\ 38\\ 64 \\ 40\\ 64 \\ 43 \end{array}$	70°21 70 23 70 25 70 27 70 29	74°04 74 05 74 07 74 09 74 10	37°30 37 33 37 36 37 39 37 42	56°55 5658 5700 5703 5706	$\begin{array}{c} 66^{\circ}31 \\ 66 & 33 \\ 66 & 36 \\ 66 & 38 \\ 66 & 40 \end{array}$	71°57 71,59 72,01 72,03 72,05	75°23 75 25 75 27 75 28 75 30
$\begin{array}{c} 35^{\circ}15\\ 35 \ 18\\ 35 \ 21\\ 35 \ 24\\ 35 \ 27\end{array}$	$54^{\circ}43$ 54 46 54 49 54 52 54 55	$64^{\circ}45$ 64 4864 5064 5364 55	70°31 7033 7035 7037 7037 7039	74°12 74 14 74 15 74 17 74 19	37°45 37 48 37 51 37 54 37 57	57°09 57 12 57 14 57 17 57 20	$\begin{array}{c} 66^{\circ} 42 \\ 66 \ 45 \\ 66 \ 47 \\ 66 \ 49 \\ 66 \ 51 \end{array}$	72°06 72 08 72 10 72 12 72 14	75°31 75 33 75 34 75 36 75 37
35°30 35 33 35 36 35 39 35 42	54°58 55 01 55 04 55 07 55 10	$\begin{array}{c} 64^{\circ}57\\ 6500\\ 6502\\ 6504\\ 6507\end{array}$	70°41 7043 7045 7047 7047 7049	$\begin{array}{c} 74^{\circ}20\\ 7422\\ 7424\\ 7425\\ 7425\\ 7427\end{array}$	38°00 38 03 38 05 38 09 38 12	57°23 5726 5729 5731 5734	66°54 66 56 66 58 67 00 67 03	72°15 72 17 72 19 72 21 72 23	75°38 75 40 75 42 75 43 75 44
$\begin{array}{c} 35^{\circ} 45 \\ 35 \ 48 \\ 35 \ 51 \\ 35 \ 54 \\ 35 \ 57 \end{array}$	$55^{\circ}13$ 55 16 55 19 55 22 55 25	65°09 65 11 65 14 65 17 65 19	70°51 70 53 70 55 70 57 70 59	74°28 74 30 74 32 74 33 74 33 74 35	38°15 38 18 38 21 38 24 38 27	57°37 57 40 57 43 57 45 57 48	67°05 6707 6709 6711 6714	72°24 72 26 72 28 72 30 72 31	75°46 75 47 75 49 75 50 75 52
$36^{\circ} 00$ 36 03 36 06 36 00 36 12	55°28 55 31 55 34 55 37 55 40	65°21 65 24 65 26 65 28 65 31	71°01 71 03 71 05 71 07 71 08	$\begin{array}{c} 74^{\circ}37\\ 74\;\;38\\ 74\;\;40\\ 74\;\;41\\ 74\;\;43\end{array}$	38°30 3833 3836 3839 3842	57°51 5754 5756 5759 5802	67°16 67 18 67 20 67 22 67 25	72°33 72 35 72 37 72 38 72 40	75°53 75 55 75 56 75 58 75 59
$\begin{array}{c} 36^{\circ}15\\ 3618\\ 3621\\ 3624\\ 3627\end{array}$	$55^{\circ}43$ 55 4555 4855 5155 54	65°33 6536 6538 6540 6543	71°10 71 12 71 14 71 16 71 18	74°45 74 46 74 48 74 49 74 51	38°45 3848 3851 3854 3854 3857	58° 05 58 07 58 10 58 13 58 16	67°27 6729 6731 6733 6733	72° 42 72 44 72 45 72 47 72 49	76°00 76 02 76 03 76 05 76 06
$36^{\circ} 30$ $36^{\circ} 33$ $36^{\circ} 36$ $36^{\circ} 39$ $36^{\circ} 42$	$\begin{array}{ccc} 55^{\circ}57\\ 56&00\\ 56&03\\ 56&06\\ 56&09\\ \end{array}$	$\begin{array}{c} 65^{\circ} 45 \\ 65 & 47 \\ 65 & 50 \\ 65 & 52 \\ 65 & 54 \end{array}$	71°20 71 22 71 24 71 26 71 28	74°53 74 54 74 56 74 57 74 59	39°00 39 03 39 06 39 09 39 12	58°18 58 21 58 24 58 27 58 29	67°38 67 40 67 42 67 44 67 46	72°51 72 52 72 54 72 56 72 57	76°08 76 09 76 10 76 12 76 13
$36^{\circ} 45 \\ 36 48 \\ 36 51 \\ 36 54 \\ 36 57 \\ $	$56^{\circ}12 \\ 56 15 \\ 56 17 \\ 56 20 \\ 56 23$	$\begin{array}{c} 65^{\circ}57\\ 65\ 59\\ 66\ 01\\ 66\ 04\\ 66\ 06\\ \end{array}$	71°29 71 31 71 33 71 35 71 37	75°00 75 02 75 04 75 05 75 07	39°15 39 18 39 21 39 24 39 27	58°32 58 35 58 38 58 40 58 43	67°48 67 50 67 53 67 55 67 55 67 57	72°59 73 01 73 03 73 04 73 06	76°15 76 16 76 18 76 19 76 20
37°00 37 03 37 06 37 09 37 12	56°26 56 29 56 32 56 35 56 38	66°08 66 11 66 13 66 15 66 17	71°39 71 41 71 42 71 44 71 46	75°08 75 10 75 11 75 13 75 14	39°30 39 33 39 36 39 39 39 42	$\begin{array}{c} 58^{\circ}46 \\ 58 & 48 \\ 58 & 51 \\ 58 & 54 \\ 58 & 56 \end{array}$	67°59 68 01 68 03 68 05 68 07	73°08 73 09 73 11 73 13 73 14	76°22 7623 7625 7626 7626 7627
37°15 37 18 37 21 37 24 37 27	$\begin{array}{ccc} 56^{\circ}40 \\ 56 & 43 \\ 56 & 46 \\ 56 & 49 \\ 56 & 52 \end{array}$	66°20 6622 6624 6627 6629	71°48 71 50 71 52 71 54 71 55	75°16 75 17 75 19 75 20 75 22	39°45 39 48 39 51 39 54 39 57	58°59 59 02 59 05 59 07 59 10	68°10 68 12 68 14 68 16 68 18	73°17 73 18 73 19 73 21 73 23	76°20 76 30 76 31 76 33 76 34

16 Аншелес — 706

Кратные тангенсы и котангенсы

1(40°00)—44°57)	2(59°13	—63°24)	3(68°20-	—71°32)	4(73°25	—75°56)	5(76°36	—78°40)
1	2	3	4	5	1	2	3	4	5
$\begin{array}{c} 40^{\circ}00\\ 4003\\ 4006\\ 4009\\ 4012\end{array}$	59°13 59 15 59 18 59 21 59 23	$\begin{array}{c} 68^{\circ}20\\ 68 \ 22\\ 68 \ 24\\ 68 \ 26\\ 68 \ 28\end{array}$	73°25 73 26 73 28 73 30 73 31	76°36 7637 7638 7640 7641	42°30 4233 4236 4239 4242	61°23 61 25 61 28 61 30 61 33	70°01 70 03 70 04 70 06 70 08	74°44 74 46 74 47 74 49 74 50	77°41 77 43 77 44 77 45 77 46
40° 15 40 18 40 21 40 24 40 27	59°26 59 29 59 31 59 34 59 37	68°30 6833 6835 6837 6839	73°33 73 35 73 36 73 38 73 39	76°42 76 44 76 45 76 47 76 48	42°45 42 48 42 51 42 54 42 57	$\begin{array}{c} 61^{\circ}35\\ 61 & 38\\ 61 & 40\\ 61 & 43\\ 61 & 46\\ \end{array}$	70°10 70 12 70 14 70 16 70 18	74°52 74 54 74 55 74 57 74 57 74 58	77°48 77 49 77 50 77 51 77 52
40° 30 40 33 40 36 40 39 40 42	59°39 59 42 59 45 59 47 59 50	$\begin{array}{c} 68^{\circ}41 \\ 68 & 43 \\ 68 & 45 \\ 68 & 47 \\ 68 & 49 \end{array}$	73°41 73 43 73 44 73 46 73 48	76°49 7651 7652 7653 7653	$\begin{array}{r} 43^{\circ}00\\ 43\ 03\\ 43\ 06\\ 43\ 09\\ 43\ 12\end{array}$	$\begin{array}{c} 61^{\circ}48\\ 61\ 50\\ 61\ 53\\ 61\ 56\\ 61\ 58\\ \end{array}$	70°20 7022 7024 7026 7027	75°00 75 01 75 03 75 04 75 06	77°54 77 55 77 56 77 57 77 59
40° 45 40 48 40 51 40 54 40 57	59°52 59 55 59 58 60 01 60 03	68°51 6853 6855 6857 6857 6859	73°49 73 51 73 52 73 54 73 56	76°56 7657 7659 7700 7701	43°15 43 18 43 21 43 24 43 27	$\begin{array}{c} 62^{\circ}01\\ 62\ 03\\ 62\ 06\\ 62\ 08\\ 62\ 10\\ \end{array}$	70°29 70 31 70 33 70 35 70 35 70 37	75°07 75 09 75 10 75 11 75 13	78°00 78 01 78 02 78 03 78 03 78 05
41°00 41 03 41 06 41 09 41 12	$\begin{array}{c} 60^{\circ}06\\ 60\ 08\\ 60\ 11\\ 60\ 14\\ 60\ 16\\ \end{array}$	69°01 69 03 69 05 69 07 69 09	73°57 73 59 74 01 74 02 74 04	77°03 77 04 77 05 77 07 77 08	43°30 43 33 43 36 43 39 43 42	$\begin{array}{c} 62^{\circ}13\\ 62\ 15\\ 62\ 18\\ 62\ 20\\ 62\ 23\\ \end{array}$	70°39 70 41 70 43 70 44 70 46	75°14 7516 7517 7519 7520	78°06 78 07 78 08 78 10 78 11
41°15 41 18 41 21 41 24 41 27	60°19 60 21 60 24 60 26 60 29	69°11 69 13 69 15 69 17 69 19	74°05 74 07 74 09 74 10 74 12	77°09 77 10 77 12 77 13 77 14	43° 45 43 48 43 51 43 54 43 57	62°25 6228 6230 6233 6233	70°48 70 50 70 52 70 54 70 56	75°22 75 23 75 25 75 26 75 28	78°12 78 13 78 14 78 16 78 17
41°30 41 33 41 36 41 39 41 42	60°31 60 34 60 37 60 39 60 42	69°21 69 23 69 25 69 27 69 29	74°13 74 15 74 16 74 18 74 20	77°16 77 17 77 18 77 20 77 21	44°00 44 03 44 06 44 09 44 12	$\begin{array}{c} 62^{\circ} 38 \\ 62 \\ 40 \\ 62 \\ 42 \\ 62 \\ 45 \\ 62 \\ 47 \end{array}$	70°57 70 59 71 01 71 03 71 05	75°29 75 31 75 32 75 34 75 35	78°18 78 19 78 20 78 21 78 23
41°45 41 48 41 51 41 54 41 57	60°44 60 47 60 50 60 52 60 55	69°31 6933 6935 6937 6937	$74^{\circ}21 \\74^{\circ}23 \\74^{\circ}24 \\74^{\circ}26 \\74^{\circ}27 \\$	77°22 77 23 77 25 77 26 77 27	$\begin{array}{r} 44^{\circ}15\\ 44 \ 18\\ 44 \ 21\\ 44 \ 24\\ 44 \ 27\end{array}$	62°50 62 52 62 55 62 57 63 00	71°07 71 08 71 10 71 12 71 14	75°36 75 38 75 39 75 41 75 42	78°24 78 25 78 26 78 27 78 29
$\begin{array}{c} 42^{\circ}00\\ 42 & 03\\ 42 & 06\\ 42 & 09\\ 42 & 12\\ \end{array}$	60°57 61 00 61 02 61 05 61 08	69°41 6943 6945 6947 6947 6949	$\begin{array}{c} 74^{\circ}29 \\ 74 \ 31 \\ 74 \ 32 \\ 74 \ 34 \\ 74 \ 35 \end{array}$	77° 29 77 30 77 31 77 32 77 34	44°30 44 33 44 36 44 39 44 42	63°02 63 04 63 07 63 09 63 12	71°16 71 18 71 19 71 21 71 23	75°44 75 45 75 46 75 48 75 49	78°30 78 31 78 32 78 33 78 33 78 34
42°15 42 18 42 21 42 24 42 27	61°10 61 13 61 15 61 18 61 20	69°51 69 53 69 55 69 57 69 57 69 59	74°37 74 38 74 40 74 41 74 43	77°35 7736 7737 7739 7740	$\begin{array}{r} 44^{\circ}45\\ 4448\\ 4451\\ 4454\\ 4457\end{array}$	63°14 63 16 63 19 63 21 63 24	71°25 71 27 71 28 71 30 71 32	75°51 75 52 75 54 75 55 75 56	78°35 78 37 78 38 78 39 78 40

Кратные	тангенсы	н котангенсы
---------	----------	--------------

1(45°00-	—49°57)	2(63°26-	—67°12)	3(71°34-	—74°21)	4 (75°58	—78°08)	5(78° 41-	—80°27)
1	2	3	4	5	1	2	3	4	5
45°00 45 03 45 06 45 09 45 12	63°26 63 29 63 31 63 33 63 36	71°34 71 36 71 38 71 39 71 41	75°58 7559 7601 7602 7603	78°41 78 43 78 44 78 45 78 45 78 46	47°30 4733 4736 4739 4742	65°23 6525 6528 6530 6532	73°01 73 03 73 04 73 06 73 08	77°06 77 07 77 09 77 10 77 11	79°37 79 38 79 39 79 40 79 41
45°15 4518 4521 4524 4527	63° 38 63 40 63 43 63 45 63 48	71°43 71 45 71 46 71 48 71 50	76°05 7606 7608 7609 7610	78°47 78 48 78 49 78 51 78 52	47°45 47 48 47 51 47 54 47 57	$\begin{array}{c} 65^{\circ}34\\ 65 & 36\\ 65 & 39\\ 65 & 41\\ 65 & 44\end{array}$	73°09 73 11 73 13 73 14 73 16	77°12 77 14 77 15 77 16 77 18	79°42 79 43 79 44 79 45 79 46
45°30 4533 4536 4539 4542	63°50 63 52 63 55 63 57 63 57 63 59	71°52 71 54 71 55 71 57 71 59	76°12 76 13 76 15 76 16 76 17	78°53 78 54 78 55 78 56 78 56 78 57	48°00 48 03 48 06 48 09 48 12	65°46 65 48 65 50 65 53 65 55	73°18 73 19 73 21 73 23 73 24	77°19 77 20 77 21 77 23 77 24	79°48 79 49 79 50 79 51 79 52
45°45 45 48 45 51 45 54 45 57	64°02 64 04 64 07 64 09 64 11	72°01 72 02 72 04 72 06 72 08	76°19 7620 7622 7623 7624	78°59 79 00 79 01 79 02 79 03	48°15 48 18 48 21 48 24 48 27	$\begin{array}{c} 65^{\circ} 57 \\ 65 \\ 59 \\ 66 \\ 02 \\ 66 \\ 04 \\ 66 \\ 06 \end{array}$	73°26 73 28 73 29 73 31 73 32	77°25 77 27 77 28 77 29 77 30	79°53 7954 7955 7956 7957
46°00 46 03 46 06 46 09 46 12	$\begin{array}{ccc} 64^{\circ}1.4 \\ 64 & 16 \\ 64 & 18 \\ 64 & 21 \\ 64 & 23 \end{array}$	72°09 72 11 72 13 72 15 72 16	76°26 7627 7628 7630 7631	79°04 79 05 79 06 79 07 79 09	48°30 4833 4836 4839 4842	$\begin{array}{c} 66^{\circ}08\\ 66 \ 10\\ 66 \ 13\\ 66 \ 15\\ 66 \ 17\\ \end{array}$	73°34 73 36 73 37 73 39 73 41	77°32 77 33 77 34 77 35 77 37	79°58 7959 8000 8001 8002
46°15 46 18 46 21 46 24 46 27	$\begin{array}{c} 64^{\circ}25\\ 64\ 28\\ 64\ 30\\ 64\ 32\\ 64\ 35\end{array}$	72°18 72 20 72 22 72 23 72 23 72 25	76° 32 76 34 76 35 76 36 76 38	79°10 79 11 79 12 79 13 79 14	$\begin{array}{r} 48^{\circ}45\\ 48 & 48\\ 48 & 51\\ 48 & 54\\ 48 & 57\end{array}$	$\begin{array}{c} 66^{\circ}19\\ 66\ 22\\ 66\ 24\\ 66\ 26\\ 66\ 28\\ \end{array}$	73°42 73 44 73 46 73 47 73 49	77°38 77 39 77 41 77 42 77 43	80°03 80 04 80 05 80 06 80 07
$\begin{array}{r} 46°30\\ 46&33\\ 46&36\\ 46&39\\ 46&42 \end{array}$	$\begin{array}{c} 64^{\circ}37\\ 64 \ 39\\ 64 \ 42\\ 64 \ 44\\ 64 \ 46\end{array}$	72°27 72 29 72 30 72 32 72 34	76°39 76 41 76 42 76 43 76 45	79°15 79 16 79 17 79 19 79 20	49°00 49 03 49 06 49 09 49 12	66° 30 66 33 66 35 66 37 66 39	73°50 73 52 73 54 73 55 73 55 73 57	$\begin{array}{c} 77^{\circ} 44 \\ 77 \ \ 46 \\ 77 \ \ 47 \\ 77 \ \ 48 \\ 77 \ \ 49 \end{array}$	80°08 80 09 80 10 80 11 80 12
$\begin{array}{r} 46^{\circ}45\\ 46 \ 48\\ 46 \ 51\\ 46 \ 54\\ 46 \ 57\end{array}$	$\begin{array}{c} 64^{\circ}49\\ 64 \ 51\\ 64 \ 53\\ 64 \ 55\\ 64 \ 58\end{array}$	72°35 72 37 72 39 72 41 72 42	76°46 7647 7649 7650 7651	79°21 79 22 79 23 79 24 79 25	49°15 49 18 49 21 49 24 49 27	$\begin{array}{c} 66^{\circ}42 \\ 66 & 44 \\ 66 & 46 \\ 66 & 48 \\ 66 & 50 \end{array}$	73°58 74 00 74 02 74 03 74 05	77°51 77 52 77 53 77 54 77 56	80°13 80 14 80 15 80 16 80 17
47°00 47 03 47 06 47 09 47 12	65°00 65 02 65 05 65 07 65 09	72°44 72 46 72 47 72 49 72 51	76° 53 76 54 76 55 76 57 76 58	79°26 79 27 79 28 79 29 79 30	49°30 4933 4936 4939 4942	66°53 6655 6657 6659 6701	$74^{\circ}07$ 74 08 74 10 74 11 74 13	77°57 77 58 78 00 78 01 78 02	80°18 80 19 80 20 80 21 80 22
47°15 47 18 47 21 47 24 47 27	65°12 65 14 65 16 65 18 65 21	72°52 72 54 72 56 72 58 72 59	76°59 77 01 77 02 77 03 77 05	79°32 79 33 79 34 79 35 79 36	49°45 49 48 49 51 49 54 49 57	67°03 67 06 67 08 67 10 67 12	74°14 74 16 74 18 74 19 74 21	78°03 78 01 78 05 78 07 78 08	80°23 80 24 80 25 80 26 80 27

*

К	ратные	тангенсы	н к	отан	гсисы
---	--------	----------	-----	------	-------

1 (50°00–	–54°57)	2 (67°1 4-	—70°40)	3(74°22-	—76°50)	4(78°09	— 80°03)	5(80°28	—82°01)
1	2	3	4	5	1	2	3	4	5
50°00 50 03 50 09 50 09 50 12	67°14 67 17 67 21 67 21 67 23	74°22 74 24 74∕27 74⁄27 74 27 74 29	78°09 78 10 78 13 78 13 78 13 78 14	80°28 80 29 80 31 80 31 80 32	$\begin{array}{c} 52°30\\ 52&33\\ 52&36\\ 52&39\\ 52&42 \end{array}$	69°01 69 03 69 05 69 07 69 09	75°39 75 41 75 42 75 44 75 45	79°08 79 10 79 11 79 12 79 13	81°17 81 18 81 18 81 18 81 19 81 20
50°15 50 18 50 21 50 24 50 27	67°25 6727 6730 6732 6732 6734	74°30 74 32 74 33 74 35 74 35 74 36	78°15 78 16 78 18 78 19 78 20	80°33 8034 8035 8036 8037	$52^{\circ}45$ 52 48 52 51 52 54 52 57	69°11 69 13 69 15 69 17 69 19	75°46 75 48 75 50 75 51 75 52	79°14 7915 7916 7918 7918 7919	81°21 81 22 81 23 81 24 81 25
50°30 5033 5036 5039 5042	67°36 67 38 67 40 67 43 67 45	$74^{\circ}38$ 74 40 74 41 74 43 74 43 74 44	78°21 7822 7824 7825 7825 7826	80°38 8039 8040 8041 8042	$53^{\circ}00 \\ 53 & 03 \\ 53 & 06 \\ 53 & 09 \\ 53 & 12 \\ \end{array}$	69°21 6923 6925 6927 6927	75°54 75 55 75 57 75 58 76 00	79°20 7921 7922 7923 7923 7924	81°26 81 27 81 28 81 29 81 29 81 29
50°45 5048 5051 5054 5054 5057	67°47 67 49 67 51 67 53 67 55	$74^{\circ}46$ 74 47 74 49 74 50 74 52	78°27 78 29 78 30 78 31 78 32	$\begin{array}{c} 80^{\circ}43\ 80\ 44\ 80\ 45\ 80\ 46\ 80\ 47\end{array}$	$53^{\circ}15$ 53 18 53 21 53 24 53 27	$\begin{array}{c} 69°32\\ 69\;34\\ 69\;36\\ 69\;38\\ 69\;38\\ 69\;40 \end{array}$	76°01 76 03 76 04 76 06 76 07	79°25 7927 7928 7929 7930	81°30 81 31 81 32 81 33 31 34
51°00 51 03 51 06 51 09 51 12	67°57 67 59 68 02 68 04 68 06	74°54 74 55 74 57 74 58 75 00	78°33 78 35 78 36 78 37 78 38	80°48 8049 8050 8051 8052	53°30 53 33 53 36 53 39 53 42	$\begin{array}{c} 69^{\circ}42\\ 69\ 44\\ 69\ 46\\ 69\ 48\\ 69\ 50\\ \end{array}$	76°09 76 10 76 12 76 13 76 14	79°31 79 32 79 33 79 35 79 36	81°35 81 36 81 37 81 38 81 39
51°15 51 18 51 21 51 24 51 27	68°08 68 10 68 12 68 14 68 17	75°01 75 03 75 04 75 06 75 07	78°39 78 40 78 42 78 43 78 44	80° 53 80 54 80 55 80 56 80 57	53°45 53 48 53 51 53 54 53 57	69°52 69 54 69 56 69 58 70 00	76°16 76 17 76 19 76 20 76 22	79°37 79 38 79 39 79 40 79 41	81°39 81 40 81 41 81 42 81 43
51°30 51 33 51 36 51 39 51 42	68°19 68 21 68 23 68 25 68 27	75°09 75 11 75 12 75 14 75 15	78°45 78 46 78 48 78 49 78 50	80°58 80 49 81 00 81 01 81 01	$54^{\circ}00 \\ 54 & 03 \\ 54 & 06 \\ 54 & 09 \\ 54 & 12 \\ \end{array}$	70°02 70 04 70 06 70 08 70 10	76°23 7625 7626 7627 7629	79°42 79 43 79 45 79 46 79 47	81°44 81 45 81 46 81 47 81 48
51°45 51 48 51 51 51 54 51 57	68°29 68 31 68 33 68 36 68 38	75°17 75 18 75 20 75 21 75 23	78°51 78 52 78 53 78 54 78 56	81°02 81 03 81 04 81 05 81 06	$54^{\circ}15$ 54 18 54 21 54 24 54 27	70°12 70 14 70 16 70 18 70 20	76°30 7632 7633 7635 7635	79°48 79 49 79 50 79 51 79 52	81°48 81 49 81 50 81 51 81 52
52°00 52 03 52 06 52 09 52 12	$68^{\circ}40$ $68^{\circ}42$ $68^{\circ}44$ $68^{\circ}46$ $68^{\circ}48$	75°24 7526 7527 7527 7531	78°57 7858 7859 7900 7902	81°07 81 08 81 09 81 10 81 11	$54^{\circ}30$ $54^{\circ}33$ $54^{\circ}35$ $54^{\circ}39$ $54^{\circ}42$	70°22 7024 7026 7028 7030	76° 38 76 39 76 40 76 42 76 43	79°53 79 54 79 56 79 57 79 57 79 58	81°53 81 54 81 55 81 56 81 56
52°15 52 18 52 21 52 24 52 27	68°50 68 52 68 54 68 56 68 59	75°32 7533 7535 7536 7538	79°03 79 04 79 05 79 06 79 07	81°12 81 13 81 14 81 15 81 16	54°45 54 48 54 51 54 54 54 57	70°32 7034 7036 7038 7040	76°45 7646 7647 7649 7650	79° 59 80 00 80 01 80 02 80 03	81°57 81 58 81 59 82 00 82 01

Кратные тангенсы и котангенсы

1(55°00-	59°57)	2(70°42	—73°52)	3(76°52-	—79°05)	4(80°04	—81°46)	5(82°02	—83°24)
1	2	3	4	5	1	2	3	4	5
55°00 55 03 55 06 55 09 55 12	70°42 70 44 70 46 70 48 70 50	76°52 7653 7654 7656 7656 7657	80°04 80 05 80 06 80 08 80 09	82°02 82 03 82 03 82 04 82 05	57°30 5733 5736 5739 5742	72°20 72 22 72 24 72 26 72 28	78°01 78 02 78 03 78 05 78 06	80°57 8058 8059 8100 8101	82°44 82 45 82 46 82 47 82 48
55°15 55 18 55 21 55 24 55 27	70°52 70 54 70 56 70 58 71 00	76°59 77 00 77 02 77 03 77 04	80°10 80 11 80 12 80 13 80 14	82°06 82 07 82 08 82 09 82 10	57°45 5748 5751 5751 5754 5757	72°29 72 31 72 33 72 35 72 37	78°07 78 09 78 10 78 11 78 13	81°02 81 03 81 04 81 05 81 06	82°48 82 49 82 50 82 51 82 52
55°30 55 33 55 36 55 39 55 42	71°02 71 04 71 06 71 08 71 10	77°06 77 07 77 09 77 10 77 11	80°15 80 16 80 17 80 18 80 19	82°10 82 11 82 12 82 13 82 14	$58^{\circ}00 \\ 58 & 03 \\ 58 & 06 \\ 58 & 09 \\ 58 & 12 \\ \end{array}$	72° 3 9 72 41 72 43 72 45 72 45 72 47	78°14 78 15 78 17 78 18 78 19	81°07 81 08 81 09 81 10 81 11	82°53 82 53 82 54 82 55 82 55 82 56
55° 45 55 48 55 51 55 54 55 54 55 57	71°12 71 14 71 16 71 18 71 20	77°13 77 14 77 16 77 17 77 18	80°20 80 21 80 23 80 24 80 25	82°15 82 16 82 16 82 17 82 18	$58^{\circ}15$ 58 18 58 21 58 24 58 27	$\begin{array}{c} 72^{\circ} 48 \\ 72 50 \\ 72 52 \\ 72 54 \\ 72 56 \end{array}$	78°21 78 22 78 23 78 25 78 26	81°12 81 13 81 14 81 15 81 16	82°57 8258 8258 8258 8259 8300
$56^{\circ}00$ 56 03 56 06 56 09 56 12	71°22 71 24 71 26 71 28 71 30	77°20 7721 7722 7724 7724 7725	80°26 80 27 80 28 80 29 80 30	82°19 82 20 82 21 82 22 82 22 82 22	$58^{\circ}30$ $58^{\circ}33$ $58^{\circ}36$ $58^{\circ}39$ $58^{\circ}42$	72°58 73 00 73 02 73 04 73 05	78°27 78 29 78 30 78 31 78 33	81°17 81 18 81 19 81 20 81 21	83°01 83 02 83 02 83 03 83 04
$56^{\circ}15$ 56 18 56 21 56 24 56 27	71°32 71 34 71 35 71 37 71 39	77° 27 77 28 77 29 77 31 77 32	80°31 80 32 80 33 80 34 80 35	$\begin{array}{r} 82^{\circ} 23 \\ 82 \ 24 \\ 82 \ 25 \\ 82 \ 26 \\ 82 \ 27 \end{array}$	$58^{\circ}45$ $58^{\circ}48$ $58^{\circ}51$ $58^{\circ}54$ $58^{\circ}57$	73°07 73 09 73 11 73 13 73 15	78°34 78 35 78 37 78 38 78 39	81°22 81 23 81 24 81 25 81 25 81 26	83°05 83 06 83 06 83 07 83 08
56°30 5633 5633 5639 5642	71°41 71 43 71 45 71 47 71 49	77° 34 77 35 77 36 77 38 77 39	80° 36 80 37 80 38 80 39 80 40	82°28 82 28 82 29 82 30 82 31	$59^{\circ}00$ $59^{\circ}03$ $59^{\circ}06$ $59^{\circ}09$ $59^{\circ}12$	73°17 73 19 73 20 73 22 73 24	$\begin{array}{ccc} 78^{\circ} 40 \\ 78 & 42 \\ 78 & 43 \\ 78 & 44 \\ 78 & 46 \\ 78 & 46 \\ \end{array}$	81°27 81 28 81 29 81 30 81 31	83°09 83 10 83 10 83 11 83 12
$56^{\circ} 45$ 56 48 56 51 56 54 56 57	71°51 71 53 71 55 71 57 71 57 71 59	$\begin{array}{c} 77^{\circ}40\\ 77 \ 42\\ 77 \ 43\\ 77 \ 44\\ 77 \ 46\end{array}$	80°41 80 43 80 44 - 80 45 80 46	82°32 82 33 82 33 82 34 82 35	$59^{\circ}15$ 55 18 59 21 59 24 59 27	73°26 73 28 73 30 73 32 73 33	78° 47 78 48 78 50 78 51 78 52	81°32 81 33 81 34 81 35 81 36	83°13 83 14 83 14 83 15 83 16
57°00 57 03 57 06 57 09 57 12	72°01 72 03 72 05 72 06 72 08	77°47 7748 7750 7751 7753	80°47 80 48 80 49 80 50 80 51	82°36 8237 8238 8238 8238 8239	59°30 5933 5936 5939 5939 5942	73°35 7337 7339 7341 7343	78°53 7855 7856 7857 7857 7859	81°37 81 38 81 39 81 40 81 41	83°17 83 18 83 18 83 19 83 20
57°15 57 18 57 21 57 24 57 27	72°10 72 12 72 14 72 16 72 18	77° 54 77 55 77 57 77 58 77 59	80°52 80 53 80 54 80 55 80 56	82°40 82 41 82 42 82 43 82 43 82 43	59°45 59 48 59 51 59 54 59 57	73°45 73 46 73 48 73 50 73 52	79°00 79 01 79 03 79 04 79 05	81°42 81 43 81 44 81 45 81 45 81 46	83°21 83 22 83 22 83 23 83 23 83 24

Кратные	тангенсы н	и котангенсы
---------	------------	--------------

1(60°00-	—64°57)	2(73°54-	—76°51)	3(79°06	—81°09)	4(81°47	—38°20)	5(83°25	-84°40)
1	2	3	4	5	1	2	3	4	5
60°00 60 03 60 06 60 09 60 12	73°54 7356 7358 7359 7401	79°06 79 08 79 09 79 10 79 12	81°47 81 48 81 49 81 50 81 51	83°25 83 26 83 27 83 27 83 28	62°30 6233 6236 6239 6242	75°25 7526 7528 7530 7530	80°09 80 11 80 12 80 13 80 14	82°35 82 36 82 37 82 38 82 39	84°03 84 04 84 05 84 06 84 06
60°15 60 18 60 21 60 24 60 27	74°03 74 05 74 07 74 09 74 10	79°13 79 14 79 15 79 17 79 18	81°52 81 53 81 54 81 55 81 55 81 56	83° 29 83 29 83 30 83 31 83 32	62°45 62 48 62 51 62 54 62 57	75°34 75 35 75 37 75 39 76 41	80°15 80 17 80 18 80 19 80 20	82°40 82 41 82 42 82 43 82 43 82 44	$\begin{array}{c} 84^{\circ}07\\ 84\ 08\\ 84\ 09\\ 84\ 09\\ 84\ 10\\ \end{array}$
60°30 6033 6036 6039 6042	$74^{\circ}12$ 74 14 74 16 74 18 74 20	79° 19 79 20 79 22 79 23 79 24	81°57 81 58 81 59 82 00 82 01	83° 33 83 33 83 34 83 35 83 36	63°00 63 03 63 06 63 09 63 12	75°42 75 44 75 46 75 48 75 50	80°22 80 23 80 24 80 25 80 27	$\begin{array}{r} 82^{\circ}44\\ 82\ 45\\ 82\ 46\\ 82\ 47\\ 82\ 48\\ \end{array}$	84°11 84 12 84 12 84 13 84 13 84 14
60°45 6048 6051 6054 6057	74°21 7423 7425 7427 7427 7429	79°26 79 27 79 28 79 29 79 31	82°02 82 03 82 04 82 05 82 06	83°37 8337 8338 8339 8340	$\begin{array}{c} 63^{\circ}15\\ 63 \ 18\\ 63 \ 21\\ 63 \ 24\\ 63 \ 27\end{array}$	75°51 75 53 75 55 75 57 75 57 75 58	80°28 80 29 80 30 80 31 80 33	82°49 82 50 82 51 82 52 82 53	84°15 84 15 84 16 84 17 84 18
61°00 61 03 61 06 61 09 61 12	74°31 7432 7434 7436 7438	79°32 79 33 79 34 79 36 79 37	82°07 82 08 82 09 82 10 82 10	83°40 83 41 83 42 83 43 83 44	$\begin{array}{c} 63^{\circ} 30 \\ 63 & 33 \\ 63 & 36 \\ 63 & 39 \\ .63 & 42 \end{array}$	$\begin{array}{c} 76^{\circ}00\\ 76\ 02\\ 76\ 04\\ 76\ 05\\ 76\ 07\\ \end{array}$	80°34 80 35 80 36 80 37 80 39	$\begin{array}{r} 82^{\circ}54\\ 82\ 55\\ 82\ 56\\ 82\ 56\\ 82\ 56\\ 82\ 57\end{array}$	84°18 84 19 84 20 84 21 84 21
61°15 61 18 61 21 61 24 61 27	74°40 74 41 74 43 74 45 74 47	79°38 7939 7941 7942 7943	82°11 82 12 82 13 82 14 82 15	83°44 83 45 83 46 83 47 83 47 83 47	63°45 63 48 63 51 63 54 63 57	76°09 76 11 76 12 76 14 76 16	80° 40 80 41 80 42 80 44 80 45	82°58 82 59 83 00 83 01 83 02	$\begin{array}{r} 84^{\circ}22\\ 84 \ 23\\ 84 \ 24\\ 84 \ 24\\ 84 \ 24\\ 84 \ 25\end{array}$
$61^{\circ}30$ $61^{\circ}33^{\circ}$ $61^{\circ}36^{\circ}$ $61^{\circ}39^{\circ}$ $61^{\circ}42^{\circ}$	74°49 74 51 74 52 74 54 74 56	79°44 79 46 79 47 79 48 79 49	82°16 82 17 82 18 82 19 82 20	83°48 83 49 83 50 83 50 83 51	$\begin{array}{c} 64^{\circ}00\\ 64\ 03\\ 64\ 06\\ 64\ 09\\ 64\ 12 \end{array}$	76°18 76 19 76 21 76 23 76 25	80°46 80 47 80 48 80 50 80 51	83°03 83 04 83 05 83 06 83 07	84°26 84 26 84 27 84 28 84 29
61°45 61 48 61 51 61 54 61 57	74°58 75 00 75 01 75 03 75 05	79°51 79 52 79 53 79 54 79 56	82°21 8222 8223 8224 8224 8225	83°52 83 53 83 54 83 54 83 54 83 55	$\begin{array}{c} 64^{\circ}15\\ 64 & 18\\ 64 & 21\\ 64 & 24\\ 64 & 27\end{array}$	$\begin{array}{c} 76^{\circ}26 \\ 76 & 28 \\ 76 & 30 \\ 76 & 32 \\ 76 & 33 \end{array}$	80°52 80 53 80 54 80 56 80 56 80 57	83°07 83 08 83 09 83 10 83 11	84°29 84 30 84 31 84 32 84 32
62°00 62 03 62 06 62 09 62 12	75°07 75 09 75 10 75 12 75 14	79°57 7958 7959 8001 8002	82°26 82 27 82 28 82 29 82 29 82 29	83° 56 83 57 83 57 83 58 83 58 83 59	$\begin{array}{c} 64^{\circ}30\\ 6433\\ 6436\\ 6439\\ 6442 \end{array}$	$76^{\circ}35$ 76 37 76 39 76 40 76 42	80°58 8059 8100 8102 8103	83°12 83 13 83 14 83 15 83 16	84°33 84 34 84 35 84 35 84 35 84 36
62°15 62 18 62 21 62 24 62 27	75°16 75 17 75 19 75 21 75 23	80°03 80 04 80 06 80 07 80 08	$82^{\circ} 30$ 82 31 82 32 82 33 82 34	84°00 84 00 84 01 84 02 84 03	$\begin{array}{c} 64^{\circ}45\\ 6448\\ 6451\\ 6454\\ 6457\end{array}$	76°44 7646 7647 7649 7651	81°04 81 05 81 06 81 07 81 09	83°17 83 17 83 18 83 19 83 20	84°37 84 37 84 38 84 39 84 40

Кратные тангенсы и котангенсы

1(65°00—72°27)		2(76°52—81°01)			3(81°1083°59)			
1	2	3	1	2	3	1	2	3
$egin{array}{c} 65^\circ00\ 65\ 03\ 65\ 06\ 65\ 09\ 65\ 12\ \end{array}$	76° 52 76 54 76 56 76 58 76 59	81°10 81 11 81 12 81 13 81 15	$\begin{array}{c} 67^{\circ}30\\ 6733\\ 6736\\ 6739\\ 6742\end{array}$	78°18 78 20 78 21 78 23 78 25	82°08 82 09 82 11 82 12 82 13	70°00 70 03 70 06 70 09 70 12	79°41 79 43 79 44 79 46 79 48	83°05 83 06 83 07 83 08 83 09
65°15 65 18 65 21 65 24 65 27	77°01 77 03 77 05 77 06 77 08	81°16 81 17 81 18 81 19 81 21	67°45 6748 6751 6754 6757	78°26 78 28 78 30 78 31 78 33	82°14 82 15 82 16 82 18 82 19	70°15 7018 7021 7024 7027	79°49 79 51 79 53 79 54 79 56	83°11 83 12 83 13 83 14 83 15
65°30 6533 6536 6539 6542	77°10 77 12 77 13 77 15 77 17	81°22 81 23 81 24 81 25 31 26	68°00 68 03 68 06 68 09 68 12	78°35 7836 7838 7840 7841	$\begin{array}{c} 82^{\circ}20\\ 82\ 21\\ 82\ 22\\ 82\ 23\\ 82\ 24\\ \end{array}$	70°30 70 33 70 36 70 39 70 42	$79^{\circ}58 \\79 59 \\80 01 \\80 02 \\80 04$	83°16 83 17 83 18 83 19 83 21
65°45 6548 6551 6554 6554 6557	77°18 77 20 77 22 77 24 77 25	81°28 81 29 81 30 81 31 81 32	$\begin{array}{c} 68^{\circ}15\\ 68\ 18\\ 68\ 21\\ 68\ 24\\ 68\ 27\end{array}$	78° 43 78 45 78 46 78 48 78 50	82°25 82 27 82 28 82 29 82 30	70°45 7048 7051 7054 7057	80°06 80 07 80 09 80 11 80 12	83° 22 83 23 83 24 83 25 83 26
$\begin{array}{c} 66^{\circ}00\\ 66&03\\ 66&06\\ 66&09\\ 66&12 \end{array}$	77°27 77 29 77 30 77 32 77 34	81°34 81 35 81 36 81 37 81 38	68°30 6833 6836 6839 6842	78°51 78 53 78 55 78 56 78 56 78 58	82°31 8232 8233 8233 8235 8236	71°00 71 03 71 06 71 09 71 12	80°14 80 16 80 17 80 19 80 20	83°27 83 28 83 29 83 30 83 32
$\begin{array}{c} 66^{\circ}15\\ 66&18\\ 66&21\\ 66&24\\ 66&27\end{array}$	77° 36 77 37 77 39 77 41 77 42	81°39 81 41 81 42 81 43 81 44	68° 45 68 48 68 51 68 54 68 57	79°00 79 01 79 03 79 05 79 06	82°37 8238 8239 8240 8241	71°15 71 18 71 21 71 24 71 27	80°22 80 24 80 25 80 27 80 29	83°33 83 34 83 35 83 35 83 36 83 37
$\begin{array}{c} 66^{\circ} 30 \\ 66 33 \\ 66 36 \\ 66 39 \\ 66 42 \end{array}$	77°43 77 46 77 47 77 49 77 51	81°45 81 46 81 48 81 49 81 50	69°00 69 03 69 06 69 09 69 12	79°08 79 10 79 11 79 13 79 15	$\begin{array}{c} 82^{\circ}43\\ 82\ 44\\ 82\ 45\\ 82\ 46\\ 82\ 47\end{array}$	71°30 71 33 71 36 71 39 71 42	80° 30 80 32 80 33 80 35 80 37	83°38 83 39 83 40 83 41 83 43
$\begin{array}{c} 66°45\\ 66\;48\\ 66\;51\\ 66\;54\\ 66\;57\end{array}$	77°53 7754 7756 7758 7758 7759	81°51 81 52 81 53 81 54 81 56	69°15 69 18 69 21 69 24 69 27	79°16 79 18 79 20 79 21 79 23	82° 48 82 49 82 50 82 52 82 53	71°45 71 48 71 51 71 54 71 57	80° 38 80 40 80 41 80 43 80 45	83° 44 83 45 83 46 83 47 83 48
67°00 67 03 67 06 67 09 67 12	78°01 78 03 78 04 78 06 78 08	81°57 81 58 81 59 82 00 82 01	69°30 6933 6936 6939 6942	79°25 79 26 79 28 79 30 79 31	82° 54 82 55 82 56 82 57 82 58	$\begin{array}{c} 72^{\circ}00\\ 72 \ 03\\ 72 \ 06\\ 72 \ 09\\ 72 \ 12\\ \end{array}$	80° 46 80 48 80 50 80 51 80 53	83° 49 83 50 83 51 83 52 83 53
67°15 6718 6721 6724 6727	78°10 78 11 78 13 78 15 78 16	$\begin{array}{c} 82^{\circ}03\\ 82 & 04\\ 82 & 05\\ 82 & 06\\ 82 & 07\\ \end{array}$	69°45 69 48 69 51 69 54 69 57	79°33 79 35 79 36 79 38 79 40	82°59 83 00 83 02 83 03 83 04	$\begin{array}{c} 72^{\circ}15\\ 72 \ 18\\ 72 \ 21\\ 72 \ 24\\ 72 \ 27\end{array}$	80° 54 80 56 80 58 80 59 81 01	83° 55 83 56 83 57 83 58 83 59

Кратные тангенсы и котангенсы

1(72°30—79°57)		2(81°02—81°56)			ડે(84°00—86°37)			
1	2	3	1	2	3	1	2	3
72°30	81°02	$\begin{array}{r} 84^{\circ}00\\ 84\ 01\\ 84\ 02\\ 84\ 03\\ 84\ 04 \end{array}$	75°00	82°22	84° 54	77° 30	83°40	85°46
72 33	81 04		75 03	82 24	84 55	77 33	83 42	85 47
72 36	81 06		75 06	82 25	84 56	77 36	83 44	85 48
72 39	81 07		75 09	82 27	84 57	77 39	83 45	85 50
72 42	81 09		75 12	82 28	84 58	77 42	83 47	85 51
72°45	81°11	$84^{\circ}05$	75°15	82°30	84°59	77°45	83°49	85° 52
7248	81 12	84 07	75 18	82 32	85 00	7748	83 50	85 53
7251	81 14	84 08	75 21	82 33	85 01	7751	83 52	85 54
7254	81 15	84 09	75 24	82 35	85 02	7754	83 53	85 55
7257	81 17	84 10	75 27	82 36	85 03	7757	83 54	85 56
73°00 73 03 73 06 73 09 73 12	81°19 81 20 81 22 81 23 81 23 81 25	84°11 84 12 84 13 84 14 84 15	75°30 7533 7536 7539 7542	$82^{\circ}38$ 82 39 82 41 82 43 82 44	85°04 85 05 85 06 85 08 85 09	78°00 78 03 78 06 78 09 78 12	83°56 8358 8359 8401 8402	85° 57 85 58 85 59 86 00 86 01
73°15	81°27	84°16	75°45	82°46	85°10	78°15	$84^{\circ}04$	86°02
73 18	81 28	84 17	75 48	82 47	85 11	78 18	84 05	86 03
73 21	81 30	84 18	75 51	82 49	85 12	78 21	84 07	86 04
73 24	81 31	84 20	75 54	82 50	85 13	78 24	84 08	86 05
73 27	81 33	84 21	75 57	82 52	85 14	78 27	84 10	86 06
73° 30	81°35	84°22	76°00	82°54	85°15	78°30	$\begin{array}{r} 84^\circ 11 \\ 84 \ 13 \\ 84 \ 15 \\ 84 \ 16 \\ 84 \ 18 \end{array}$	86°07
73 33	81 36	84 23	76 03	82 55	85 16	78 33		86 08
73 36	81 38	84 24	76 06	82 57	85 17	78 36		86 09
73 39	81 39	84 25	76 09	82 58	85 18	78 39		86 10
73 42	81 41	84 26	76 12	83 00	85 19	78 42		86 11
73°45	81°42	84°27	76°15	83°01	85°20	78°45	84°19	86°12
73 48	81 44	84 28	76 18	83 03	85 21	78 48	84 21	86 13
73 51	81 46	84 29	76 21	83 05	85 22	78 51	84 22	86 15
73 54	81 47	84 30	76 24	83 06	85 23	78 54	84 24	86 16
73 57	81 49	84 31	76 27	83 08	85 24	78 57	84 25	86 17
74°00	81°50	84°32	76°30	83°09	85° 25	79°00	84°27	86°18
74 03	81 52	84 33	7633	83 11	85 27	79 03	84 28	86 19
74 06	81 54	84 35	7636	83 12	85 28	79 06	84 30	86 20
74 09	81 55	84 36	7639	83 14	85 29	79 09	84 32	86 21
74 12	81 57	84 37	7642	83 16	85 30	79 12	84 33	86 22
$74^{\circ}15 \\ 74 \ 18 \\ 74 \ 21 \\ 74 \ 24 \\ 74 \ 27 \\$	81°58 82 00 82 02 82 03 82 05	84°38 84 39 84 40 84 41 84 42	76°45 76 48 76 51 76 54 76 57	83°17 83 19 83 20 83 22 83 23	85°31 85 32 85 33 85 34 85 35	79°15 79 18 79 21 79 24 79 27	$84^{\circ}35$ 84 36 84 38 84 39 84 41	$\begin{array}{c} 86°23\\ 8624\\ 8625\\ 8626\\ 8626\\ 8627\end{array}$
$\begin{array}{c} 74^{\circ}30\\ 7433\\ 7436\\ 7439\\ 7442\end{array}$	82°06	84°43	77°00	83 ⁸ 25	85°36	79°30	84°42	86°28
	82 08	84 44	77 03	83 26	8537	79 33	84.44	86 29
	82 10	84 45	77 06	83 28	8538	79 36	84 45	86 30
	82 11	84 46	77 09	83 30	8539	79 39	84 47	86 31
	82 13	84 47	77 12	83 31	8540	79 42	84 48	86 32
$74^{\circ}45$ 74 48 74 51 74 54 74 57	82°14 82 16 82 17 82 19 82 21	84°48 84 50 84 51 84 52 84 53	77° 15 77 18 77 21 77 24 77 27	83°33 83 34 83 36 83 37 83 39	85°41 85 42 85 43 85 44 85 45	79°45 7948 7951 7954 7954 7957	84°00 84 52 84 53 84 55 84 55 84 56	86°33 8634 8635 8636 8637

1(80°00—82°57)			2(84°58—86°28)			3(86°38—87°38)		
1	2	3	1	2	3	1	2	3
80°00	$\begin{array}{r} 84^{\circ}58\\ 84\ 59\\ 85\ 01\\ 85\ 02\\ 85\ 04\end{array}$	86°38	81°00	85°28	86°59	82°00	85°59	87°19
80 03		86 39	81 03	85 30	87 00	82 03	86 00	87 20
80 06		86 40	81 06	85 31	87 01	82 06	86 02	87 21
80 09		86 41	81 09	85 33	87 02	82 09	86 03	87 22
80 12		86 42	81 12	85 34	87 03	82 12	86 03	87 23
80°15 80 18 80 21 80 24 80 27	$\begin{array}{c} 85^{\circ}\ 05\\ 85\ 07\\ 85\ 08\\ 85\ 10\\ 85\ 11\end{array}$	$\begin{array}{c} 86^{\circ}43\\ 86&44\\ 86&45\\ 86&46\\ 86&46\\ 86&47\end{array}$	81°15 81 18 81 21 81 24 81 27	85° 36 85 37 85 39 85 41 85 42	87°04 87 05 87 06 87 07 87 08	82°15 82 18 82 21 82 24 82 27	86°06 8608 8609 8611 8613	87°24 8725 8726 8727 8727 8728
80° 30	85° 13	86°48	81°30	85°44	87°09	82°30	86°14	87°29
80 33	85 15	86 49	81 33	85 45	87 10	82 33	86 16	87 30
80 36	85 16	86 50	81 36	85 47	87 11	82 36	86 17	87 31
80 39	85 18	86 52	81 39	85 48	87 12	82 39	86 19	87 32
80 42	85 19	86 53	81 42	85 50	87 13	82 42	86 20	87 33
80°45	85°21	86°54	8 1° 45	85°51	87°14	82° 45	86°22	87°34
80 48	85 22	86 55	8 1 48	85 53	87 15	82 48	86 23	8735
80 51	85 24	86 56	81 51	85 54	87 16	82 51	85 25	8736
80 54	85 25	86 57	81 54	85 56	87 17	82 54	86 26	8737
80 57	85 27	86 58	8 1 57	85 57	87 18	82 57	86 28	8738

Кратные тангенсы и котангенсы

Объяснение к таблице III

При определении φ_x по формуле $tg\varphi_x = \frac{p}{q} tg\varphi_u$ нли ρ_x по формуле $tg\rho_x = \frac{p}{r} tg\rho_u$ находим в таблице данный угол (φ_u или ρ_u) в столбце под цифрой, отвечающей знаменателю дроби (q или r), и в той же строке прочитываем искомый угол в столбце под цифрой, отвечающей числителю (p).

При отсутствии в таблице данного угла берем ближайший, и неизвестный угол находим интерполяцией.

Пример. $tg\varphi_x = \frac{2}{3}tg62^{\circ}08,5.$

На стр. 240 под цифрой 3 находим угол 62°09 и под цифрой 2 — 51°36. Интерполяцией находим искомый угол $\varphi_x = 51°35,5$.

При определении φ_x или ρ_x по формулам $\operatorname{ctg} \varphi_x = \frac{q}{p} \operatorname{ctg} \varphi_u$ и $\operatorname{ctg} \rho_x = \frac{r}{p} \operatorname{ctg} \rho_u$ данный угол находим в столбце под цифрой, отвечающей числителю дроби, и искомый угол — в той же строке в столбце под цифрой, отвечающей знаменателю.

Объяснение пользования табл. III при зональных индексах см. на стр. 170.
1	2	3	4	5	6	7	8	9
5	10	15	19,5	23,5	27	31	35	38
5,5	11	16	21	25,5	30	34	37,5	41
6	12	17,5	23	27,5	32	36,5	40	43,5
6,5	13	19	24,5	29,5	34,5	38,5	42,5	45,5
7	14	20	26	31,5	36,5	40,5	44,5	48
7,5	15	21,5	28	33,5	$38,5 \\ 40 \\ 42 \\ 43,5 \\ 45$	42,5	46,5	50
8	15,5	23	29,5	35		44,5	48,5	51,5
8,5	16,5	24	31	37		46,5	50	53,5
9	17,5	25,5	32,5	38,5		48	51,5	55
9,5	18,5	26,5	34	40		49,5	53	56,5
10	19,5	28	35	41,5	46,5	51	54,5	58
10,5	20,5	29	36,5	43	48	52,5	56	59
11	21	30	38	44	49,5	53,5	57,5	60
11,5	22	31,5	39	45,5	50,5	55	58,5	61,5
12	23	32,5	40,5	46,5	52	56	59,5	62,5
12,5	24	33,5	$41,5 \\ 42,5 \\ 44 \\ 45 \\ 46$	48	53	57	60,5	63,5
13	25	34,5		49	54	58,5	61,5	64,5
13,5	25,5	36		50	55	59	62,5	65
14	26,5	37		51,5	56	60	63,5	66
14,5	27,5	38		52,5	57	61	64	67
15	28	39	47	53,5	58	62	65	67,5
15,5	29	40	48	54	59	62,5	65,5	68
16	30	40,5	49	55	60	63,5	66,5	69
16,5	30,5	41,5	50	56	60,5	64,5	67	69,5
17	31,5	42,5	50,5	57	61,5	65	68	70
17,5	32	43	51,5	57,5	62	65,5	68,5	70,5
18	33	44,5	52,5	58,5	63	66,5	69	71
18,5	34	45	53	59	63,5	67	69,5	71,5
19	34,5	46	54	60	64	67,5	70	72
19,5	35,5	46,5	55	60,5	65	68	70,5	72,5
20 20,5 21 21,5 22	36 37 37,5 38 39	47,5 48,5 49 50 50,5	55,5 56 57 57,5 58,5	61 62 62,5 63 63,5	65,5 66 66,5 67 67,5	68,5 69 69,5 70 70,5	71 71,5 72 72,5 73	73 73,5 74 74 74 74,5
22,5	39,5	51	59	64	68	71	73	75
23	40,5	52	59,5	65	68,5	71,5	73,5	75,25
23,5	41	52,5	60	65,5	69	72	74	75,75
24	41,5	53	60,5	66	69,5	72	74,5	76
24,5	42,2	54	61,5	66,5	70	72,5	74,5	76,25
25 25,5 26 26,5 27	43 43,5 44,5 45 45,5	54,5 55 55,5 56 57	62 62,5 63 63,5 64	67 67,5 67,5 68 68,5	70,5 70,5 71 71,5 72	73 73,5 73,5 74 74 74,5	75 75,25 75,5 76 76,25	76,5 77 77,25 77,5 77,75 77,75

Таблица IV (дополнительная). Кратные тангенсы и котангенсы Объяспепие к таблице см. стр. 252.

¹ T. V. Barker, Crystallographic tables and formulae.

l	2	3	-1	5	6	7	8	9
27,5 28 28,5 29 29,5	46 47 47,5 48 48,5	57,5 58 58,5 59 59,5	64,5 65 65,5 65,5 66	69 69,5 70 70 70,5	72 72,5 73 73,5 73,5	74,5 75 75,25 75,5 75,5 75,75	76,5 76,75 77 77,25 77,5	78 78,25 78,5 78,75 79
30 30,5 31 31,5 32	49 49,5 50 51 51,5	60 60,5 61 61,5 62	66,5 67 67,5 68 68	71 71 71,5 72 72,5	74 74 74,5 75 75	76 76,25 76,5 77 77 77	77,75 78 78,25 78,5 78,75	79 79,25 79,5 79,75 80
32,5 33 33,5 34 34,5	52 52,5 53 53,5 54	62,5 63 63,5 63,5 63,5 64	68,5 69 69,5 69,5 70	72,5 73 73 73,5 74	75,25 75,5 75,75 76 76,25	77,5 77,5 77,75 78 78,25	79 79 79,25 79,5 79,75	80 80,25 80,5 80,75 81
35 35,5 36 36,5 37	54,5 55 55,5 56 56,5	64,5 65 65,5 65,5 66	70,5 70,5 71 71,5 71,5	74 74,5 74,5 75 75	76,5 76,75 77 77,25 77,5	78,5 78,75 79 79 79 79,25	79,75 80 80,25 80,5 80,5	81 81 81,25 81,5 81,5
37,5 38 38,5 39 39,5	57 57,5 58 58,5 59	66,5 67 67,5 67,5 68	72 72,5 72,5 73 73	75,5 75,75 76 76,25 76,25	77,75 78 78,25 78,25 78,25 78,5	79,5 79,75 79,75 80 80,25	80,75 81 81 81,25 81,25	81,75 82 82 82,25 82,25 82,25
40 40,5 41 41,5 42	59 59,5 60 60,5 61	68,5 68,5 69 69,5 69,5	73,5 73,5 74 74 74 74,5	76,5 76,75 77 77,25 77,5	78,75 79 79,25 79,25 79,25 79,5	80,25 80,5 80,5 80,75 81	81,5 81,75 81,75 82 82 82	82,5 82,5 82,75 82,75 82,75 83
42,5 43 43,5 44 44,5	61,5 62 62 62,5 63	70 70,5 70,5 71 71,5	74,5 75 75,25 75,5 75,75	77,5 78 78 78,25 78,25 78,5	79,75 79,75 80 80,25 80,25	81,25 81,25 81,5 81,5 81,75	82,25 82,5 82,5 82,5 82,5 82,75	83 83,25 83,25 83,5 83,5 83,5
45 45,5 46 46,5 47	$\begin{array}{c} 63,5\\ 64\\ 64\\ 64,5\\ 65\end{array}$	71,5 72 72 72,5 72,5 72,5	76 76,25 76,5 76,75 77	78,75 79 79 79,25 79,25 79,5	80,5 80,75 80,75 81 81,25	81,75 82 82,25 82,25 82,25 82,5	82,75 83 83 83,25 83,25 83,25	83,75 83,75 83,75 84 84 84
47,5 48 48,5 49 49,5	65,5 66 66 66,5 67	73 73,5 73,5 74 74 74	77 77,25 77,5 77,75 78	79,5 79,75 80 80,25 80,25	81,25 81,5 81,5 81,75 81,75 82	82,5 82,75 82,75 83 83 83	83,5 83,5 83,75 83,75 83,75 84	84,25 84,25 84,5 84,5 84,5 84,5

К	р	а	Т	п	ы	е	Т	а	Н	Г	с	П	С	Ы	11	К	0	т	а	н	Г	e	H	С	Ы
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	---	---	---	---	---	---

1	2	3	4	5	6	7	8	9
50 50,5 51 51,5 52	67 67,5 68 68,5 68,5	74,5 74,5 75 75,25 75,5	78,25 78,25 78,5 78,75 79	80,5 80,75 80,75 81 81 81	82 82,25 82,25 82,5 82,5	83,25 83,25 83,5 83,5 83,5 83,75	84 84 84,25 84,25 84,5	84,75 84,75 84,75 85 85
52,5 53 53,5 54 54,5	69 69,5 69,5 70 70,5	75,75 76 76,25 76,5 76,75	79,25 79,25 79,5 79,5 80	81,25 81,5 81,5 81,75 82	82,75 82,75 83 83 83,25	83,75 83,75 84 84 84,25	84,5 84,5 84,75 84,75 85	85 85,25 85,25 85,5 85,5
55 55,5 56 56,5 57	70,5 71 71,5 71,5 71,5 72	76,75 77 77,25 77,5 77,75	80 80,25 80,5 80,5 80,75	82 82,25 82,25 82,5 82,5 82,5	83,25 83,5 83,5 83,75 83,75 83,75	84,25 84,5 84,5 84,5 84,5 84,75	85 85 85,25 85,25 85,25	85,5 85,75 85,75 85,75 85,75
57,5 58 58,5 59 59,5	72,5 72,25 73 73,5 73,5	78 78,25 78,5 78,5 79	81 81 81,25 81,5 81,5	82,75 83 83 83,25 83,25 83,25	84 84,25 84,25 84,25 84,5	84,75 85 85 85 85 85,25	85,5 85,5 85,5 85,75 85,75	86 86 86,25 86,25
60 60,5 61 61,5 62	74 74 74,5 75 75	79 79,25 79,5 79,75 80	81,75 82 82,25 82,25 82,25 82,5	83,5 83,5 83,75 83,75 84	84,5 84,5 84,75 84,75 85	85,25 85,5 85,5 85,5 85,5 85,75	85,75 86 86 86 86,25	86,5 86,5 86,5 86,5 86,5
62,5 63 63,5 64 64,5	75,5 75,75 76 76,25 76,5	80,25 80,25 80,5 80,75 81	82,5 82,75 83 83 83,25	84 84,25 84,25 84,5 84,5	85 85,25 85,25 85,25 85,25 85,5	85,75 85,75 86 86 86 86	86,25 86,25 86,5 86,5 86,5 86,5	86,75 86,75 86,75 87 87 87

Объяснение к таблице IV

При определении индексов по отношению тангенсов (например, $p: q = \operatorname{tg} \varphi_x: \operatorname{tg} \varphi_x$ или $p:r = tg \rho_x : tg \rho_u)$ находим в таблице строку, в которой имеются совместно тот и дру-гой угол (или углы, отличающиеся от данных не более, чем на 1°) и прочитываем в самой верхней строке над первым углом первый ипдекс и над вторым — второй индекс.

Пример. $p: q = tg 51^{\circ}50: tg 62^{\circ}08.$

Находим близкие углы совместно в строке 16 (стр. 250) в столбцах под цифрами 6 и 9, в строке 27 под цифрами 4 и 6 и в строке 11 (стр. 251) под цифрами 2 и 3.

$$p:q=6:9=4:6=2:3$$

В том случае, когда отношение индексов выражено отношением котангенсов (р : q == = ctg φ_u : ctg φ_v или p:r= ctg ρ_u : ctg ρ_x), первый ипдекс отвечает второму, а - сидуи. сидуу ими р.7 - сидуи. второй - первому углу. Пользование табл. IV для определения зопальных индексов объяснено на стр. 168.

252

Таблица V. Углы е и отношение р: для кубических и тетрагональных кристаллов (к § 9 и 10 гл. VI)

d b	1	5	33	÷	0	9	7	S	6
6	6° 20,5	12 31,5	1	23 57,5	29 03,5	1	37 52,5	41 38	
8	7° 07,5		20 33,5		32 00,5		41 11		48 22
7	8° 08	15 56,5	23 12	29 44,5	35 32	40 36		48 49	52 07,5
9	9° 27,5				39 48,5		49 24		
5	11° 18,5	21 48	30 58	38 39,5	1	50 11,5	54 28	57 59,5	60 56,5
Ŧ	1-t° 02		$36\ 52$	-	51 20,5	1	60 15,5		66 02,5
3	18°26	33 41,5		53 08	59 02		66 48	69 26,5	
2	26°34	1	56 18,5	!	68 12		74 03,5]	77 28,5
1	45° 00	63 26	71 34	75 58	78 41,5	80 32,5	81 52	82 52,5	83 39,5
b d		5	ŝ	4	Ω	9	7	8	6

Таблица VI. Углы отношение *p: q* для гексагональных кристаллов (к § 11 гл. VI)

d b	1	2	3	-+	5	9	7	8	6
6	5-12	6†6		17 29	20 38		25 52	28 03,5	
∞ .	5° 49		15 17,5	1	22 24,5	1	27 47,5		31 56,5
7	6°35	12 13	17 00	21 03	24 30	27 27,5		32 12,5	34 07,5
9	7°35,5				26 59,5	1	32 32,5		1
Ω	8°57	16 06	21 47	26 19,5		33 00,5	35 30	37 35,5	39 22
4	10°53,5		25 17		33 40,5		38 57		42 31
e	13°54	23 25	İ	34 43	38 13	I	43 00,5	44 42,5	
2	19° 06,5	1	36 35	1	43 54	I	47 47		50 10,5
1	30°00	40 53,5	46 06	49 06,5	51 03	52 24,5	53 25	54 11	54 47,5
b	I	5	ი	4	5	9	7	s	6

r pq qp	00 00 00 00 00 00 00 00 00 00 00 00 00	12 12 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	38338224335 383382543355
6	6°20,5 12 31,5 23 57,5 29 03,5 41 38	8 56 13 57 19 21,5 24 37 24 37 29 32 38 093 41 51 41 51 50,5 45 10,5	21 21 22 21 50 53 26 25,5 26 25,5 41,5 41,5 41,5
æ	7°07,5 20 33,5 32 00,5 41 11 48 22	10 01,5 15 37 21 34 27 16 32 31 37 16 37 16 45 13,5 45 13,5 48 32,5	$\begin{array}{c} 24 & 15,5 \\ 29 & 12,5 \\ 33 & 57 \\ 38 & 19,5 \\ 42 & 18 \\ 49 & 03,5 \end{array}$
	8°08 15 56,5 23 41,5 35 32 40 36 40 36 52 07,5	$\begin{array}{c} 111 & 25,5\\ 17 & 43\\ 24 & 18,5\\ 36 & 30\\ 36 & 30\\ 36 & 30\\ 36 & 30\\ 36 & 30\\ 45 & 17,5\\ 45 & 17,5\\ 52 &$	22 00 27 15 32 34,5 34,5 34,5 44 07,5 44 07,5 52 47,5 52 47,5
<u>ب</u>	9°27,5 39_48,5 -1 	13 15.5 20 26.5 34 30 447.5 34 30 56 21,5 53 20,5 56 28,5 56 28,5	$\begin{array}{c c}33 & 31 & 0\\ 36 & 42 \\ 41 & 54,5 \\ 50 & 30,5 \\ 56 & 56,5 \end{array}$
	$\begin{array}{c} 11^{\circ}18,5\\ 2148,5\\ 3058\\ 3058\\ 3839,5\\ 5328\\ 5759,5\\ 5011,5\\ 56,$	$\begin{array}{c} 15 \\ 15 \\ 24 \\ 05,5 \\ 32 \\ 33 \\ 55,5 \\ 54 \\ 33,5 \\ 54 \\ 44 \\ 58 \\ 11,5 \\ 58 \\ 11,5 \\ 61 \\ 05,5 \\ 61 \\ 05,5 \\ \end{array}$	29 30 35 47,5 41 48,5 51 40,5 53 31 55 31 61 31,5 61 31,5
+	$14^{\circ} 02$ $36 \overline{52}$ $51 \overline{20,5}$ $60 \overline{15,5}$ $66 \overline{02,5}$	19 28.5 29 12,5 56 45 52 56 40,5 60 30 66 10 66 10	$\begin{array}{c} +2 & 0.2 \\ +48 & 11.5 \\ 53 & 23,5 \\ 57 & 41,5 \\ 61 & 13 \\ 66 & 33 \\ 66 & 33 \end{array}$
ς.	18 - 26 33 41,5 53 08 59 02 66 48 69 26,5	25 14,5 36 42,5 53 57,5 53 57,5 63 42 53 57,5 69 35,5 71 40 71 40	43 19 50 14,5 56 08,5 60 53 61 37,5 67 36,5 71 00,5 71 58,5
<u>્</u> য	26 ² 34 56 18,5 68 12 74 03,5 77 28	35 16 57 41,5 57 41,5 64 07,5 68 35 71 48 71 48 71 12,5 77 32,5	60 59 65 54,5 69 37,5 72 27 74 38,5 77 45,5
	$^{+5}_{-0.1}$ $^{+5}_{-0.1}$ $^{-0.1}_{-0.1}$ $^{+5}_{-0.1}$ $^{-0.1}_{-$	54 44 65 54 44 72 27 76 22,5 76 22,5 80 40 81 57 83 12 83 12	70 31,5 74 30,5 77 23,5 77 23,5 82 10,5 83 05 83 48,5 83 48,5
r pq qp	58840 0000000000000000000000000000000000	10 11 10 10 10 10 10 10 10 10 10 10 10 1	528789218

Таблица VII. Углы р и индекс г для кубических кристаллов (к § 10 гл. VI)

3333333 38 333333 33333 33333 33333 33333 33333 3333	4455 4445 4446	30 22 29 22 20 22 29 22	66 67 69 69	77 78 79	88 808 808	.66	
29 31 32 56,5 40 14,5 43 30,5	32 09 35 26 38 42 44 49 47 34,5	38 09,5 40 57 43 42,5 46 21 48 50,5	45 41,5 48 00,5	+7 43,5 49 45 51 43	51 30 53 13,5	1	
27 56 32 00 38 05 39 59 48 355 49 51,5 49 51,5	38 40,5 45 13,5 50 55	4 1 28,5 44 18,5 47 04,5 49 42 52 09	49 03 49 03 53 31	51 23,5 53 02 54 56,5	 56 24	57 51	
35 13 35 28 39 47 41 24,5 50 40,5 53 34,5 53 34,5	38 56,5 42 27 45 51 49 02 51 57 54 36	+5 17,5 +8 08 50 52 53 47,5 47,5	50 28,5 52 47,5 55 00,5 57 05,5	$56 \begin{array}{c} - \\ 56 \end{array}$	58 15 59 50	61 11,5	
39 48 44 11 51 46 53 55	46 51,5 53 20,5 58 39	49 41 52 28 55 06,5 59 46 59 46	56,5 	58 47 60 33,5 62 14,5	63 31		
40 19,5 45 00 53 18 53 18 53 43 53 43 53 43 53 43 53 43 53 43	48 31,5 55 16 55 16 58 11,5 63 47,5 63 05	57 22,5 59 50 62 04,5 64 06	59 29,5 61 31,5 63 26 65 11,5	63 12 64 48,5 66 19,5	66 09,5 67 27	68 33	
46 41 51 20,5 55 33,5 55 33,5 59 11,5 64 17,5 64 55 67 08,5	58 00,5 63 36,5 67 54	60 30 62 53 67 01,5 68 46	66 <u>-</u> 69 <u>-</u> 69 <u>-</u> 2,5	68 00 69 23 70 40	71 37,5	72 33	·
59 02 62 46,5 68 30 70 39	62 03,5 64 54 67 24,5 69 35,5 71 27,5 73 03,5	67 00,5 68 59,5 70 46,5 73 45,5 73 45,5	71 -58,5 73 -18 	73 08,5 74 14,5 75 15,5	75 09 76 00,5	ļ	
64 45,5 68 12 68 12 71 04 73 24 75 17 76 49,5 78 05,5	72_39 76_01 78_31,5_1	74 12,5 75 38 76 54 79 00,5	$77 - \frac{1}{45,5}$ 79 - 31,5	78 39,5 79 20,5 80 03	80 34	82 53	
76 44 88 41,5 80 16 83 31 83 19,5 83 59,5	79 58,5 81 07,5 82 06,5 83 37 84 12 84 12	81 57 82 42 83 22 84 27 84 27	83 16,5 83 48,5 84 17 84 43	84 14 84 37,5 84 59,5	84 57 84 15 84 15	85 30,5	
33 33333	142 142 144 144 144 144 144 144 144 144	ນີ້ ດີ ດີ ດີ ນີ້ ກິດ ທີ່ ດີ ດີ ນີ້	66 67 69 69	77 87 77	88 89 80	66	

Таблица VIII (вспомогательная). Вычисление р в тетрагональных кристаллах (к § 9 гл. VI)

-				
	r pq qp	00000000000000000000000000000000000000	11 13 16 16 17 17 19 18	- 5887655443322 2887652443322 2887765 288765 29777 207777 207777 207777 207777 207777 207777 207777 20777777 2077777777
	<i>с</i> ,	$\begin{array}{c} 8.89524\\ 9.19627\\ 9.49730\\ 9.59421\\ 9.59421\\ 9.79833\\ 9.79833\\ \end{array}$	9.04576 9.39524 9.39524 9.51046 9.60273 9.60273 9.67934 9.71472 9.85215	9.34679 9.45221 9.54575 9.69627 9.69627 9.69627 9.85995 9.85995
	æ	8.94640 8.94640 9.42352 9.64537 9.79149 9.79149 9.90064	9.09691 9.29588 9.44640 9.56162 9.55162 9.55389 9.79588 9.79588 9.79588 9.20330	9.50337 9.67759 9.80853 9.91111
	7	9.00439 9.30542 9.48151 9.60645 9.70336 9.70336 9.78254 9.9748 9.95863	9.15490 9.35381 9.50439 9.61961 9.71187 9.71187 9.85387 9.91084 9.96129	9.45593 9.56136 9.56136 9.56490 9.86542 9.86653 9.92664 9.96610
	G	9.07133 9.77030 9.91643 	9.22185 9.42082 9.42082 9.68656 9.77882 9.92082 9.97779 9.97779 0.02824	9.62831 9.80253 9.93347 0.03604
$\lg \frac{V p^{2} + q^{2}}{r \sqrt{2}}$	 ۱۵	$\begin{array}{c} 9.15,52\\ 9.45155\\ 9.45155\\ 9.62764\\ 9.75258\\ 9.75258\\ 9.92867\\ 9.99561\\ 0.05361\\ 0.10476\end{array}$	9.30103 9.50000 9.65152 9.76574 9.35800 9.35800 9.35800 9.3462 0.000000 0.005697 0.10742	9.60206 9.70749 9.80102 9.85155 9.95155 0.01265 0.01677 0.11523
		9.24743 9.72455 9.94640 0.09252 0.20167	9.39794 9.59691 9.74743 9.86265 9.95491 0.03153 0.03153 0.03153 0.15388 0.15388 0.15388	9.80440
	ŝ	9.37236 9.67339 9.98442 9.98442 0.07133 0.07133 0.21746 0.27554	9.52288 9.72185 9.87236 9.98759 0.07985 0.15647 0.22185 0.22185 0.22185 0.22185	9.82391 9.92934 0.02288 0,10356 0.17339 0.17339 0.23450 0.23450 0.33707
	7	9.54846 9.54846 0.02558 0.24743 0.39355 0.39355	9.79897 9.89794 0.04846 0.16368 0.16368 0.3325694 0.33756 0.33794 0.45491 0.45491	0.10543 0.19897 0.27965 0.41059 0.41059 0.51317
	1	9.84949 9.84949 0.15052 0.32661 0.45155 0.54846 0.54846 0.578464 0.69458 0.75258 0.75258	$\begin{array}{c} 0.00000\\ 0.19897\\ 0.34949\\ 0.34949\\ 0.55697\\ 0.55697\\ 0.63359\\ 0.63359\\ 0.693599\\ 0.69397\\ 0.75594\\ 0.80639\end{array}$	0.30103 0.40646 0.50000 0.58068 0.55052 0.71162 0.71574 0.81420
	db bd	00000000000000000000000000000000000000	10871655453211 111655453211 1116555555	38823837532

3883988833	44 45 46 46 49 49 49	55 56 59 59	66 67 68 69	77 78 79	88 89	66	
9.59421 9.66098 9.77695 9.82690	9.64782 9.70163 9.75324 9.80169 9.84678 9.88862	9.74472 9.78790 9.82985 9.86993 9.90789	9.85995 9.89524 	9.89086 9.92178 9.95222	9.948 85 9.97592	I	
9.57403 9.57403 9.71213 9.77300 9.77300 9.87806 9.92352	9.75279 9.85285 9.93978	9.79588 9.83906 9.88101 9.92109 9.95905	9.91110 9.98049	9.94201 9.97293 0.00337	0.02708	0.05115	
9,63202 9,77013 9,77013 9,88610 9,98610 9,98151	9.75696 9.81078 9.86239 9.91084 9.95593 9.99777	9.85387 9.89705 9.93900 9.97908 0.01704	9.93305 9.96910 0.00439 0.03848	0.06136	0.05799 0.08507	0.10915	
9.77030 9.83707 9.95305 0.00300	9.87773 9.97779 0.06472	9.92082 9.96400 0.00595 0.04603 0.04603	0.03604	0.06695 0.09787 0.12831	0.15202	I	
9.77815 9.84949 9.91625 9.97712 0.03223 0.08218 0.12764	9.90309 9.95691 9.95691 0.08552 0.05697 0.10206 0.14390	0.04318 0.08513 0.12521 0.16317	0.07918 0.11522 0.15051 0.18461	0.14613 0.17705 0.20749	0. 20 412 0.23120	0.25527	
9.87506 9.94640 0.01316 0.01316 0.07403 0.12914 0.17909 0.22455	0.05382 0.15388 0.15388 0.24081	0.09691 0.14009 0.18204 0.22212 0.26008	0.21213 0.28152	$\begin{array}{c} 0.24304 \\ 0.27396 \\ 0.30440 \end{array}$	0.32811	0.35218	
0.07133 0.13810 0.25408 0.30402	$\begin{array}{c} 0.12494\\ 0.17855\\ 0.23036\\ 0.27882\\ 0.32391\\ 0.32391\\ 0.36575\end{array}$	0.22185 0.26503 0.30698 0.34706 0.38502	0.33707 0.37236	0.36798 0.39890 0.42934	0.42597 0.45305	I	
0.17609 0.24743 0.31419 0.31419 0.37505 0.43017 0.48012 0.52558	0.35485 0.45491 0.54184	0.39794 0.44112 0.48307 0.52315 0.55111	0.51316 0.58455	0.54407 0.57499 0.60543	0.62914	0.75321	
0.47712 0.54846 0.61522 0.61522 0.67609 0.73120 0.73120 0.73115	0.60206 0.65588 0.70749 0.75594 0.80103 0.84287	0.69897 0.74215 0.78410 0.82418 0.86214	0.77815 0.81420 0.84948 0.88358	0.84510 0.87602 0.90646	0.90309 0.93017	0.95424	
38339823 38339823 38339823	444 455 464 498 498 498 498 498 498 498 498 498 49	008700 008700	66 67 69 69	77 78 79	88 80 80 80	66	

Ê
>
ГЛ.
4
-
аx
5
Ta
ИС
Ğ
×
IЫ
Ib;
[a.
HO,
ar
KC
5
2
d.
Ие
e
5
Н
351
Ē
Ha
E LE
a T (
010
ŴO
Ĕ
Ē
×
Ĩ
Ĩ
Ĩ
a
_

	r pq qp	00 03 04 09 09 09 00 00 00 00 00 00 00 00 00 00	11 13 15 15 16 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	588228835555555555555555555555555555555
	G	8.80719 9.00822 9.40925 9.50616 9.65229 9.71028	9.04575 9.22974 9.36417 9.46831 9.46831 9.55287 9.55287 9.55287 9.55287 9.55287 9.55287 9.55287 9.55287 9.55287 9.78671	9.34679 9.44657 9.53078 9.66520 9.66520 9.76934 9.81362
	8	8.85835 9.33547 9.55732 9.5732 9.70345 9.81259	9.09691 9.28090 9.41532 9.51946 9.51946 9.60403 9.67508 9.73628 9.73628 9.73678 9.73678	9.49772 9.65388 9.77139 9.86477
	2	$\begin{array}{c} 8.91634\\ 9.11737\\ 9.39346\\ 9.51840\\ 9.51840\\ 9.61531\\ 9.61531\\ 9.69449\\ 9.81943\\ 9.87058\\ 9.87058\end{array}$	9.15490 9.33889 9.47331 9.57745 9.57745 9.57745 9.77308 9.73308 9.73308 9.73208 9.84800 9.89586	9.45593 9.55571 9.63992 9.71187 9.77434 9.87848 9.87848 9.92279
$\overline{q^2}$	g	8.98329 9.68226 9.82839 	9.22185 9.40584 9.54026 9.64440 9.64440 9.72897 9.86122 9.91495 9.96281	9.62266
$\frac{Vp^{\mathtt{B}} + pq +}{rV^{\overline{3}}}$	5	9.06247 9.36350 9.53959 9.66453 9.66453 9.96556 9.96556 0.01671	9.30103 9.48502 9.61944 9.72358 9.87920 9.8413 9.84941 9.99413 0.04199	9.60206 9.70184 9.78605 9.85800 9.97551 9.97551 0.06889
lg	4	9.15938 9.63650 9.85835 0.00448 0.11362	9.39794 9.58193 9.71635 9.82049 9.90506 9.97611 0.03731 0.03731 0.13890	9.79875 9.95491 9.07242 0.07242 0.16580
	ო	9.28432 9.58535 9.88638 9.98329 0.12942 0.12741	9.52288 9.70687 9.84129 9.94543 9.94543 0.03000 0.03000 0.10105 0.16225 0.16225 0.16225 0.21598	9.82391 9.92369 0.007985 0.14232 0.19736 0.29646 0.29074
	5	9.46041 9.93753 0.15938 0.30551 0.41465	9.69897 9.88296 0.01738 0.12152 0.20609 0.27714 0.33834 0.33834 0.33933	0.09978 0.25594 0.37345 0.46683
	1	9.76144 0.06247 0.06247 0.36356 0.36356 0.46041 0.53959 0.566453 0.666453 0.66453	0.00009 0.18399 0.31841 0.42255 0.50712 0.57817 0.53337 0.63310 0.74096	0.30103 0.40081 0.480081 0.48502 0.55697 0.55697 0.57448 0.7448 0.77358 0.76786
	db bd	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108/10224355 108/10224355	3 83388354333

ţ

33 33 33 33 33 33 33 33 33 33 33 33 33	44 45 49 48 48 48 48 48	, 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 56 57 57 56 57 57 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57	66 67 68 69	77 78 79	88 89	66	
9.59130 9.65230 9.65230 9.80058	9.64782 9.69986 9.74760 9.79144 9.83181 9.86912	9.74473 9.78672 9.82591 9.8669 9.89669	9.85910 9.89233	9.89086 9.92114 9.94998	9.94885 9.98543	I	
9.57403 9.64245 9.70345 9.70345 9.87716 9.85774 9.89214	9.75101 9.84259 9.92028	9.79588 9.83787 9.87706 9.91364 9.91384	9.91025 9.97484	9.94201 9.97229 0.00113	0.03658	0.05115	
9.63202 9.70044 9.76144 9.81661 9.86516 9.96516	9.75707 9.80901 9.85675 9.90058 9.94095 9.97827	9.85387 9.89586 9.93506 9.97163 0.00583	9.93305 9.96824 0,00147 0.03283		0.05799 0.09457	0.10915	
9.76739 9.82839 9.93210 9.97668	9.87695 9.96753 0.04521	9.92082 9.96281 0.00200 0.03858 0.07278	0.03519	0.06695 0.09723 0.12607	0.16152		
9.77915 9.84757 9.90857 9.90577 9.96214 0.01128 0.05586 0.09656	9.90309 9.95513 0.00288 0.00288 0.00288 0.00288 0.00288 0.00288 0.028708 0.12440	0.04199 0.08218 0.11776 0.15296	0.07918 0.11437 0.14760 0.17896	0.14613 0.17641 0.20525	0.20412 0.24070	0.25527	
9.87506 9.94348 0.00448 0.05905 0.105905 0.105819 0.15277 0.19347	0.05204 0.14362 0.22131	0.09691 0.13830 0.17809 0.21467 0.24887	0.21128	0.24304 0.27332 0.30216	0.33761	0.35218	
0.06842 0.12942 0.23313 0.27771	0.12494 0.17698 0.22473 0.26856 0.30893 0.34625	0.22185 0.26384 0.30303 0.37381 0.37381	0.3622 0.36945	0.36798 0.39826 0.42710	0.42597 0.46255	1	
0.17609 0.24451 0.30551 0.36008 0.40922 0.45380 0.49450	0.35307 0.44465 0.52234	0.39794 0.43993 0.47912 0.51570 0.54990	0.57690	0.54407 0.57435 0.60319	0.63864	0.65321	
0.47712 0.54554 0.60654 0.606111 0.76482 0.75482 0.7553	$\begin{array}{c} 0.60206\\ 0.65410\\ 0.70185\\ 0.74568\\ 0.74568\\ 0.78537\\ 0.82337\end{array}$	0.69897 0.74096 0,78015 0.81673 0.85093	0.77815 0.81334 0.84657 0.87793	0.84510 0.87538 0.90422	0.90309 0.93967	0.95424	
333333 3382 3382 3382 3382 3382 3382 33	44 45 47 48 49 49 84 49	55 56 59 58	66 67 69 69	77 78 79	80 80 80 80 80 80	66	

*

Таблица Х. Величина с для тетрагональных кристаллов 1

(к § 12 гл. IX и § 4 гл. X)

,

			<u> </u>		/2 0.111				
P111	с	P111	С	P111	с	P111	с	P111	С
5°00′	0,0619	5°30′	0,0681	6°00′	0,0743	6°30′	0,0806	7°00′	0,0868
01	0,0621	31	0,0683	01	0,0745	31	0,0808	01	0,0870
02	0,0623	32	0,0685	02	0,0747	32	0,0810	02	0,0872
03	0,0625	33	0,0687	03	0,0750	33	0,0812	03	0,0874
04	0,0627	34	0,0689	04	0,0752	34	0,0814	04	0,0877
05	0,0629	35	0,0691	05	0,0754 ·	35	0,0816	05	0,0879
06	0,0631	36	0,0693	06	0,0756	36	0,0818	06	0,0881
07	0,0633	37	0,0695	07	0,0758	37	0,0820	07	0,0883
08	0,0635	38	0,0697	08	0,0760	38	0,0822	08	0,0885
09	0,0637	39	0,0700	09	0,0762	39	0,0824	09	0,0887
10	0,0639	40	0,0702	10	0,0764	40	0,0826	10	0,0889
11	0,0641	41	0,0704	11	0,0766	41	0,0829	11	0,0891
12	0,0644	42	0,0706	12	0,0768	42	0,0831	12	0,0893
13	0,0646	43	0,0708	13	0,0770	43	0,0833	13	0,0895
14	0,0648	44	0,0710	14	0,0772	44	0,0835	14	0,0897
15	0,0650	45	0,0712	15	0,0774	45	0,0837	15	0,0900
16	0,0652	46	0,0714	16	0,0776	46	0,0839	16	0, 0902
17	0,0654	47	0,0716	17	0,0779	47	0,0841	17	0,0904
18	0,0656	48	0,0718	18	0,0781	48	0,0843	18	0,0906
19	0,0658	49	0,0720	19	0,0783	49	0,0845	19	0,0908
20	0,0660	50	0,0722	20	0,0785	50	0,0847	20	0,0910
21	0,0662	51	0,0724	21	0,0787	51	0,0849	21	0,0912
22	0,0664	52	0,0727	22	0,0789	52	0,0852	22	0,0914
23	0,0666	53	0,0729	23	0,0791	53	0,0854	23	0,0916
24	0,0668	54	0,0731	24	0,0793	54	0,0856	24	0,0918
25	0,0671	55	0,0733	25	0,0795	55	0,0858	25	0,0920
26	0,0673	56	0,0735	26	0,0797	56	0,0860	26	0,0923
27	0,0675	57	0,0737	27	0,0799	57	0,0862	27	0,0925
28	0,0677	58	0,0739	28	0,0801	58	0,0864	28	0,0927
29	0,0679	59	0,0741	29	0,0804	59	0,0866	29	0,0929
30	0,0681	6° 00	0,0743	30	0,0806	7° 00′	0,0868	30	0,0931
1	}			ļ		l			

 $c = \frac{1}{\sqrt{2}} \operatorname{tg} \rho_{111}$

¹ В. В. Доливо-Добровольский и В. Ф. Алявдин, Зап. Горн. Инст., 10, в. 2, 1937.

С	тетрагональных	кристаллов
		-

P111	С	P111	. C	ρ111	с	P111	с	ρ111	C :
7°30′	0,0931	8°00′	0,0994	8°30′	0,1057	9°00′	0,1120	9°30′	0,1183
31	0,0933	01	0,0996	31	0,1059	01	0,1122	31	0,1185
32	0,0935	02	0 ,09 98	32	0,1061	02	0,1124	32	0,1188
33	0,0937	03	0,1000	33	0,1063	03	0,1126	33	0,1190
34	0,0939	04	0,1002	34	0,1065	04	0,1128	34	0,1192
35	0,0941	05	0,1004	35	0,1067	05	0,1130	35	0,11 9 4
36	0,0943	06	0,1006	36	0,1069	06	0,1133	36	0,1196
37	0,0946	07	0,1008	37	0,1071	07	0,1135	37	0,1198
38	0,0948	08	0,1011	38	0,1074	08	0,1137	38	0,1200
39	0,0950	09	0,1013	39	0,1076	09	0,1139	39	0,1202
40	0,0952	10	0,1015	40	0,1078	10	0,1141	40	0,1204
41	0,0954	11	0,1017	41	0,1080	11	0,1143	41	0,1207
42	0,0956	12	0,1019	42	0,1082	12	0,1145	42	0,1209
43	0,0958	13	0,1021	43	0,1084	13	0,1147	43	0,1211
44	0,0960	14	0,1023	44	0,1086	14	0,1149	44	0,1213
45	0,0962	15	0,1025	45	0,1088	15	0,115 2	45	0,1215
46	0,0964	16	0,1027	46	0,1090	16	0,1154	46	0,1217
47	0,0967	17	0,1029	47	0,1092	17	0,1156	47	0,1219
48	0,0969	18	0,1032	48	0,1095	18	0,1158	48	0,1221
49	0,0971	19	0,1034	49	0,1097	19	0,1160	49	0,1223
50	0,0973	20	0,1036	50	0,1099	20	0,1162	50	0,1226
51	0,0975	21	0,1038	51	0,1101	21	0,1164	51	0,1228
52	0,0977	22	0,1040	52	0,1103	22	0,1166	52	0,1230
53	0,0979	23	0,1042	53	0,1105	23	0,1168	53	0,1232
54	0,0981	24	0,1044	54	0,1107	24	0,1171	54	0,1234
55	0,0983	25	0,1046	55	0,1109	25	0,117 3	55	0,1236
56	0,0985	26	0,1048	56	0,1111	26	0,1175	56	0,1238
57	0,0987	27	0,1050	57	0,1114	27	0,1177	57	0,1240
58	0,0990	28	0,1053	58	0,1116	28	0,1179	58	0,1243
59	0,0992	29	0,1055	59	0,1118	29	0,1181	59	0,1245
8°00	0,0994	30	0,1057	9°00	0,1120	30	0,1183	10°00	0,1247

С	тетраго	нальных	кристаллов

P111	с	P111	С	P111	С	P111	с	P111	с
10°00'	0,1247	10°30′	0,1311	11°00'	0,1374	11°30'	0,1439	12°00′	0,1503
01	0,1249	31	0,1313	01	0,1377	31	0,1441	01	0,1505
02	0,1251	32	0,1315	02	0,1379	32	0,1443	02	0,1507
03	0,1253	33	0,1317	03	0,1381	33	0,1445	03	0,1509
04	0,1255	34	0,1319	04	0,138 3	3 4	0,1447	04	0,1512
05	0,1257	.35	0,1321	05	0,1385	35	0,1449	05·	0,1514
06	0,1260	36	0,1323	06	0,1387	36	0,1452	06	0,1516
07	0,1262	37	0,1325	07	0,1389	37	0,1454	07	0,1518
08	0,1264	38	0,1328	08	0,1392	38	0,1456	08	0,1520
09	0,1266	39	0,1330	09	0,1 3 94	39	0,1458	09	0,1522
10	0,1268	40	0,1332	10	0,1396	40	0,1460	10	0,1525
11	0,1270	41	0,1334	11	0,1 3 98	41	0,1462	11	0,1527
12	0,1272	42	0,1336	12	0,1400	42	0,1464	12	0,1529
13	0,1274	43	0,1338	13	0,1402	43	0,1467	13	0,1531
14	0,1277	44	0,1340	14	0,1404	44	0,1469	14	0,1533
15	0,1279	45	0,1342	15	0,1407	45	0,1471	15	0,1535
16	0,1281	46	0,1345	16	0,1409	46	0,1473	16	0,1537
17	0,1283	47	0,1347	17	0,1411	47	0,1475	17	0,1540
18 ·	0,1285	48	0,1 3 49	18	0,1413	48	0,1477	18	0,1542
19	0,1287	49	0,1351	19	0,1415	49	0,1479	19	0,1544
20	0,1289	50	0,1353	20	0,1417	50	0,1482	20	0,1546
21	0,1291	51	0,1355	21	0,1419	51	0,1484	21	0,1548
22	0,1294	52	0,1357	22	0,1422	52	0,1486	22	0,1550
23	0,1296	53	0,1360	23	0,1424	53	0,1488	23	0,1553
24	0,1298	54	0,1362	24	0,1426	54	0,1490	24	0,1555
25	0,1300	55	0,1364	25	0,1428	55	0,1492	25	0,1557
26	0,1302	56	0,1366	26	0,1430	56	0,1494	26	0,1559
27	0,1304	57	0,1368	27	0,1432	57	0,1497	27	0,1561
28	0,1307	58	0,1370	28	0,1434	58	0,1499	28	0,1563
29	0,1309	59	0,1372	29	0 , 14 37	59	0,1501	29	0,1565
10°30 ·	0,1311	11°00	0,1374	30	0,1439	12°00	0,1503	30	0,1568

e resputontamon aprioramon	с	тетрагональных	кристаллов
----------------------------	---	----------------	------------

P111	с	P111	с	ρ111	, c	Ρ 111	с _.	P111	с
12°30′	0,1568	13°00′	0,1632	13°30′	0,1698	14°00′	0,1763	14° 3 0'	0,1829
31	0,1570	01	0,1635	31	0,1700	01	0,1765	31	0,1831
32	0,1572	02	0,1637	32	0,1702	02	0,1767	32	0,1833
33	0,1574	03	0,1639	33	0,1704	03	0,1770	33	0,1835
34	0,1576	04	0,1641	34	0,1706	04	0,1772	34	0,1838
35	0,1578	05	0,1643	35	0,1709	05	0,1774	35	0,1840
36	0,1581	06	0,1645	36	0,1711	06	0,1776	36	0,1842
37	0,1583	07	0,1648	37	0,1713	07	0,1778	37	0,1844
38	0,1585	08	0,1650	38	0,1715	08	0,1781	38	0,1846
39	0,1587	09	0,1652	39	0,1717	09	0,1783	39	0,1849
40	0,1589	10	0,1654	40	0,1719	10	0,1785	40	0,1851
41	0,1591	11	0,1656	41	0,1722	11	0,1787	41	0,1853
42	0,1594	12	0,1659	42	0,1724	12	0,178 9	42	0,1855
43	0,1596	13	0,1661	43	0,1726	13	0,1791	43	0,1857
44	0,1598	14	0,1663	44	0,1728	14	0,1794	44 [.]	0,1860
45	0,1600	15	0,1665	45	0,1730	15	0,1796	45	0,1862
46	0,1602	16	0,1667	46	0,1732	16	0,1798	46	0,1864
47	0,1604	17	0,1669	47	0,1735	17	0,1800	47	0,1866
48	0,1607	18	0,1672	48	0,1737	18	0,1802	48	0,1868
49	0,1609	19	0,1674	49	0,1739	19	0,1805	49	0,1871
50	0,1611	20	0,1676	50	0,1741	20	0,1807	50	0,1873
51	0,1613	21	0,1678	51	0,174 3	21	0,1809	51	0,1875
52	0,1615	22	0,1680	52	0,1746	22	0,1811	52	0,1877
53	0,1617	23	0,1682	53	0,1748	23	0,1813	53	0,1879
54	0,1619	24	0,1685	54	0,1750	24	0,1816	54	0,1882
55	0,1622	25	0,1687	55	0,1752	25	0,1818	55	0,1884
56	0,1624	26	0,1689	56	0,1754	26	0,1820	56	0,1886
57	0,1626	27.	0,1691	57	0,1756	27	0,1822	57	0,1888
58	0,1628	28	0,1693	58	0,1759	28	0,1824	58	0,1890
59	0,1630	29	0,1695	59	0,1761	29	0,1827	59	0,18 93
13°0 0	0,1632	30	0,1698	14°00	0,1763	30	0,1829	15°00	0,1895

P111	С	P111	С	ρ ₁₁₁	с	P111	с	P111	с
15° 00 ′	0,1895	15° 30'	0,1961	16°00′	0,2028	16° 30′	0,2095	17°00′	0,2 162
01	0,1897	· 31	0,1963	01	0,2030	31	0,2097	01	0,2164
02	0,1899	32	0,1965	02	0,2032	32	0,2099	02	0,2166
03	0,1901	33	0,1968	03	0,2034	33	0,2101	03	0,2169
04	0,1904	34	0,1970	04	0,2037	34	0,2104	04	0,2171
05	0,1906	35	0,1972 ·	.05	0,2039	35	0,2106	05	0,2173
06	0,1908	36	0,1974	06	0,2041	36	0,2108	06	0,2175
07	0,1910	37	0,1976	07	0,2043	37	0,2110	07	0,2178
08	0,1912	38	0,1979	08	0,2045	38	0,2113	08	0,2180
09	0,1915	39	0,1981	09	0,2048	39	0,2115	09	0,2182
10	0,1917	40	0,1983	10	0,2050	40	0,2117	10	0,2184
11	0,1919	41	0,1985	11	0,2052	41	0 , 2119	11	0,2187
12	0,1921	42	0,1988	12	0,2054	42	0,2122	12	0,2189
13	0,1923	43	0,1990	13	0,2057	43	0,2124	13	0,2191
14	0,1926	44	0,1992	14	0,2059	44	0,21 26	14	0,2193
15	0,1928	45	0,1994	15	0,2061	45	0,2128	15	0,2196
16	0,1930	46	0,1996	16	0,2063	46	0,2131	16	0,2198
17	0,1932	47	0,1999	17	0,2066	47	0,213 3	17	0,2200
18	0,1934	48	0,2001	18	0,2068	48	0,2135	18	0,2202
19	0,1937	49	0,2003	19	0,2070	49	0,2137	19	0,2205
20	0,1939	50	0,2005	20	0,2072	50	0,2140	20	0,2207
21	0,1941	51	0,2008	21	0,2074	51	0,2142	21	0,2209
22	0,1943	52	0,2010	22	0,2077	52	0,2144	22	0,2211
23	0,1945	53	0,2012	23	0,2079	53	0,2146	23	0,2214
24	0,1948	54	0,2014	24	0,2081	54	0,2148	24	0,2216
25	0,1950	55	0,2016	25	0,2083	55	0,2151	25	0,2218
26	0,1952	56	0,2019	26	0,2086	56	0,2153	26	0,2220
27	0,1954	57	0,2021	27	0,2088	57	0,2155	27	0,2223
28	0,1956	58	0,2023	28	0,2090	58	0,2157	28	0,2225
29	0,1959	59	0,2025	29	0,2092	59	0,2160	29	0,2227
30	0,1961	16°00	0,2028	30	0,2095	17°00	0,2162	30	0,2230
1	1	4	1	1	1	1	1		1

с тетрагональных кристаллов

....

с	тетрагональных	кристаллов
۰.	icipal on an billion	npncrumob

						_			
P111	с	P111	c	P111	с	P111	c	P1 11	c
17°30'	0,2230	18°00'	0,2298	18°30'	0,2366	19°00'	0,2435 ·	19° 30′	0,2504
31	0,2232	01	0,2300	31	0,2368	01	0,2437	31	0,2506
32	0,2234	02	0,2302	32	0,2370	02	0,2439	32	0,2508
33	0,2236	03	0,2304	33	0,2373	03	0,2442	33	0,2511
34	0,2239	04	0,2307	34	0,2375	04	0,2444	34	0,2513
35	0,2241	05	0,2309	35	0,2377	05	0,2446	35	0,2515
36	0,2243	06	0,2311	36	0,2380	06	0,2449	36	0,2518
37	0,2245	07	0,2313	37	0,2382	07	0,2451	37	0,2520
38	0,2248	08	0,2316	38	0,2384	08	0,2453	38	0,2522
39	0,2250	09	0,2318	39	0,2387	09	0,2455	39	0,2525
40	0,2252	10	, 0,2320	40	0,2389	10	0,2458	40	0,2527
41	0,2254	11	0,2323	41	0,2391	11	0,2460	41	0,2529
42	0,2257	12	0,2325	42	0,2393	12	0,2462	42	0,2532
43	0,2259	13	0 ,23 27	43	0,2396	13	0,2465	43	0,2534
44	0,2261	14	0,2329	44	0,2398	14	0,2467	44	0,2536
45	0,2263	15	0,2332	45	0,2400	15	0,2469	45	0,25 3 9
46	0,2266	16	0,2334	46	0,2403	16	0,2472	46	0,2541
47	0,2268	17	0,2336	47	0,2405	17	0,2474	47	0,2543
48	0,2270	18	0,2338	48	0,2407	18	0,2476	48	0,2546
49	0,2273	19	0,2341	49	0,2409	19	0,2479	49	0,2548
50	0,2275	20	0,2343	50	0,2412	20	0,2481	50	0,2550
51	0,2277	21	0,2345	51	0,2414	21	0,2483	51	0,2553
52	0,2280	22	0,2348	52	0,2416	22	0,2486	52	0,2555
53	0,2282	23	0,2350	53	0,2419	23	0,2488	53	0,2557
54	0,2284	24	0,2352	54	0,2421	24	0,2490	54	0,2560
55	0,2286	25	0,2355	55	0,2423	25	0,2492	55	0,2562
56	0,2289	26	0,2357	56	0,2426	26	0,2495	56	0,2564
57	0,2291	27	0,2359	57	0,2428	27	0,2497	57	0,2567
58	0,2293	28	0,2361	58	0,2430	28	0,2499	58	0,2569
59	0,2295	29	0,2364	59	0,2432	29	0,2501	59	0,2571
18°00	0,2298	30	0,2366	19° 00′	0,2435	30	0,2504	20°00′	0,2574
									ł

С	тетрагональных	кристаллов

P111	с	ρ111	с	P111	с	P111	c	P111	с
20°00′	0,2574	20°30′	0,2644	21°00′	0,2714	21°30′	0,2785	22°00′	0,2857
01	0,2576	31	0,2646	01	0,2717	31	0,2788	01	0,2859
02	0,2578	32	0,2648	02	0,2719	32	0,2790	02	0,2862
03	0,2581	33	0,2651	03	0,2721	33	0,2792	03	0,2864
04	0 , 258 3	34	0,2653	04	0,2724	34	0,2795	04	0,2867
05	0,2585	35	0,2656	05	0,2726	35	0,2797	05	0,2869
06	0,2588	36	0,2658	06	0,2729	36	0,2800	06	0,2871
07	0,2590	37	0,2660	. 07	0,2731	37	0,2802	07	0,2874
08	0,2592	38	0,2663	08	0,2733	38	0,2804	08	0,2876
09	0,2595	39	0,2665	09	0,2736	39	0,2807	09	0,2879
10	0,2597	40	0,2667	10	0,2738	40	0,2809	10	0,2881
11	0,2599	41	0,2670	11	0,27 40	41	0,2811	11	0,2883
12	0,2602	42	0,2672	12	0,2743	42	0,2814	12	0,2886
13	0,2604	43	0,2674	13	0,2745	43	0,2816	13	0,2888
14	0,2606	44	0,2677	14	0,2748	44	0,2819	14	0,2891
15	0,2609	45	0,2679	15	0,2750	45	0,2821	15	0,2893
16	0,2611	46	0,2681	16	0,2752	46	0,2823	16	0,2895
17	0,2613	47	0,2684	17	0,2755	47	0,2826	17	0,2898
18	0,2616	48	0,2686	18	0,2757	48	0,2828	18	0,2900
19	0,2618	49	0,2688	19	0,2759	. 49	0,2831	19	0,2903
20	0,2620	50	0,2691	20	0,2762	50	0,2833	20	0,2905
21	0,2623	51	0,2693	21	0,2764	51	0,2835	21	0,2907
22	0,2625	52	0,2695	22	0,2766	52	0,2838	22	0,2910
23	0,2627	53	0,2698	23	0,2769	53	0,2840	23	0,2912
24	0,2630	54	0,2700	24	0,2771	54	0,2843	24	0,2915
25	0,2632	55	0,2702	25	0,2773	55	0,2845	25	0,2917
26	0,2634	56	0,2705	26	0,2776	56	0,2847	26	0,2919
27	0,2637	57	0,2707	27	0,2778	57	0,2850	27	0,2922
28	0,2639	58	0,2710	28	0,2781	58	0,2852	28	0,2924
29	0,2641	59	0,2712	29	0,2783	59	0,2855	29	0,2927
30	0,2644	21°00	0,2714	30	0,2785	22°00	0,2857	30	0,2929 ⁻

с	тетрагональных	кристаллов
•	. c. par on an binnin	

P111	с	P111	с	ρ111	c	P111	с	ρ ₁₁₁	с
22°30′	0,2929	23°00′	0,3001	23° 30′	0,3075	24°00′	0,3 148	24°30′	0,3223
31	0,2931	01	0,3004	31	0 ,3 077	01	0,3151	31	0,3225
32	0,2934	02	0,3006	32	0,3079	02	0,3153	32	0,3227
33	0,2936	03	0,3009	33	0,3082	03	0,3156	33	0,3230
34	0,2939	04	0,0311	34	0,3084	04	0,3158 .	34	0,3232
35	0,2941	05	0,3014	35	0,3087	05	0,3161	35	0,3235
36	0,2943	06	0,3016	36	0,3089	06	0,3163	36	0,3237
37	0,2946	07	0,3019	37	0,3092	07	0,3166	37	0,3240
38	0,2948	08	0,3021	38	0,30 94	08	0,3168	38	0,3242
39	0,2951	09	0,3023	39	0,3097	09	0,3170	39	0,3245
40	0,2953	10	0,3026	40	0,3099	10	0,3173	40	0,3247
41	0,2955	11	0,3028	41	0,3102	11	0,3175	41	0,3250
42	0,2958	12	0 , 30 3 1	42	0,3104	12	0,3178	42	0,3252
43	0,2960	13	0 ,3 033	43	0,3106	13	0,3180	43	0,3255
44	0,2963	14	0,3036	44	0,3109	14	0,3183	44	0,3257
45	0,2965	15	0,3038	45	0,3111	15	0,3185	45	0,3260
46	0,2968	16	0,3040	46	0,311 4	16	0,3188	46	0,3262
47	0,2970	17	0,3043	47	0,3116	17	0,3190	47	0,3265
48	0,2972	18	0,3045	48	0,3119	18	0,3193	48	0,3267
49	0,2975	19	0,3048	49	0,3121	19	0,3195	49	0,3270
50	0,2977	20	0,3050	50	0,3124	20	0,3198	50	0,3272
51	0,2980	21	0,3053	51	0,3126	21	0,3200	51	0,3275
52	0,2982	22	0,3055	52	0,3129	22	0,3203	52	0,3277
53	0,2984	23	0,3057	53	0 ,3 131	23	0,3205	53	0,3280
54	0,2987	24	0,3060	54	0,3133	24	0 ,3 208	54	0,3282
55	0,2989	25	0,3062	55	0,3136	25	0 ,3 210	55	0,3285
56	0,2992	26	0,3065	56	0,3138	26	0 , 321 3	56	0,3287
57	0,2994	27	0 ,3 067	57	0,3141	27	0,3215	57	0,3290
58	0,2997	28	0,3070	58	0,3143	28	0,3218	58	0,3292
59	0,2999	29	0,3072	59	0,3146	29	0,3220	59	0,3294
2 3° 00	0,3001	30	0,3075	24°00	0,3148	30	0,3223	25°00	0,3297

С	тетрагональных	кристаллов
-	i o par o manomant	mp

P111	c	ρ111	с	P111	С	P111	С	P111	с
25°00′	0,3297	25° 30′	0,3373	26°00′	0,3449	26°30′	0,3526	27°00′	0,3603
01	0,3300	31	0,3375	01	0,3451	31	0,3528	01	0,3606
02	0,3302	32	0,3378	02	0,3454	32	0,3531	02	0,3608
03	0,3305	33	0,3380	03	0,3456	33	0,3533	03	0,3611
04	0,3307	34	0,3383	04	0,3459	34	0,3536	04	0,3613
05	0,3310	35	0,3385	05	0,3461	35	0,3538	05	0,3616
06	0,3312	36	0,3388	06	0,3464	36	0,3541	06	0,3619
07	0,3315	37	0,3390	07	0,3467	37	0,3544	07	0,3621
08	0,3317	38	0,3393	08	0,3469	38	0,3546	08	0,3624
09	0,3320	39	0,3396	09	0,3472	39	0,3549	09	0,3626
10	0,3322	40	0,3398	10	0,3474	40	0,3551	10	0,3629
11	0,3325	41	0,3401	11	0,3477	41	0,3554	11	0,3632
12	0,3327	42	0,3403	12	0,3479	42	0,3556	12	0,3634
13	0,3330	43	0,3406	13	0,3482	43	0,3559	13	0,3637
14	0,3332	44	0,3408	14	0,3485	44	0,3562	14	0,3639
15	0,3335	45	0,3411	15	0,3487	45	0,3564	15	0,3642
16	0,3337	46	0,3413	16	0,3490	46	0,3567	16	0,3645
17	0,3340	47	0,3416	17	0,3492	47	0,3569	17	0,3647
18	0,3342	48	0,3418	18	0,3495	48	0,3572	18	0,3650
19	0,3345	49	0,3421	19	0,3497	49	0,3574	19	0,3652
20	0,3348	50	0,3423	20	0,3500	50	0,3577	20	0,3655
21	0,3350	51	0,3426	21	0,3502	51	0,3580	21	0,3658
22	0,3353	52	0,3428	22	0,3505	52	0,3582	22	0,3660
23	0,3355	53	0,3431	23	0,3508	53	0,3585	23	0,3663
24	0,3358	54	0,3434	24	0,3510	54	0,3587	24	0,3665
25	0,3360	55	0,3436	25	0,3513	55	0,3590	25	0,3668
26	0,3363	56	0,3439	26	0,3515	56	0,3593	26	0,3671
27	0,3365	57	0,3441	27	0,3518	57	0,3595	27	0,3673
28	0,3368	58	0,3444	28	0,3520	58	0,3598	28	0,3676
29	0,3370	59	0,3446	29	0,3523	59	0,3600	29	0,3678
30	0,3373	26°00	0,3449	30	0,3526	27°00	0,3603	30	0,3681

С	тетрагональных	кристаллов

•

β111	с	P111	с	P111	с	P111	с	P111	C
27° 30'	0,3681	28°00′	0,3760	28° 30′	0,3839	29°00′	0,3920	29°30'	0,4001
31	0,3684	01	0,3762	- 31	0,3842	01	0,3922	31	0,4003
32	0,3686	02	0,3765	32	0,3844	02	0,3925	32	0,4006
33	0,3689	03	0,3768	33	0,3847	03	0,3928	33	0,4009
34	0,3691	04	0,3770	34	0,3850	04	0,3930	34	0,4011
35	0,3694	05	0,3773	35	0,3852	05	0,3933	35	0,4014
36	0,3697	06	0,3776	36	0,3855	06	0,3936	36	0,4017
37	0,3699	07	0,3778	37	0,3858	07	0,3939	37	0,4020
38	0,3702	08	0,3781	38	0,3860	08	0,3941	38	0,4022
39	0,3704	09	0,3784	39	0,3863	09	0,3944	39	0,4025
40	0,3707	10	0,3786	40	0,3866	10	0,3947	40	0,4028
41	0,3710	11	0,3789	41	0,3868	11	0,3949	41	0,4030
42	0,3712	12	0,3792	42	0,3871	12	0,3952	42	0,4033
43	0,3715	13	0,3794	43	0,3874	13	0,3955	43	0,4036
44	0,3718	14	0,3797	44	0,3876	14	0,3957	44	0,4039
45	0,3720	15	0,3800	45	0,3879	15	0,3960	45	0,4041
46	0,3723	16	0,3802	46	0,3882	16	0,3963	46	0,4044
47	0,3726	17	0,3805	47	0,3884	17	0,3965	47	0,4047
48	0,3728	18	0,3808	48	0,3887	18	0,3968	48	0,4050
49	0,3731	19	0,3810	49	0,3890	19	0,3971	49	0,4052
50	0,373 3	20	0,3813	50	0,3893	20	0,3974	50	0,4055
51	0,3736	21	0,3816	51	0,3895	21	0,3976	51	0,4058
52	0,3739	22	0,3818	52	0,3898	22	0,3979	52	0,4061
53	0,3741	23	0,3821	53	0,3901	23	0,3982	53	0,4063
54	0,3744	24	0,3824	54	0,3903	24	0,3984	54	0,4066
55	0,3747	25	0,3826	55	0,3906	25	0,3987	55	0,4069
56	0,3749	26	0,3829	56	0,3909	26	0,3990	56	0,4072
57	0,3752	27	0,3831	57	0,3911	27	0,3993	57	0,4074
58	0,3754	28	0,3834	58	0,3914	28	0,3995	58	0,4077
59	0,3757	29	0,3837	59	0,3917	29	0,3998	59	0,4080
28°00	0,3760	30	0,3839	29° 00	0,3920	30	0,4001	30° 00	0,4083

								_	
P111	с	P111	с	P111	c	P1 11	c	P111	с
30° 00′	0,4083	30° 30′	0,4165	31° 00′	0,4249	31°30′	0,4333	32° 00′	0,4419
01	0,4085	31	0,4168	01	0,4252	31	0,4336	01	0,4422
02	0,4088	32	0,4171	02	0,4254	32	0,4339	02	0,4424
03	0,4091	33	0,4173	03	0,4257	33	0,4342	03	0,4427
04	0,4094	34	0,4176	04	0,4260	34	0,4344	04	0,4430
05	0,4096	35	0,4179	05	0,4263	35	0,4347	05	0,4433
06	0,4099	36	0,4182	06	0,4266	36	0,4350	06	0,4436
07	0,4102	37	0,4184	07	0,4268	37	0,4353	07	0,4439
08	0,4105	38	0,4187	08	0,4271	38	0,4356	08	0,4442
09	0,4107	39	0,4190	09	0,4274	39	0,4359	09	0,4444
10	0,4110	40	0,4193	10	0,4277	40	0,4362	10	0,4447
11	0,4113	41	0,4196	11	0,4280	41	0,4364	11	0,4450
12	0,4116	42	0,4198	12	0,4282	42	0,4367	12	0,4453
13	0,4118	43	0,4201	13	0,4285	43	0,4370	13	0,4456
14	0,4121	44	0,4204	14	0,4288	44	0,4373	14	0,4459
15	0,4124	45	0,4207	15	0,4291	45	0,4376	15	0,4462
16	0,4127	46	0,4210	16	0,4294	46	0,4379	16	0,4464
17	0,4129	47	0,4212	17	0,4296	47	0,4382	17	0,4467
18	0,4132	48	0,4215	18	0,4299	48	0,4384	18	0,4470
19	0,4135	49	0,4218	19	0,4302	49	0,4387	19	0,4473
20	0,4138	50	0,4221	20	0,4305	50	0,4390	20	0,4476
21	0,4140	51	0,4224	21	0,4308	51	0,4393	21	0,4479
22	0,4143	52	0,4226	22	0,4310	52	0,4396	22	0,4482
23	0,4146	53	0,4229	23	0,4313	53	0,4399	23	0,4485
24	0,4149	54	0,4232	24	0,4316	54	0,4402	24	0,4487
25	0,4151	55	0,4235	25	0,4319	55	0,4404	25	0, 4490
26	0,4154	56	0,4238	26	0,4322	56	0,4407	26	0,4493
27	0,4157	57	0,4240	27	0,4325	57	0,4410	27	0,4496
28	0,4160	58	0,4243	28	0,4327	58	0,4413	28	0,4499
29	0,4162	59	0,4246	29	0,4330	59	0,4416	29	0,4502
30	0,4165	31°00	0,4249	30	0,4333	32°00	0,4419	30	0,4505
			1 '	1 '	1 '	1 '	í /	4 1	4

с тетрагональных кристаллов

P111	с	P111	с	P111	с	P111	С	P111	с
32° 30′	0,4505	33°00′	0,4592	33° 30′	0,4680	34°00′	0,4770	34°00′	0,4860
31	0,4508	01	0,4595	31	0,4683	01	0,4773	31	0,4863
32	0,4511	02	0,4598	32	0,4686	02	0,4776	32	0,4866
33	0,4513	03	0,4601	33	0,4689	03	0,4779	33	0,4869
34	0,4516	04	0,4604	34	0,4692	04	0,4782	34	0,4872
35	0,4519	05	0,4607	35	0,4695	05	0,4785	35	0,4875
36	0,4522	06	0,4610	36	0,4698	06	0,4788	36	0,4878
37	0,4525	07	0,4613	37	0,4701	07	0,4791	37	0,4881
38	0,4528	08	0,4616	38	0,4704	08	0,4794	38	0,4884
39	0,4531	09	0,4618	39	0,4707	09	0,4797	39	0,4887
40	0,4534	10	0,4621	40	0,4710	10	0,4800	40	0, 4890
41	0,4537	11	0,4624	41	0,4713	11	0,4803	41	0,4893
.42	0,4540	12	0,4627	42	0,4716	12	0,4806	42	0, 4896
43	0,4543	13	0,4630	43	0,4719	13	0,4809	43	0,4899
44	0,4545	14	0,4633	44	0,4722	14	0,4812	44	0,4902
45	0,4548	15	0,4636	45	0,4725	15	0,4815	45	0,4905
46	0,4551	16	0,4639	46	0,4728	16	0,4818	46	0,4908
47	0,4554	17	0,4642	47	0,4731	17	0,4821	47	0,4912
48	0,4557	18	0,4645	48	0,4734	18	0,4824	48	0,4915
49	0,4560	19	0,4648	49	0,4737	19	0,4827	49	0,4918
50	0,4563	20	0,4651	50	0,4740	20	0,4830	50	0,4921
51	0,4566	21	0,4654	51	0,4743	21	0,4833	51	0,4924
52	0,4569	22	0,4657	52	0,4746	22	0,4836	52	0,4927
53	0,4572	23	0,4660	53	0,4749	23	0,4839	53	0,4930
54	0,4575	24	0,4662	54	0,4752	24	0,4842	54	0,4933
55	0,4578	25	0,4665	55	0,4755	25	0,4845	55	0,4936
56	0,4580	26	0,4668	56	0,4758	26	0,4848	56	0,4939
57	0,4583	27	0,4671	57	0,4761	27	0,4851	57	0,4942
58	0,4586	28	0,4674	58	0,4764	28	0,4854	58	0,4945
59	0,4589	29	0,4677	59	0,4767	29	0,4857	59	0,4948
33°00	0,4592	30	0,4680	34° 00	0,4770	30	0,4860	35°00	0,4951

с тетрагональных кристаллов

	С	тетрагональных	кристаллов
--	---	----------------	------------

P111	с	P111	c	P111	с	P111	с	P111	с
35° 00′	0,4951	35° 30'	0,5044	36°00′	0,5138	36° 30'	0,5232	37° 00′	0,5328
01	0,4954	31	0,5047	01	0,5141	31	0,5236	01	0,5332
02	0,4957	32	0,5050	02	0,5144	32	0,5239	02	0,5335
03	0,4960	33	0,5053	03	0,5147	33	0,5242	03	0,5338
04	0,4963	34	0,5056	04	0,5150	34	0,5245	04	0,5341
05	0,4967	35	0,5059	05	0,5153	35	0,5248	05	0,5345
06	0,4970	36	0,5062	06	0,5156	36	0,5251	06	0,5348
07	0,4973	37	0,5066	07	0,5160	37	0,5255	07	0,5351
08	0,4976	38	0,5069	08	0,5163	38	0,5258	08	0,5354
09	0,4979	39	0,5072	09	0,5166	39	0,5261	09	0,5358
10	0,4982	40	0,5075	10	0,5169	40	0,5264	10	0,5361
11	0,4985	41	0,5078	11	0,5172	41	0,5267	11	0,5364
12	0,4988	42	0,5081	12	0,5175	42	0,5271	12	0,5367
13	0,4991	43	0,5084	13	0,5178	43	0,5274	13	0,5371
14	0,4994	44	0,5087	14	0,5182	44	0,5277	14	0,5374
15	0,4997	45	0,5090	15	0,5185	45	0,5280	15	0,5377
16	0,5001	46	0,5094	16	0,5188	46	0,5283	16	0,5380
17	0,5004	47	0,5097	17	0,5191	47	0,5287	17	0,5384
18	0,5007	48	0,5100	18	0,5194	48	0,5290	18	0,5387
19	0,5010	49	0,5103	19	0,5197	49	0,5293	19	0,5390
20	0,5013	50	0,5106	20	0,5201	50	0,5296	20	0,5393
21	0,5016	51	0,5109	21	0,5204	51	0,5300	21	0,5397
22	0,5019	52	0,5112	22	0,5207	52	0,5303	22	0,5400
23	0,5022	53	0,5116	23	0,5210	53	0,5306	23	0,5403
24	0 ,502 5	54	0, 5119	24	0,5213	54	0,5309	24	0,5406
25	0,5028	55	0,5122	25	0,5216	55	0,5312	25	0,5410
26	0,5031	56	0,5125	26	0,5220	56	0,5316	26	0,541 3
27	0 ,50 34	57	0,5128	27	0,5223	57	0,5319	27	0,5416
28	0,5038	58	0,5131	28	0,5226	[.] 58	0,5322	28	0,5419
29	0,5041	59	0,5134	29	0,5229	59	0,5325	29	0,5423
30	0,5044	36°00	0,5138	30	0,5232	37°00	0,5328	30	0,5426

С	тетрагональных	кристаллов
~	reipuronandinair	npine ruminon

P111	с	P111	с	ρ111	с	P111	с	P111	с
37°30′	0,5426	38°00'	0,5525	38°30′	0,5625	39° 00'	0,5726	39° 30′	0,5829
31	0,5429	01	0,5528	31	0,5628	01	0,5729	31	0,5833
32	0,5433	02	0,5531	32	0,5631	02	0,5733	32	0,5836
33	0,5436	03	0,5534	33	0, 5635	03	0,5736	. 33	0,5839
34	0,5439	04	0,5538	34	0,5638	04	0,5740	34	0,58 43
35	0,5442	05	0,5541	35	0,5641	05	0,5743	35	0,5846
36	0,5446	06	0,5544	36	0,5645	06	0,5747	36	0,5850
37	0,5449	07	0,5548	37	0,5548	07	0,5750	37	0,5853
38	0,5452	08	0,5551	38	0,5351	08	0,5753	38	0,5857
39	0,5455	09	0,5554	39	0,5355	09	0,5757	39	0,5860
40	0,5459	10	0,5558	40	0,5358	10	0,5760	40	0,5864
41	0,5452	11	0,5531	41	0,5362	11	0,5764	41	0,5867
42	0,5435	12	0,5534	42	0,5665	12	0,5767	42	0,5871
43	0,5468	13	0,5538	43	0,5368	13	0,5770	43	0,5874
44	0,5172	14	0,5571	44	0,5372	14	0,5774	44	0,5878
45	0,5475	15	0,5574	45	0,5675	15	0,5777	45	0, 5881 [·]
46	0,5478	16	0,5578	46	0,5679	16	0,5781	46	0,5884
47	0,5482	17	0,5581	47	0,5682	17	0,5784	47	0,5883
48	0,5485	18	0,5584	48	0,5385	18	0,5788	48	0,5891
49	0,5488	19	0,5588	49	0,5389	19	0,5791	49	0,5895
50	0,5492	20	0,5591	50	0,5692	20	0,5795	50	0,5898
51	0,5495	21	0,5594	51	0,5395	21	0,5798	51	0,5902
52	0,5498	22	0,5598	52	0,5399	22	0,5802	52	0,5905
53	0,5501	23	0,5301	53	0,5702	23	0,5805	53	0,5909
54	0,5505	24	0,5301	54	0,5703	24	0,5808	54	0,5912
55	0,5508	25	0, 5308	55	0,5709	25	0,5812	55	0,5916
56	0,5511	26	0,5311	56	0,5712	26	0,5815	56	0,5919
57	0,5515	27	0,5315	57	0,5716	27	0,5819	57	0,5923
58	0,5518	28	0,5318	58	0,5719	28	0,5822	58	0,5926
59	0,5521	29	0,5321	59	0,5723	29	0,5826	59	0,5930
38°00	0,5525	30	0,5325	39° 00	0,5726	30	0,5829	40°00	0,5933

18 Аншелес — 706

C	тетраго	нальных	кристаллов
•	respare		

ρ111	с	P111	С	P111	С	P111	С	P111	С
40°00′	0,5933	40° 30′	0,6039	41°00′	0,6147	41°30′	0,6256	42°00′	0,6367
01	0,5937	31	0,6043	01	0,6150	31	0,6260	01	0,6371
02	0, 5940	32	0,6046	02	0,6154	32	0,6263	02	0,6374
03	0,5944	33	0,6050	03	0,6158	33	0,6267	03	0,6378
04	0,5947	34	0,6054	04	0,6161	34	0,6271	04	0,6382
05	0,5951	35	0,6057	05	0,6165	35	0,6274	05	0,6386
06	0,5954	36	0,6061	06	0,6169	36	0,6278	06	0,6389
07	0,5958	37	0,6064	07	0,6172	37	0,6282	07	0,6393
08	0,5961	38	0,6068	08	0,6176	38	0,6285	08	0,6397
09	0,5965	39	.0,6071	09	0,6179	. 39	0,6289	09	0,6400
10	0,5968	40	0,6075	·10	0,6183	40	0,6293	10	0,6404
11	0,5972	41	. 0,6079	11	0,6187	41	0,6296	11	0,6408
12	0,5975	42	0,6082	12	0,6190	42	0,6300	12	0,6412
13	0,5979	43	0,6086	13	0,6194	43	0,6304	13	0,6415
14	0,5983	44	0,6089	14	0,6198	44	0,6307	14	0,6419
15	0,5986	45	0,6093	15	0,6201	45	0,6311	15	0,6423
16	0,5990	46	0,6096	16	0,6205	46	0,6315	16	0,6427
17	0,59 9 3	47	0,6100	17	0,6208	47	0,6319	17	0,6430
18	0,5997	48	0,6104	18	0,6212	48	0,6322	18	0,6434
19	0,6 00 0	49	0,6107	19	0,6216	49	0,6326	19	0,6438
20	0,6004	50	0,6111	20	0,6219	50	0,6330	20	0,6442
21	0,6007	51	0,6114	21	0,6223	51	0,6333	21	0,6445
22	0,6011	52	0,6118	22	0,6227	52	0,6337	22	0,6449
23	0,6014	53	0, 6122	23	0,6230	53	0,6341	23	0,6453
24	0, 6018	54	0,6125	24	0,6234	54	0,6344	24	0,6457
25	0, 6022	55	0,6129	25	0,6238	55	0,6348	25	0,6461
26	0,6025	56	0,6132	26	0,6241	56	0,6352	26	0,6464
27	0,6029	57	0,613 6	27	0,6245	57	0,6356	27	0,6468
28	0,6032	58	0,6140	28	0,6249	58	0,6359	28	0 ,6 47 2
29	0,6036	59	0,6143	29	0,6252	59	0,6363	29	0,647 6
30	• 0,6039	41°00	0,6147	30	0,6256	42°00	0,6367	30	0,6479

с теграгональных кристаллов	С	тетрагональных	кристаллов
-----------------------------	---	----------------	------------

P111	c	P111	с	P111	с	P111	С	P111	с
42°30′	0,6479	43° 00'	0,6594	43° 30′	0,6710	44°00'	0,6828	44°30′	0,6949
31	0,6483	01	0,6598	31	0,6714	01	0,6832	31	0,6953
32	0,6487	02	0,6602	32	0,6718	02	. 0,6836	32	0,6957
33	0,6491	03	0,6605	33	0,6722	03	0,6840	33	0,6961
34	0,6495	04	0,6609	34	0,6726	04	0,6844	34	0,6965
35	0,6498	05	0,6613	35	0,6730	05	0,6848	35	0,6969
36	0,6502	06	0,6617	36	0,6734	05	0,6852	36	0,6973
37	0,6506	07	0,6621	37	0,6738	07	0,6856	37	0,6977
38	0,6510	08	0,6625	38	0,6741	08	0,6860	38	0,6981
39	0,6514	09	0,6629	39	0,6745	09	0, 6864	39	0,6985
40	0,6517	10	0,6632	40	0,6749	10	0,6868	40	0,6989
41	0,65 21	11	0,6636	41	0,6753	11	0,6872	41	0,6993
42	0,6525	12	0,6640	42	0,6757	12	0,6876	42	0,6997
43	0,6529	13	0,6644	43	0,6761	13	0,6880	43	0,7001
44	0,6533	14	0,6648	44	0,6765	14	0,6884	44	0,7006
45	0,6537	15	0,6652	45	0,6769	15	0,6888	45	0,7010
46	0,6540	16	0,6656	46	0,6773	16	0,6892	46	0,7014
47	0,6544	17	0,6660	47	0,6777	17	0,6895	47	0,7018
48	0,6548	18	0,6663	48	0,6781	18	0,6900	48	0,7022
49	0,6552	19	0,6667	49	0,6785	19	0,6904	49	0, 70 2 6
50	0,6556	20	<u>0,6671</u>	50	0,6789	20	0,6908	50	0,7030
51	0,6559	21	0,6675	51	0,6793	21	0,6912	51	0,7034
52	0,6563	22	0,6679	52	0,6797	22	0,6916	52	0,7038
53	0,6567	23	0,6683	53	0,6801	23	0,6920	53	0,7042
54	0,6571	24	0,6687	54	0,6805	24	0,6925	54	0,7046
55	0,6575	25	0,6691	55	0,6809	25	0,6929	55	0,7051
56	0,6579	26	0,6695	` 56	0,6813	26	0,6933	56	0,7055
57	0,6582	27	0,6698	57	0,6817	27	0,6937	57	0,7059
58	0,6586	28	0,6702	58	0,6821	28	0,6941	58	0,7063
59	0,6590	29	0,6706	59	0,6824	29	0,6945	59	0,7067
43°0 0	0,6594	30	0,6710	44°00	0,6828	30	0,6949	45°00	0,7071

P111	с	P 111	C	P111	с	P111	С	β 111	С
5° 00′	0,7071	45° 30′	0,7196	46° 00'	0,7322	4 6°3 0′	0,7451	47°00′	0,7583
01	0,7075	31	0,7200	01	0,7327	31	0,7456	01	0,7587
02	0,7079	32	0,7204	02	0,7331	32	0,7460	02	0,7592
03	0,7083	33	0,7208	03	0,7335	33	0,7464	03	0,7596
04	0,7088	34	0,7212	04	0,7339	34	0,7469	04	0,7601
05	0,7092	35	0,7217	05	0,7344	35	0,7473	05	0,7605
06	0,7096	36	0,7221	06	0,7348	36	0,7478	06	0,7609
07	0,7100	37	0 ,7 225	07	0,7352	37	0,7482	07	0,7614
08	0,7104	38	0,7229	08	0,7357	38	0,7486	08	0,7618
09	0,7108	39	0,723 3	09	0,7361	39	0,7491	09	0,7623
10	0,7112	40	0,7238	10	0,7365	40	0,7495	10	0,7627
11	0,7116	41	0,7242	11	0,7369	41	0,7499	11	0,7632
12	0,7121	42	0,7246	12	0,7374	42	0,7504	12	0,7636
13	0,7125	43	0, 7250	13	0,7378	43	0,7508	13	0,7641
14	0,7129	44	0,7254	14	0,7382	44	0,7512	14	0,7645
15	0,7133	45	0,7259	15	0,7387	45	0,7517	15	0,7651
16	0,7137	46	0,7263	16	0,7391	46	0,7521	16	0,7654
17	0,7141	47	0,7267	17	0,7395	47	0,7526	17	0,7658
18	0,7145	48	0,7271	18	0,7399	48	0,7530	18	0,7663
19	0,7150	49	0,727 6	19	0,7404	49	0,7534	19	0,7667
20	0,7154	50	0,7280	20	0,7408	50	0,7539	20	0,7672
21	0,7158	51	0,7284	21	0,7412	_. 51	0,7543	21	0,7676
22	0,7162	52	0,7288	22	0,7417	52	0,7548	22	0,7681
23	0,7166	53	0,7293	23	0,7421	53	0,7552	23	0,7685
24	0,7170	54	0,7297	24	0,7425	54	0,7556	24	0,7690
25	0,7175	55	0,7301	25	0,7430	55	0,7561	25	0,7694
26	0,7179	56	0,7305	26	0,7434	56	0,7565	26	0,7699
27	0,7183	57	0,7310	27	0,7438	57	0,7569	27	0,7703
28	0,7187	58	0,7314	28	0,7443	58	0,7574	28	0,7708
29	0,7191	59	0,7318	29	0,7447	59	0,7578	29	0,7712
30	0,7196	46° 00	0,7322	30	0,7451	47°00	0,7583	30	0,7717
	1	1	1	1	1	1			1

С	тетраго	нальных	кристалло	B

١

.

P111	c	P111	c	P111	с	P111	С	P111	с
47°. 3 0'	0,7717	48° 00′	• 0,7853	48° 30'	0,7992	49°00′	0,8134	49°30′	0,8279
31	0,7721	01	0,7858	31	0,7997	01	0,8139	31	0,8284
32	0,7726	02	0,7862	-32	0,8002	02	0,8144	32	0,8289
33	0,7730	03	0,7867	33	0,8006	03	0,8149	33	0,8294
34	0,7735	04	0,7872	34	0,8011	04	0,8154	34	0,8299
3 5	0,7739	05	0,7876	35	0,8016	05	0,8158	35	0,8304
36	0,7744	06	0,7881	36	0,8020	06	0,8163	36	0,8309
37	0,7748	07	0,7885	37	0,8025	07	0,8168	37	0,8313
38	0,7753	08	0,7890	38	0,8030	08	0,8173	38	0,8318
39	0,7757	09	0,7895	39	0,8 035	09	0,8178	3 9	0,8323
40	0,7762	10	0,7899	40	0,8039	10	0,8182	40	0,8328
41	0,7766	11	0,7904	41	0,8044	11	0,8187	41	0,8333
42	0,7771	12	0,7909	42	0,8049	12	0,8192	42	0,8338
43	0,7775	13	0,7913	43	0,8053	13	0,8197	43	0,8343
44	0,7780	14	0,7918	44	0,8058	14	0,8202	44	0,8348
45	0,7785	15	0, 7922	45	0,8063	15	0,8206	45	0,8353
46	0,7789	16	0,7927	46	0,8068	16	0,8211	46	0,8358
47	0,7794	17	0,7932	47	0,8072	17	0,8216	47	0,8363
48	0,7798	18	0,7936	4 8	0,8077	18	0,8221	48	0,8367
49	0,7803	19	0 ,794 1	49	0,8082	19	0,8226	49	0,8372
50	0,7807	20	0,7946	50	0,8087	20	0,8231	50	0,8377
51	0,7812	21	0,7950	51	0,8091	21	0,8235	51	0,8382
52	0,7817	22	0,7955	52	0,8096	22	0,8240	52	0,8387
53	0,7821	23	0 ,7 960	53	0,8101	23	0,8245	53	0,8392
54	0,7826	24	0,7 96 4	54	0,8106	24	0,8250	54	0,8397
55	0,7830	25	0,7969	55	0,8110	25	0,8255	55	0,8402
56	0,7835	26	0,7974	56	0,8115	26	0,8260	56	0,8407
57	0,7839	27	0,7978	57	0,8120	27	0,8264	57	0,8412
58	0,7844	28	0,7983	58	0,8125	28	0,8269	58	0,8417
59	0,7849	29	0,7988	59	0,8130	29	0,8274	59	0,8422
48°00	0,7853	30	0,7992	49° 00	0,8134	30	0,8279	50°00	0,8427

P111	с	P111	С	P111	с	P111	с	P111	с
50°00'	0,8427	50°30′	0,8578	51°00′	0,8732	51930'	0,8890	52°00′	0,9051
01	0,8432	31	0,8583	01	0,8737	31	0,8895	01	0,9056
02	0,8437	32	0,8588	02	0,8742	32	0,8900	02	0,9061
03	0,8442	33	0,8593	03	0,8747	33	0,8906	03	0,9067
04	0,8447	34	0,8598	04	0,8753	34	0,8911	04	0,9072
05	0,8452	35	0,8603	· 05	0,8758	35	0,8916	05	0,9078
06	0,8457	36	0,8608	06	0,8763	36	0,8922	06	0,9083
07	0,8462	37	0,8614	07	0,8769	37	0,8927	07	0,9089
08	0,8467	38	0,8619	08	0,8774	38	0,8932	08	0,9094
09	0,8472	39	0,8 624 [`]	09	0,8779	39	0,8938	09	0,9100
10	0,8477	40	0,8629	10	0,8784	40	0,8943	10	0 ,9 105
11	0,8482	41	0,8634	11	0,8789	41	0,8948	11	0,9111
12	0,8487	42	0,8639	12	0,8795	42	0,8954	12	0,9116
13	0,8492	43	0,8644	13	0,8800	43	0,8959	13	0,9121
14	0,8497	44	0,8649	14	0,8805	44	0,8964	· 14	0,9127
15	0,8502	45	0,8655	15	0,8810	45	0,8970	15	0,9132
16	0,8507	46	0,8660	16	0,8816	46	0,8975	- 16	0,9138
17	0,8512	47	0,8665	17	0,8821	47	0,8980	17	0,914 3
18	0,8517	48	0,8670	18	0,8826	48	0,8986	18	0,9149
19	0,8522	49	0,8675	19	0,8831	49	0,8991	19	0,9154
20	0,8527	50	0,8680	20	0,8837	50	0,8997	20	0,9160
21	0,8532	51	0,8686	21	0,8842	51	0,9002	21	0,9165
22	0,8537	52	0,8691	22	0,8847	52	0,9007	22	0,9171
23	0,8542	53	0,8696	23	0,8853	· 53	0,9013	23	0,9176
24	0,8547	54	0,8701	24	0,8858	54	0,9018	24	0,9182
25	0,8553	55	0,8706	25	0,8863	55	0,9024	25	0,9187
26	0,8558	56	0,8711	26	0,8868	56	0,9029	26	0,9193
27	0,8563	57	0,8717	27	0,8874	57	0,9034	27	0,9198
28	0,8568	58	0,8722	28	0,8879	58	0,9040	28	0,9204
29	0,8573	59	0,8727	29	0,8884	59	0,9045	29	0,9210
30	0,8578	51°00	0,8732	30	0,8890	52°00	0,9051	30	0,9215

с	тетрагональных	кристаллов
۰.	rerparonandinan	aprice and a second

P111	c	P111	с	P111	с	P111	с	Ρ 111	c
52°30′	0,9215	53° 00′	0,9384	53° 30′	0,9556	54°00′	0,9733	54°30′	0,9913
· 31	0,9221	01	0,9389	31	0,9562	01	0,9738	31	0,9919
32	0,9226	02	0,9395	32	0,9568	02	0,9744	32	0,9926
33	0,9232	03	0,9401	33	0,9573	03	0,9750	33	0,9932
34	0,9238	04	0,9406	34	0,9579	04	0,9756	34	0,9938
35	0, 924 3	05	0,9412	35	0,9585	05	0,9762	35	0,9944
36	0,9 249	06	0,9418	3 6	0,9591	06	0,9768	36	0,9950
37	0,9254	07	0,9424	. <mark>37</mark>	0,9597	07	0,9774	37	0,9956
38	0,9260	08	0,9429	38	0,9603	⁻ 08	0,9780	38	0,9962
39	0,9265	09	0,9435	39	0,9609	09	0,9786	39	0,9968
40	0,9271	10	0,9441	40	0,9 614	10	0,9792	40	0,9975
41	0,9277	11	0,9446	41	0,9620	11	0,9798	41	0,9981
42	0,9282	12	0,9452	42	0,9626	12	0,9804	42	0,9987
43	0,9288	13	0,9458	43	0,9632	13	0,9810	43	0,9993
44	0,9293	14	0,9464	44	0,9638	14	0,9816	44	0,9999
45	0,9299	15	0,9469	4 5	0,9644	15	0,9822	45	1,0005
46	0,9305	16	0,9475	46	0,9650	16	0,9828	46	1,0011
47	0,9310	17	0 ,9 481	47	0,9656	17	0,9834	47	1,0018
48	0,9316	18	0,9487	48	0,9661	18	0,9840	48	1,0024
49	0,9321	19	0,9492	49	0,9667	19	0,9847	49	1,0030
50	0,9327	. 20	0,9498	50	0,9673	20	0,9853	50	1,0036
51	0,9333	21	0,9504	51	0,9679	21	0,9859	51	1,0042
52	0,9338	22	0,9510	52	0,9685	22	0,9865	52	1,0048
53	0,9344	23	0,9515	53	0,9691	23	0,9871	53	1,0055
54	0,9350	24	0,9521	-54	0,9697	24	0,9877	54	1,0061
55	0,9355	25	0,9527	55	0,9703	25	0,9883	55	1,0067
56	0,9361	26	0,9533	56	0,9709	26	0,9889	56	1,0073
57	0,9367	27	0,9539	57	0,9715	27	0,9895	57	1,0080
58	0,9372	28	0,9544	58	0,9721	28	0,9901	58	1,0086
59	0,9378	29	0,9550	59	0,9727	29	0,9907	59	1,0092
53°00	0,9384	30	0,9556	54°00	0,9733	30	0,9913	5 5°0 0	1,0098

P111	с	P ₁₁₁	с	P111	с	P111	с	P111	c
55°00′	1,0098	55° 30'	1,0289	56°00'	1,0483	56° 30′	1,0683	57°00′	1,0888
01	1,0105	31	1,0295	01	1,0490	31	1,0690	01	1,0895
02	1,0111	32	1,0301	02	1,0496	32	1,0697	02	1,0903
03	1,0117	33	1,0308	03	1,0503	33	1,0704	03.	1,0909
04	1,0124	34	1,0314	04	1,0510	34	1,0710	04	1,0916
05	1,0130	3 5	1,0321	05	1,0516	35	1,0717	05	1,0923
06	1,0136	36	1,0327	06	1,0523	36	1,0724	06	1,0930
07	1,0142	37	1,0333	07	1,0529	37	1,0731	07	1,0937
08	1,0149	38	1,0340	08	1,0536	38	1,0738	08	1,0944
09	1,0155	39	1,0346	09	1,0543	3 9	1,0744	09	1,0951
10	1,0161	40	1,0353	10	1,0549	40	1,0751	10	1,0958
11	1,0168	41	1,0359	11	1,0556	41	1,0758	11	1,0965
12	1,0174	42	1,0366	12	1,0563	42	1,0765	12	1,0972
13	1,0180	43	1,0372	13	1,0569	43	1,0771	13	1,0979
14	1,0187	44	1,0379	14	1,0576	44	1,0778	14	1,0986
15	1,0193	45	1,0385	15	1,0583	45	1,0786	15	1,0993
16	1,0199	46	1,0392	16	1,0589	46	1,0792	16	1,1000
17	1,0206	47	1,0398	17	1,0596	47	1,0799	17	1,1007
18	1,0212	48	1,0405	18	1,0603	48	1,0 806	18	1,1014
19	1,0218	49	1,0411	19	1,0609	49	1,0812	19	1,1023
. 20	1,0225	50	1,0418	20	1,0616	50	1,0819	20	1,1028
21	1,0231	51	1,0424	21	1,0623	51	1,0826	21	1,1036
⁻ 22	1,0237	52	1,0431	22	1,0629	52	1,0833	22	1,1042
23	1,0244	53	1,0437	23	1,0636	53	1,0841	23	1,1050
24	1,0250	54	1,0444	24	1,0643	54	1,0847	24	1,1057
25	1,0256	55	1,0450	25	1,0650	55	1,0854	25	1,1064
26	1,0263	56	1,0457	26	1,0656	56	1,0861	26	1,1071
27	1,0269	57	1,0464	27	1,0663	57	1,0867	27	1,1078
28	1,0276	58	1,0470	28	1,0670	58	1,0875	28	1,1085
29	1,0282	59	1,0477	29	1,0676	59	1,0881	29	1,1092
30	1,0289	56°00	1,0483	30	1,0683	57°00	1,0888	30	1,1099
	j i	f I	1	1					

P111	с	P111	c	P111	с	P111	c	P111	с
57°30'	1,1099	58°00′	1,1316	58°30′	1,1539	59°00′	1,1768	59°30′	1,2004
31	1,1106	01	1,1323	31	1,1546	01	1,1776	31	1,2012
3 2	1,1114	02	1,1331	32	1,1554	02	1,1784	32	1,2020
33	1,1121	03	1,1338	33	1,1562	03	1,1792	33	1,2028
34	1,1128	04	1,1346	34	1,1569	04	1,1799	34 [.]	1,2036
35	1,1135	05	1,1353	35	1,1577	05	1,1807	35	1,2044
36	1,1142	06	1,1360	36	1,1584	06	1,1815	36	1,2052
37	1,1149	07	1,1367	37	1,1592	07	1,1823	37	1,2061
38	1,1157	08	1,1375	38	1,1599	08	1,1831	38	1,2069
39	1,1163	09	1,1382	39	1,1607	09	1,1838	39	1,2077
40	1,1171	10	1,1390	40	1,1615	10	1,1846	40	1,2085
41	1,1178	11	1,1397	41	1,1622	11	1,1854	41	1,2093
42	1,1185	12	1,1404	42	1,1630	12	1,1862	42	1,2101
43	1,1192	13	1,1412	43	1,1637	13	1,1870	43	1,2109
44	1,1200	14	1,1419	44	1,1645	14	1,1878	44	1,2117
45	1,1207	15	1,1427	45	1,1653	15	1,1885	45	1,2125
46	1,1214	16	1,1434	46	1,1660	16	1,1893	46	1,2133
47	1,1221	17	1,1442	47	1,1668	17	1,1901	47	1,2141
48	1,1229	18	1,1449	48	1,1676	18	1,1909	48	1,2149
49	1,1235	19	1,1457	49	1,1683	19	1,1917	49	1,2157
50	1,1243	20	1,1464	50	1,1691	20	1,1925	50 ⁻	1,2166
51	1,1250	21	1,1471	51	1,1699	21	1,1933	51	1,2174
52	1,1257	22	1,1479	52	1,1706	22	1,1941	52	1,2182
53	1,1265	23	1,1486	53	1,1714	23	1,1949	53	1,2190
54	1,1272	24	1,1494	54	1,1722	24	1,1957	54	1,2198
55	1,1280	25	1,1501	55	1,1730	25	1,1965	55	1,2206
56	1,1287	26	1,1509	56	1,1737	26	1,1973	56	1,2215
57	1,1294	27	1,1516	57	1,1745	27	1,1980	57	1,2223
58	1,1302	28	1,1524	58	1,1753	28	1,1988	58	1,2231
59	1,1309	29	1,1532	59	1,1760	29	1,1996	59	1,2239
58°00	1,1316	3 0	1,15 3 9	59°00	1,1768	30	1,2004	60°00	1,2247

с тетрагональных кристаллов

С	тетрагональных	кристаллов
	resput on un billan	mpnerumob

P111	с	P111	С	P111	с	β 111	с	ρ111	С
60°00'	1,2247	60°30′	1,2498	61°00′	1,2757	61°30′	1,3024	62°00′	1,3299
01	1,2256	31	1,2507	01	1,2765	31	1,3033	01	1,3308
02	1,2264	32	1,2515	02	1,2774	32	1,3042	02	1,3317
03	1,2272	33	1,2524	03	1,2783	33	1,3051	03	1,3327
04	1,2280	34	1,2532	04	1,2792	34	1,3060	04	1,3336
05	1,2289	35	1,2541	05	1,2801	35	1,3069	05	1,3345
06	1,2297	36	1,2549	06	1,2809	36	1,3078	. 06	1,3355
07	1,2305	37	1,2558	07	1,2818	37	1,3087	07	1,3364
08	1,2314	38	1,2566	08	1,2827	38	1,3096	08	1,3374
09	1,2322	39	1,2575	09	1,2836	39	1,3105	09	1,3383
10	1,2330	40	1,2583	10	1,2845	40	1,3114	10	1,3393
11	1,2339	41	1,2592	11	1,2853	41	1,3123	11	1,3402
12	1,2347	42	1,2600	12	1,2862	42	1,3132	12	1,3412
13	1,2355	43	1,2609	13	1,2871	43	1,3141	13	1,3421
14	1,2363	44	1,2617	14	1,2880	44	1,3151	14	1,3431
15	1,2372	45	1,2626	15	1,2889	45	1,3160	15	1,3440
16	1,2380	46	1,2635	16	1,2898	46	1,3169	16	1,3450
17	1,2389	47	1,2643	17	1,2907	47	1,3178	17	1,3459
18	1,2397	48	1,2652	18	1,2916	48	1,3188	18	1,3460
19	1,2405	49	1,2661	19	1,2925	49	1,3197	19	1,3478
20	1,2414	50	1,2669	20	1,2934	50	1,3206	20	1,3488
21	1,2422	51	1,2678	21	1,2943	51	1,3215	21	1,3497
22	1,2430	52	1,2687	22	1,2952	52	1,3224	22	1,3507
23	1,2439	53	1,2696	23	1,2961	53	1,3234	23	1,3516
24	1,2447	54	1,2704	24	1,2970	54	1,3243	24	1,3526
25	1,2456	55	1,2713	25	1,2979	55	1,3252	25	1,3535
26	1,2464	56	1,2722	26	1,2988	56	1,3262	26	1,3545
27	1,2473	57	1 , 27 3 0	27	1,2997	57	1,3271	27	1 ,355 5
28	1,2481	58	1,2739	28	. 1,3006	58	1,3280	28	1,3564
29	1,2490	59	1,2748	29	1,3015	59	1,3289	29	1,3574
30	1,2498	61°00	1,2757	3 0	1,3024	62°00	1,3299	30	1 ,3 583

P111	с	β 111	С	P111	с	P111	С	P111	с.
62° 30′	1,3583	63°00′	1,3878	63° 30′	1,4182	64°00′	1,4498	64° 30'	1,4825
31	` 1,3593	01	1,3888	31	1,4193	01	1,4509	31	1,4836
32	1,3603	02	1,3898	32	1,4203	02	1,4519	32	1,4847
33	1,361 2	03	1,3908	33	1,4213	03	1,4530	33	1,4858
34	1,3622	04	1,3918	34	1,4224	04	1,4541	34	1,4870
35	1,3632	05	1,3928	35	1,4234	05	1,4551	35	1,4881
36	1,3641	06	1,3938	36	1,4244	06	1,4562	36	1,4892
37	1,3651	07	1,3948	37	1,4255	07	1,4573	37	1,4903
38	1,3661	08	1,3958	38	1,4265	08	1,4584	38	1,4914
39	1,3670	09	1,3968	39	1,4276	09	1,4595	39	1,4925
40	1,3680	10	1,3978	40	1,4286	10	1,4605	40	1,4936
41	1,3690	11	1,3988	41	1,4297	11	1,4616	41	1,4948
42	1,3700	12	1,3998	42	1,4307	12	1,4627	42	1,4959
43	1,3710	13	1,4009	43	1,4318	13	,4638	43	1,4970
44	1,3719	14	1,4019	44	1,4328	14	1,4649	44	1,4982
45	1,3729	15	1,4029	45	1,4339	15	1,4660	45	1,4993
46	1,3739	16	1,4039	46	1,4349	16	1,4671	46	1,5004
47	1,3749	17	1,4049	. 47	1,4360	17	1,4682	47	1,5015
48	1,3759	18	1,4059	48	1,4370	18	1,4693	48	1,5027
49	1,3769	19	1,4069	49	1,4381	19	1,4704	-49	1,5038
50	1,3778	20	1,4080	50	1,4392	20	1,4714	50	1,5050
51	1,3788	21	1,4090	51	1,4402	21	1,4725	51	1,5061
52	1,3798	22	1,4100	52	1,4413	22	1,4737	52	1,5072
53	1,3808	23	1,4110	53	1,4423	23	1,4748	53	1,5084
54	1,38 18	24	1,4121	54	1,4434	24	1,4759	54	1,5095
55	1,3828	25	1,4131	. 55	1,4445	25	1,4770	55	1,5107
56	1,3838	26	1,4141	56	1,4455	26	1,4781	56	1,5118
57	1,3848	27	1,4151	57	1,4466	$^{\cdot} 27$	1,4792	57	1,5129
58	1,3858	28	1,4162	58	1,4477	28	1,4803	58	1,5141
59	1,3868	29	1,4172	59	1,4487	29	1,4814	59	1,5152
63°00	1,3878	30	1,4182	64°00	1,4498	30	1,4825	65°00	1,5164

١

						-			
P111	C 1	P111	с	P111	С	P111	С	P111	с
6 5°00'	1,5164	65° 30′	1,5516	66° 00'	1,5882	66°30′	1,6263	67° 00'	1,6659
01	1,5176	31	1,5528	01	1,5894	31	1,6275	01	1,6672
02	1,5187	32	1,5540	02	1,5907	32	1,6288	02	1,6585
03	1,5199	33	1,5552	03	1,5919	33	1,6301	03	1,6599
04	1,5210	34	1,5564	04	1,5932	34	1,6314	04	1,6712
05	1,5222	35	1,5576	05	1,5944	35	1,6327	05	1,6726
03	1,5233	3 6	1,5588	06	1,5957	36	1,6340	06	1,6740
07	1,5245	37	1,5600	07	1,5969	37	1,6353	07	1,6753
08	1,5256	38	1,5612	08	1,5982	3 8	1,6366	08	1,6767
09	1,5268	39	1,5624	09	1,5994	39	1,6379	09	1,6780
10	1,5280	40	1,5636	10	1,6007	40	1,6393	10	1,6794
11	1,5291	41	1,5649	11	1,6020	41	1,6406	11	1,6807
12	1,5303	42	1,5661	12	1,6032	42	1,6419	12	1,6821
13	1,5315	43	1,5673	13	1,6045	43	1,6432	13	1,6835
14	1,5327	44	1,5685	14	1,6057	44	1,6445	14	1,6849
15	1,5338	45	1,5697	15	1,6070	45	1,6458	15	1,6863
16	1,5350	46	1,5709	16	1,6083	46	1,6472	16	1,6876
17	1,53 6 2	47	1,5721	17	1,6095	47	1,6485	17	1,6890
18	1,5374	48	1,5734	18	1,6108	48	1,6498	18	1,6904
19	1,5385	49	1,5746	19	1,6121	49	1,6511	19	1,6918
20	1,5397	50	1,5758	20	1,6134	50	1,6525	20	1,6932
21	1,5409	51	1,5770	21	1,6147	51	1,6538	21	1,6946
22	1,5421	52	1,5783	22	1,6160	52	1,6551	22	1 ,69 59
23	1,5433	53	1,5795	23	1,6172	53	1,6564	23	1,6973
24	1,5445	54	1,5807	24	1,6185	54	1,6578	24	1,6987
25	1,5456	55	1,5820	25	1,6198	55	1,6591	25	1,7001
26	1,5468	56	1,5832	26	1,6211	56	1,6605	26	1,7015
27	1,5480	57	1,5845	27	1,6224	57	1,6618	27	1,7029
28	1,5492	58	1,5857	28	1,6237	58	1,6631	28	1,7043
29	1,5504	59	1,5870	29	1,6250	59	1,6645	29	1,7057
30	1,5516	66°00	1,5882	30	1,6263	67°00	1,6659	30	1,7071

с тетрагональных кристаллов

P111	C	P111	С	P111	с	β 111	С	ρ111	С
67° 30'	1,7071	68° 00'	1,7502	68° 30′	1,7951	69°00′	1,8421	69°30′	1,8912
31	1,7085	01	1,7516	31	1,7966	01	1,8437	31	1,8929
32	1,7099	02	1,7531	32	1,7972	02	1,8453	32	1,8946
- 33	1,7113	03	1,7546	. 33	1,7987	03	1,8469	33	1,8963
34	1,7128	04	1,7560	34	1,8013	04	1,8485	34	1,8980
35	1,7141	05	1,7575	35	1,8028	05	1,8501	35	1,8997
36	1,7155	06	1,7590	36	1,8043	06	1,8517	36	1,9013
37	1,7170	07	1,7605	37	1,8059	07	1,8533	37	1,9030
38	1,7184	08	1,7620	38	1,8074	08	1,8550	38	1,9047
39	1,7198	09	1,7635	39	1,8090	09	1,8566	39	1,9064
40	1,7213	10	1,7650	40	1,8105	10	1,8582	40	1,9081
41	1,7227 .	11	1,7664	41	1,8121	11	1,8598	41	1,9098
42	1,7241	12	1,7679	42	1,8136	12	1,8615	42	1,9115
43	1,7255	13	1,7694	43	1,8152	13	1,8631	43	1,9133
44	1,7270	14	1,7719	44	1,8168	14	1,8647	44	1,9150
['] 45	1,7284	15	1,7724	45	1,8183	15	1,8664	45	1,9157
46	1,7298	16	1,7739	46	1,8199	16	1,8680	46	1,9184
47	1,7313	17	1,7754	47	1,8214	17	1,8697	47	1,9202
48	1,7327	18	1,7769	48	1,8230	18	1,8713	48	1,9229
49	1,7341	19	1,7784	49	1,8246	19	1,8730	49	1,9236
50	1,7356	20	1,7799	50	1,8262	20	1,8746	50	1,9253
51	1,7370	21	1,7814	51	1,8277	21	1,8763	51	1,9271
52	1,7385	22	1,7829	52	1,8293	22	1,8779	52	1,9288
53	1,7399	23	1,7844	53	1,8309	23	1,8796	53	1,9305
54	1,7414	24	1,7860	54	1,8325	24	1,8812	54	1,9323
55	1,7428	25	1,7875	55	1,8341	25	1,8829	55	1,9340
58	1,7443	26	. 1,7890	56	1,8357	26	1,8855	56	1,9347
57	1,7458	27	1,7905	57	1,8373	27	1,8862	57	1,9375
58	1,7472	28	1,7920	58	1,8389	28	1,8879	58	1,9392
59	1,7487	29	1,7936	59	1,8405	29	1,8896	59	1,9410
68°00	1,7502	30	1,7951	69°00	1,8421	30	1,8912	70°00	1,9427
-					•			-	

с тетрагональных кристаллов

,
С	тетрагональных	кристаллов
-		

P111	с	P111	c	P111	с	ρ111	F	P111	. С
70° 00'	1,9427	70°30′	1,9968	71°00′	2,0536	71°30′	2,1133	72°00′	2,1762
01	1,9445	31	1,9986	01	2,0555	31	2,1154	01	2,1784
02	1,9463	32	2,0005	02	2,0575	32	2,1174	02	2,1805
03	1,9480	33	2 ,0 024	03	2,0594	33	2,1195	03	2,1827
04	1,9498	34	2,0042	04	2,0614	34	2,1215	04	2,1849
05	1,9516	35	2 ,0 061	05	2,0633	35	2,1236	05	2,1871
06	1,9534	36	2,0080	06	2,0653	[·] 36	2,1256	06	2,1893
07	1,9551	37	2,0098	07	2,0673	37	2,1277	07	2,1914
08	1,9569	38	2,0117	08	2,0692	38	2,1298	08	2,1936
09	1,9587	39	2,0136	09	2,0712	39	2,1318	09	2,1958
10	1,9605	40	2,0154	10	2,0732	40	2,1339	10	2,1980
11	1,9623	41	2 ,0173	11	2,0751	41	2,1360	11	2,2002
12	1,9641	42	2,0192	12	2,0771	42	2,1381	12	2,2024
13	1,9659	43	2,0211	13	2,0791	43	2,1402	13	2,2046
14	1,9677	44	2,0230	14	2,0811	44	2,142 3	14	2,2068
15 .	1,9695	45	2,0249	15	2,0831	45	2,1444	15	2,2090
16	1,9713	46	2 ,02 67	16	2,0851	46	2,1465	16	2,2102
17	1,9731	47	2,0286	17	2,0871	47	2,1486	17	2,2134
18	1,9749	48	2,0305	18	2,0891	48	2,1507	. 18	2,2157
19	1,9767	49	2,0324	19	2,0911	49	2,1528	19	2,2179
20	1,9785	50	2,0343	20	2 , 09 3 1	50	2,1549	20	2,2201
21	1,9803	51	2,0363	21	2,0951	51	2,1570	21	2,2224
22	1,9821	52	2,0382	22	2,0971	52	2,1591	22	2,2246
23	1,9840	53	2,0401	23	2,0991	53	2,1613	23	2,2268
24	1,9858	54	2,0420	24	2,1000	54	2,1634	24	2 ,2 291
25	1,9876	55	2,0439	25	2,1032	55	2,1655	25	2,2313
26	1,9895	56	2,0459	26	2,1052	56	2,1677	26	2 ,2336
27	1,9913	57	2,0478	27	2,1072	57	2,1698	27	2,2358
28	1,9931	58	2,0497	28	2,1092	58	2,1719	28	2,2381
29	1,9950	59	2,0516	29	2,1113	59	2,1741	29	2,2404
30	1,9968	71°00	2,0536	30	2,1133	72°00	2,1762	30	2,2427

С	тетрагональных	кристаллов

P111	с	P111 C		P111	с	P111	с	P111	с
72°30′	2,2427	73° 00′	2,3128	73° 30′	2,3872	74°00′	2,4660	74°30′	2,5497
31	2,2449	01	2,3152	31	2,3897	01	2,4687	31	2,5528
3 2	2,2472	02	2,3177	32	2,3923	02	2,4714	32	2,5555
33	2,2495	03	2,3201	33	2,3948	03	2,4741	33	2,5584
34	2,2518	04	2,3225	34	2,3974	04	2,4768	34	2,5613
35	2,2541	05	2,3250	35	2,4000	05	2,4796	35	2,5642
36	2,2564	06	2,3274	36	2,4026	06	2,4823	36	2,5671
37	2,2587	07	2,3298	37	2,4051	07	2,4851	37	2,5701
38	2,2610	08	2,3323	38	2,4077	08	2,4878	38	2,5730
39	2,2633	09	2,3347	39	2,4103	09	2,4906	39	2,5759
40	2,2656	10	2,3371	40	2,4129	10	2,4933	40	2,5789
41	2,2680	11	2,3396	41	2,4155	11	2,4961	41	2,5818
42	2,2703	12	2,3420	42	2,4181	12	2,4989	42	2,5847
43	2,2726	13	2,3445	43	2,4207	13	2,5016	43	2,5877
44	2,2749	14	2,3470	44	2,4233	14	2,5044	44	2,5907
45	2,2773	15	2,3495	45	2,4260	15	2,5072	45	2,5936
`46	2,2796	16	2,3519	46	2,4286	16	2,5100	46	2,5966
47	2,2819	17	2,3544	47	2,4312	17	2,5128	47	2,5996
48	2,2843	18	2,3569	48.	2,4339	18	2,5156	48	2,6026
49	2,2866	19	2,3594	49	2,4365	19	2,5184	49	2,6056
50	2,2890	20	2,3619	50	2,4392	20	2,5212	50	2,6086
51	2,2914	21	2,3644	51	2,4418	21	2,5241	51	2,6116
52	2,2937	22	2,3669	52	2,4445	22	2,5269	52	2,6146
53	2,2961	23	2,3694	53	2,4472	23	2,5297	53	2,6176
54	2,2985	24	2,3719	54	2,4498	24	2,5326	54	2,6206
55	2,3009	25	2,3745	55	2,4525	25	2,5354	55	2,6237
56	2,3033	26	2,3770	56	2,4552	26	2,5383	56	2,6267
57	2,3057	27	2,3795	57	2,4579	27	2,5411	57	2,6298
58	2,3080	28	2,3821	58	2,4606	28	2,5440	58	2,6328
59	2,3104	29	2,3846	59	2,4633	29	2,5469	59	2,6359
73°00	2,3128	30	2,3872	74°00	2,4660	ື 30	2,5497	75°00	2,6390
				· · · · ·	1)			

с	тетрагональных	кристаллов
5	reiparonandinax	mpneramon

P111	c	P111	с	ρ ₁₁₁	c	P111	с	ρ111	с
7 5°00′	2,6390	75°30′	2,7342	76°00′	2,8330	76° 30'	2,9453	77° 00'	3,0629
01	2,6420	31	2,7375	01	2,8396	31	2,9491	01	3,0669
02	2,6451	32	2,7408	02	2,8431	32	2,9529	02	3,0710
03	2,6482	33	2,7441	03	2,8467	33	2,9537	03	3,0751
04	2,6513	34	2,7474	04	2,8502	34	2,9605	04	3,0792
05	2,6544	35	2,7507	05	2,8538	35	2,9643	05	3,0833
03	2,6575	36	2,7540	03	2,8573	36	2,9682	05	3,0874
07	2,6506	37	2,7573	07	2,8609	37	2,9720	07	3,0915
08	2,6638	38	2,7607	08	2,8644	38	2,9758	08	3,0957
09	2,6659	39	2,7640	09	2,8680	39	2,9797	09	3,0998
10	2,6700	40	2,7374	10	2,87-16	40	2,9835	10	3,1040
11	2,6732	41	2,7707	11	2,8752	41	2,9874	11	3,1082
12	2,6763	42	2 , 7741	12	2,8788	42	2,9913	12	3,1123
13	2,6795	43	2,7775	13	2,8825	43	2,9952	13	3,1165
14	2,6826	44	2,7308	14	2,8831	44	2,9991	14	3,1207
15	2,5858	45	2,7842	15	2,8897	45	3,0030	15	3,1250
16	2,5890	43	2,7376	16	2,8934	46	3,0039	. 16	3,1292
17	2,6921	47	2,7910	17	2,8970	47	3,0108	17	3,1334
18	2,695 3	48	2,7944	18	2,9007	48	3,01 18	18	3,1377
19	2,6985	49	2,7979	19	2,9043	49	3,0187	19	3,1419
20	2,7017	50	2,8013	20	2,9080	50	3, 0227	20	3,1462
21	2,70 19	51	2,3048	21	2,9117	51	3,0237	21	3,1505
22	2,7082	52	2,8082	22	2,9154	52	3,0303	22	3,1548
23	2,7114	53	2,8117	23	2,9191	53	3,0346	. 23	3,1591
24	2,7143	54	2,8151	24	2 , 9228	54	3,0385	24	3,1634
25	2,7178	55	2,8186	25	2,9263	55	3,0 426	25	3,1677
26	2,7 211	56	2,8221	26	2,9303	56	3,0137	26	3,1721
27	2,7244	57	2,8256	27	2,9340	57	3,0507	27	3,1764
28	2,7276	58	2,8290	28	2,9378	58	3,0547	28	3,1808
29	2,7309	59	2,8325	29	2,9415	59	3,0588	29	3,1852
30	2,7342	76°00	2,8330	30	2,9453	77°0)	3,0329	30	3,1895

P111	₽	P111	с	P111	с	Рлі	с	1119	c
77°30'	3,1895	78°00′	3,3267	78° 30'	3,4756	79° 00′	3,6378	79° 30′	3,8152
31	3,1939	01	3,3315	31	3,4807	01	3,6434	31	3,8214
32	3,1983	02	3,3362	32	3,4859	02	3,6491	32	3,8277
33	3,2028	03	3,3410	- 33	3,4911	03	3,6548	33	3,8339
34	3,2072	0.1	3,3 458	34	3,4964	04	3,6605	34	3,8401
35	3,2116	05	3,3 503	35	3,5016	0.5	3,6662	35	3,8464
3 6	3,2161	05	3,3555	36	3,5069	- 06	3,6719	36	3,8527
37	3,2206	07	3,3603	37	3,5122	07	3,6777	37	3,8590
38	3,2251	[.] 08	3,3652	38	3,5174	08	3,6835	38	3,8654
39	3,2295	09	3,3700	39	3,5227	09	3,6893	39	3,8717
40	3,2340	10	3,3749	40	3,5280	10	3,6951	40	3,8781
-11	3,2386	11	3,3798	41	3,5333	11	3,7010	41	3,8845
42	3,2431	12	3,3847	42	3,5387	12	3,7068	42	3,8909
43	3,2476	13	3,3897	43	3,5441	13	3,7127	-43	3,8974
44	3,2522	14	3,39 46	44	3,5495	14	3,7186	44	3,9038
45	3,2568	15	3,3996	· 45	3,5549	15	3,7245	45	3,9103
46	3,2613	16	3,4045	46	3,5603	16	3,7304	46	3,9168
47	3,2659	17	3,4095	-17	3,5657	17	3,7363	47	3,9234
-48	3,2705	18	3,4145	48	3,5711	18	3,7423	48	3,9299
49	3,2751	19	3,4195	49	3,5766	19	3,7482	49	3,9365
50	3,2797	20	3,4245	50	3,5821	20	3,7 542	50	3,9431
51	3,2844	21	3,4295	51	3,5876	21	3,7602	51	3,9497
52	3,2890	22	3,4346	52	3,5931	22	3,7663	52	3,9564
53	3,2937	23	3,4397	53	3,5986	23	3,7723	53	3,9630
54	3,2984	24	3,4448	54	3,6042	24	3,7784	54	3,9697
55	3,3030	25	3,4499	55	3,6097	25	3,7845	55	3,9764
56	3,3077	26	3,4550	56	3,6153	26	3,7906	56	3,9831
57	3,3124	27	3,4601	57	3,6209	27	3,7967	57	3,9898
58	3,3172	28	3,4653	58	3,6265	28	3,8029	58	3,9966
59	3,3219	29	3,4704	59	3,6321	29	3,8090	59	4,0034
78°00	3,3267	30	3,4756	79° 00	3,6378	30	3,8152	80°00	4,0102

с тетрагональных кристаллов

⁸/419 Аншелес — 706

Продолжение

_								
Ī	P111	С	P111	С	P111	с	P111	с
	80°30'	4,2255	81°00′	4,4645	81°30'	4,7313	82°00′	5,0313
l	31	4,2331	01	4,4729	31	4,7408	01	5,042
ļ	32	4.2407	02	4.4814	32	4.7502	02	5 052

с тетрагональных кристаллов

P111	С	P111	с	P111	с	P111	с	P111	с	P111	с
80°00′	4,0102	80° 30'	4,2255	81°00′	4,4645	81°30′	4,7313	82°00′	5,0313	82°30′	5,371
01	4,0170	31	4,2331	01	4,4729	31	4,7408	01	5,042	31	5,383
02	4,0239	32	4,2407	02	4,4814	32	4,7502	02	$5\ 052$	32	5,395
03	4,0307	33	4,2483	03	4,4899	33	4,7597	03	063	33	5,408
04	4,0377	34	4,2559	04	4,4984	34	4,7693	04	5,074	34	5,420
05	4,0446	35	4,2636	05	4,5069	35	4,7789	05	5,085	35	5,432
05	4,0516	36	4,2713	06	4,5155	36	4,7885	06	5,096	36	5,445
07	4,0585	37	4,2790	07	4,5241	37	4,7981	07	5,107	37	5,457
08	4,0655	38	4,2867	· 08	4,5327	38	4,8079	08	5,118	38	5,470
09	4,0725	39	4,2945	09	4,5414	3 9	4,8176	09	5,129	3 9	5,482
10	4,0796	40	4,3023	10	4,5501	40	4,8274	10	5,140	40	5,495
11	4,0866	41	4,3102	11	4,5588	41	4,8372	11	5,151	41	5,507
12	4,09 3 7	42	4,3180	12	4,5676	42	4,8470	12	5,162	42	5,520
13	4,1008	-43	4,3259	13	4,5764	43	4,8569	13	5,173	43	5,533
14.	4,1080	44	4,3338	14	4,5852	44	4,8668	14	5,184	44	5,545
15	4,1151	45	4,3417	15	4,5941	45	4,3768	15	5,196	45	5,558
16	4,1223	46	4,3498	16	4,6030	46	4,8868	16	5,207	46	5,571
17	4,1295	47	4,3578	17	4,6119	47	4,8969	17	5,219	47	5,584
18	4,1367	48	4,3658	18	4,6210	48	4,9070	18	5,230	-48	5,597
19	4,1440	49	4,3739	19	4,6300	49	4,9171	19	5,241	49	5,610
20	4,1513	50	4,3819	20	4,6390	50	4,9272	20	5,253	50	5,624
21	4,1586	51	4,3901	21	4,6481	51	4,9375	21	5,265	51	5,637
22	4,1660	52	4 ,3 982	22	4,6572	52	4,9478	22	5,276	52	5,650
23	4,1733	53	4,4064	23	4,6663	53	4,9581	23	5,288	53	5,664
24	4,1807	54	4,4146	24	4,6755	54	4,9684	24	5,299	54	5,677
25	4,1881	55	4,4228	25	4,6847	55	4,9788	25	5,311	55	5,691
26	4,1955	56	4,4311	26	4,6940	56	4,9892	26	5,323	56	5,704
27	4,2030	57	4,4394	27	4,7033	57	4,9997	27	5,335	57	5,718
28	4,2105	58	4,4478	28	4,7126	58	5,0102	28	5,347	58	5,731
29	4,2180	59	4,4561	29	4,7219	59	5,0207	29	5,359	59	5,745
30	4,2255	81°00	4,4645	30	4,7313	82°00	5,0313	30	5,371	83°00	5,759

						· · · · · · · · · · · · · · · · · · ·					
P111	c	P111	c	P111	С	Ρ 111	с	P111	с	P111	с
83° 00′	5,759	83° 30′	6,206	84°00′	6,728	84°30′	· 7 , 344	85° 00′	8,082	85°30'	8,985
01	5,773	31	6,222	01	6,747	31	7,366	01	8,109	31	9,018
02	5,787	32	6,238	02	6,766	32	7,389	02	8,137	32	9,052
03	5,801	33	6,255	03	6,785	33	7,411	03	8,164	33	9,086
04	5,815	34	6,271	04	6 ,8 04	34	7,434	04	8,192	34	9,120
05	5,829	35	6,288	05	6,823	35	7,457	05	8,220	35	9,155
06	5,843	36	6,304	06	6,843	36	7,480	06	8,248	3 6	9,183
07	5,858	37	6,321	07	6,862	37	7,504	07	8,276	37	9,225
08	5,872	38	6,337	08	6,882	38	7,527	08	8,305	38	9,260
09	5,886	39	6,354	09	6,901	39	7,551	09	8,333	39	9,296
10	5,901	40	6,371	10	6,921	40	7,575	10	8,362	40	9,332
11	5,915	41	6,388	11	6,941	41	7,598	11	8,391	41	9,368
12	5,930	42	6,-105	12	6,961	42	7,622	12	8,421	42	9,404
13	5,945	43.	6,422	13	6,982	43	7,646	13	8,450	43	9,441
1-1	5,959	44	6,439	14	7,002	44	7,671	14	8,480	44	9,478
15	5,974	45	6,457	15	7,022	45	7,695	15	8,510	45	9,515
16	5,989.	46	6,474	16	7,043	46	7,720	16	8,540	46	9,553
17	6,004	47	6,492	17	7,064	47	7,745	17	8,570	47	9,591
18	6,019	48	6,509	18	7,084	48	7,770	18	8, 601	48	9,629
19	6,034	49	6,527	19	7,10 5	49	7,795	19	8,631	49	9,667
20	6,050	50	6,545	20	7,126	50	7,820	20	8,662	50	9,706
21	6,065	51	6,562	21	7,147	51	7,846	21	8,693	51	9,745
22	6,080	52	6,580	22	7,169	52	7,871	22	8,725	52	9,785
23	6,096	53	6,598	23	7,190	53	7,897	23	8,756	53	9,825
24	6,111	54	6,617	24	7,212	54	7,923	24	8,788	54	9,865
25	6,127	55	6,635	25	7,233	55.	7,949	25	8,820	55	9,905
26	6,143	56	6,653	26	7,255	56	7,976	26	8,853	56	9,946
27	6,158	57	6,672	27	7,277	57	8,002	27	8,885	57	9,987
28	6,174	58	6,690	28	7,299	58	8,029	28	8,918	58	10,028
29	6,190	59	6,709	29	7,321	59	8,055	29	8,951	59	10,070
30	6,206	84°00	6,728	30	7,344	85°00	8,082	30	8,985	86°00	10,112
	1		1			1			•		1

с тетрагональных кристаллов

Таблица XI. Величина с для гексагональных кристаллов¹ (к § 13 гл. IX и § 5 гл. X)

ľ

$c = \frac{1}{2}$ tg ρ_{u}

1

° -	5382333 55856 582492 1235110 68769 5382383 55856 58249	•
60′	0,05255 0,05139 0,07013 0,070137 0,070137 0,07019 0,07019 0,07019 0,11544 0,11544 0,115446 0,115446 0,115287 0,113398 0,113199 0,119193 0,119193 0,21224 0,21224 0,21224 0,21224 0,23316 0,23716 0,257586 0,257586 0,257586 0,257586 0,257586 0,257586 0,257586 0,257516	60'
q	$\begin{array}{c} 147\\ 147\\ 148\\ 149\\ 150\\ 151\\ 155\\ 155\\ 155\\ 155\\ 156\\ 156\\ 156$	- p
50'	0,05108 0,05992 0,05992 0,06597 0,08567 0,09568 0,10476 0,11391 0,12312 0,137242 0,137242 0,137242 0,137242 0,11391 0,11391 0,11180 0,137528 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21053 0,21526 0,21526 0,21526 0,21526 0,21526 0,21526 0,2155526 0,2155526 0,2155526 0,2155526 0,2155526 0,225556 0,225556 0,225556 0,225556 0,225556 0,225556 0,225556 0,225556 0,225556 0,225556 0,25556 0,255556 0,25556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,25556 0,25556 0,25556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255556 0,255566 0,255566 0,25556 0,25556 0,25556 0,25556 0,25556 0,2555	50'
d	146 148 148 148 150 150 155 155 155 155 155 157 157 157 157 157	p
40,	0,04962 0,05314 0,06731 0,07622 0,08517 0,09418 0,11238 0,13086 0,13086 0,13924 0,13925 0,13925 0,15925 0,15925 0,15925 0,15925 0,15925 0,15864 0,120864 0,120864 0,120864 0,120864 0,120864 0,120864 0,222962 0,22062 0,20062 0,20062 0,20062 0,20062 0,20062 0,20062 0,20062 0,20062 0,20060	40'
p	147 147 148 149 151 151 155 155 155 155 155 155 157 157	q
30′	0,04815 0,05837 0,05833 0,07473 0,07473 0,09267 0,09267 0,10173 0,10173 0,12004 0,12331 0,11085 0,12331 0,15765 0,15765 0,15765 0,15765 0,15765 0,157765 0,157765 0,157765 0,157765 0,157765 0,157765 0,157795 0,227714 0,227787 0,227714 0,227714 0,227787 0,227714 0,227714 0,22771480 0,22771480 0,227787 0,22787 0,22778777777777777777777777777777777777	30,
q	$\begin{array}{c} 147\\ 147\\ 148\\ 149\\ 149\\ 149\\ 155\\ 155\\ 155\\ 155\\ 155\\ 156\\ 156\\ 156$	p
20'	0,04668 0,05550 0,05359 0,07324 0,09117 0,09117 0,10932 0,11850 0,11774 0,20541 0,20540 0,20541 0,20540 0,20500 0,20500 0,20500 0,2050000000000	20'
q	$\begin{array}{c} 147\\ 148\\ 148\\ 149\\ 149\\ 150\\ 155\\ 155\\ 155\\ 155\\ 156\\ 156\\ 156\\ 156$	q
10′	0,04521 0,05387 0,07176 0,08069 0,08067 0,08967 0,08967 0,10780 0,11697 0,11697 0,11495 0,114495 0,114495 0,114495 0,114495 0,114495 0,114495 0,118407 0,118407 0,118407 0,118364 0,118364 0,118364 0,118364 0,123396 0,224367 0,224367 0,224367 0,224567 0,225750 0,2257700 0,225750 0,2257500 0,2257500 0,2257500 0,2257500 0,2257500 0,2257500 0,2257500 0,2257500 0,22575000 0,22575000 0,22575000000000000000000000000000000000	10′
q	146 148 148 149 150 150 151 151 155 157 157 157 157 157 157 157	р
0,	0,04375 0,02555 0,02555 0,07919 0,071919 0,0817 0,09719 0,10628 0,11544 0,11544 0,11544 0,11544 0,11544 0,11544 0,11224 0,11217 0,15287 0,12224 0,11217 0,12224 0,12199 0,119193 0,222562 0,21224 0,222715 0,22585 0,22585 0,25586 0,25587 0,255787 0,255877 0,255877 0,255877 0,255877 0,2558770000000000000000000000	0,
		-

¹ В. В. Доливо-Добровольский, Тр. Лен. общ. естеств., 58, в. 4.

аннажтородИ

с для гексагональных кристаллов

•	22222822822222222222222222222222222222	°
60′	0,30043 0,3124 0,3247 0,3247 0,32501 0,3373 0,3368 0,3068 0,4049 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,5553 0,5663 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5553 0,5569 0,7413 0,5553 0,5569 0,5568 0,5578 0,5568 0,5578 0,5568 0,5578 0,55882 0,55780 0,55780 0,55780 0,55780 0,55780 0,55780 0,55780 0,557800 0,557800 0,557800 0,557800 0,5578000 0,55780000000000000000000000000000000000	60′
p	197 287 287 288 288 288 288 288 288 288 28	ч
ົລ0'	0,29846 0,3104 0,3104 0,3351 0,3479 0,3479 0,3445 0,4025 0,4171 0,4971 0,4971 0,4971 0,4971 0,5521 0,5521 0,5521 0,5521 0,5522 0,55221 0,55221 0,55221 0,55221 0,55221 0,55221 0,55221 0,55221 0,55521 0,55521 0,55521 0,55521 0,55521 0,55521 0,55521 0,55521 0,5555 0,555521 0,5555 0,55552 0,555555 0,5555550 0,5555550 0,555550 0,555550 0,555550 0,5555500 0,5555500 0,55555000 0,555500000000	50'
p	3255666 + + + + + + + + + + + + + + + + +	p
40,	0,29649 0,3084 0,3084 0,3306 0,3158 0,3158 0,3722 0,3722 0,3722 0,4146 0,4146 0,4146 0,41450 0,41612 0,53899 0,53899 0,53899 0,53899 0,53899 0,53899 0,53899 0,53855 0,53899 0,53899 0,53899 0,53899 0,53899 0,53899 0,53813 0,53813 0,53813 0,53813 0,53895 0,53805 0,53805 0,53805 0,53805 0	40'
q	27753866 5546838 3388338 888288 555838 325588	q
30′	0,29453 0,3064 0,3185 0,3309 0,33700 0,33700 0,37700 0,37700 0,37700 0,37700 0,37700 0,4122 0,4122 0,4122 0,4122 0,4124 0,4124 0,4124 0,4124 0,4124 0,4124 0,4124 0,4124 0,4126 0,3775 0,4126 0,3775 0,4126 0,3775 0,4126 0,4126 0,3775 0,4126 0,3775 0,4126 0,3775 0,5751 0,57550 0,57550 0,57550 0,57550 0,57550000000000	30′
p	888844 448888 4886588 888488 88885 56888	d d
20'	0,29257 0,3044 0,3165 0,3115 0,3115 0,3389 0,33677 0,33677 0,33677 0,33677 0,33614 0,4097 0,41245 0,4097 0,41245 0,41245 0,4177 0,41248 0,4177 0,41685 0,4177 0,5116 0,5118 0,51230 0,5118 0,51230 0,51230 0,51230 0,51230 0,51230 0,51230 0,5126 0,51230 0,51230 0,51230 0,51230 0,51230 0,51230 0,51230 0,5126 0,51230 0,5126 0,51277 0,5126 0,51276 0,5126 0,	20'
p	222242 49333% 3333% 8577282 575857 5758282 222828 35828 8577282 5578257 557829	ų
10'	0,29062 0,3024 0,3145 0,3268 0,3268 0,3268 0,33994 0,33930 0,4073 0,4372 0,4372 0,4372 0,4372 0,4372 0,4357 0,4457 0,4457 0,4457 0,4457 0,4457 0,4457 0,5786 0,577866 0,577866 0,57786 0,57786 0,57786 0,57786 0,57786 0,57786	,01
q	822444 4558888 833888 822885 555828 55 822444 6558888 833888 8228855 55586	р
,0	0,28868 0,3373 0,3374 0,3373 0,3501 0,3501 0,3501 0,3568 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,4196 0,5553 0,5553 0,5552 0,5568 0,5552 0,5552 0,5552 0,5568 0,5552 0,5552 0,5568 0,5552 0,5568 0,5552 0,5568 0,5552 0,5568 0,5568 0,5552 0,5568 0,5568 0,5568 0,5552 0,5568 0,5552 0,5568 0,5568 0,5568 0,5568 0,55752 0,5568 0,5568 0,55752 0,5568 0,55752 0,5568 0,55752 0,5568 0,55752 0,5568 0,55752 0,5568 0,55752 0,5568 0,55752 0,5568 0,55752 0,577520 0	.0
	52827555 5282552 6444 4444 475 33833355 53555 5887555 52855 6444 4444 444 5887555 52855 6444 4444 444 5887555 55855 55855 6444 4444 4444 4444 4444	•

атнаже ородU

с для гексагональных кристаллов

° -	60 61 63 64	65 66 68 68 69	70 71 72 74	75 76 77 78 78 79	80 81 83 83 84	° /
60'	0,9020 0,9403 0,9813 1,0252 1,0723	$\begin{array}{c} 1,1230\\ 1,1779\\ 1,2375\\ 1,3025\\ 1,3737\end{array}$	1,4521 1,5388 1,5388 1,6354 1,7437 1,7437 1,8660	2,0054 2,1657 2,3523 2,5723 2,5723 2,8356	3,1569 3,5577 4,0722 4,757 5,715	60′
q	61 65 76 81 81	87 94 102 112 123	$\begin{array}{c} 136\\151\\168\\168\\189\\215\\215\end{array}$	246 283 332 394 474	584 736 957 129 185	d h
50′	0,8959 0,9338 0,9743 1,0176 1,0642	1,1143 1,1685 1,2273 1,2913 1,3614	1,4385 1,5237 1,6186 1,7248 1,8445	$\begin{array}{c} 1,9808\\ 2,1374\\ 2,3191\\ 2,5329\\ 2,7882\end{array}$	3,0985 3,4841 3,9765 4,628 5,530	50'
q	61 65 74 80 80	86 94. 102. 111 121	134 148 165 186 210	240 277 323 382 459	563 706 913 174	<i>p</i>
40'	0,8898 0,9273 0,9674 1,0102 1,0562	1,1057 1,1591 1,2171 1,2802 1,3493	1,+251 1,5089 1,6020 1,7062 1,8235	1,9568 2,1097 2,2868 2,4947 2,7423	3,0422 3,4135 3,8852 4,505 5,356	40'
p	61 64 69 74 79	85 92 100 120	131 146 162 182 203	234 270 314 371 445	543 679 873 117 163	q
30'	0,88:37 0,9209 0,9605 1,0028 1,0483	1,0972 1,1499 1,2071 1,2693 1,3373	1,4120 1,4943 1,5858 1,6880 1,8029	1,9334 2,0827 2,2554 2,4576 2,4576 2,6978	2,9879 3,3456 3,7979 4,388 5,193	30'
p	59 64 72 78	85 91 99 107 118	130 143 159 179 201	230 264 307 361 432	525 653 835 110 154	q
20′	0,8778 0,9145 0,9537 0,9956 1,0405	1,0887 1,1408 1,1972 1,2586 1,32555	1,3990 1,4800 1,5699 1,6701 1,7828	1,9104 2,0563 2,2247 2,4215 2,6516	2,9354 3,2803 3,7144 4,278 5,039	20′
ų	59 67 77 77	82 89 97 106 115	127 141 157 175 198	224 258 258 351 418	507 629 800 145 145	p
,01	0,8719 0,9082 0,9470 0,9884 1,0328	$\begin{array}{c} 1,0805\\ 1,1319\\ 1,1875\\ 1,2480\\ 1,3140\\ 1,3140\end{array}$	1,3863 1,4659 1,5542 1,6526 1,7630	1,8880 2,0305 2,1948 2,5128	2,8847 3,2174 3,6344 4,172 4,172 4,172	10'
ų	59 67 71 76	82 89 96 115 115	126 138 154 172 193	220 251 291 341 341	491 605 100 137 137	q
0	0,8660 0,9020 0,9403 0,9813 1,0252	1,0723 1,1230 1,1779 1,2375 1,2375 1,3025	1,3737 1,4521 1,5388 1,6354 1,7437	1,8660 2,0054 2,1657 2,3523 2,5723	2,8356 3,1569 3,5577 4,072 4,757	· ,0
	60 61 62 63 64	65 65 67 68 69	70 71 72 74	75 76 77 78 79	82 83 84 84 83 84 84	•

Таблица XII. Величина с для тригональных кристаллов ¹ (к § 14 гл. IX и § 6 гл. X)

 $\alpha = 2$ are tg $1/\overline{3} \cos \rho_p$

.

-	15 16 17 19 19	22 23 24 23 24	25 287 287 287 287 29	33 33 3 33 33 3 34 33 3 37 3 37 3 37 3 3	°
60′	118°01,2' 117 45,5 117 28,8 117 10,9 116 52,0	$\begin{array}{c} 116 & 31,9 \\ 116 & 10,8 \\ 115 & 48,4 \\ 115 & 24,9 \\ 115 & 0,2 \end{array}$	114 34,2 114 06,9 113 38,4 113 08,4 112 37,2	112 04,5 111 30,4 110 54,7 110 17,5 109 38,7	60′
q	3,20 3,20 3,20 3,20	3,6 4,0 2,8 2,4 2,2	5,584 5,28 5,28 5,28 5,28 5,28 5,29 5,29 5,20 5,20 5,20 5,20 5,20 5,20 5,20 5,20	5,5 5,8 6,4 6,7	q
50	118° 03,7' 117 48,2 117 31,6 117 31,6 117 13,9 116 55,2	116 35,3 116 14,4 115 52,2 115 28,9 115 04,4	114 38,6 114 11,6 113 43,2 113 13,6 112 42,5	112 10,0 111 36,0 111 00,7 110 23,9 109 45,4	50'
p	3,211 3,2111 3,21111 3,21111 3,21111 3,21111 3,211111 3,21111111111	4,0% 4,0% 1,1	5,5,4,4,6,0 4,6,0,0,6,4	5,6 6,0 6,5	p
,0†	118° 03,2' 117 50,9 117 34,5 117 17,0 116 58,4	116 38,7 116 18,0 115 56,0 115 32,9 115 08,5	114 43,0 114 16,2 113 48,1 113 48,1 113 18,6 112 47,8	112 15.6 111 41,9 111 06,7 110 30,1 110 30,1 109 51,9	,0†
ų	333396 33356 3356 357 357 357 357 357 357 357 357 357 357	4,08034 1,08034	ວ, ວ, 4, 4, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	6,3 6,3 7,4 6,3 7,4 7,4	p
30′	118° 08,7' 117 53,5 117 37,3 117 20,0 117 20,0	116 42,1 116 21,5 115 59,8 115 36,9 115 36,9 115 12,6	$\begin{array}{c} 114 & 47,3 \\ 114 & 20,7 \\ 113 & 52,8 \\ 113 & 23,6 \\ 112 & 53,0 \\ 112 & 53,0 \end{array}$	112 21,0 111 47,6 111 12,7 110 36,4 109 58,4	30′
q	33,908 33,908 33,908	ມູພູພູພູ + ບັບ 7 8 5 -	5,2 5,2 5,2	5,4 6,1 6,1	d
20'	118°11,1' 117 56,1 117 40,1 117 22,9 117 22,9 117 22,9	116 45,4 116 25,0 116 03,5 115 40,7 115 16,8	114 51,6 114 25,3 113 57,5 113 28,5 112 58,2	112 26,4 111 53,3 111 18,6 110 42,5 110 04,8	20'
q	3,0,76 ,0,76 ,0,76		0,0,4,4,0,0 6,4,7,0,0	0,200,50 6,200,50	ų
10,	118° 13,5′ 117 58,7 117 42,8 117 25,9 117 25,9	116 48,7 116 28,5 116 07,1 115 44,6 115 20,9	114 55,9 114 29,7 114 02,2 113 33,5 113 03,4	112 31,9 111 24,5 110 48,7 110 48,7 110 11,2	10'
q	2,4 3,1 3,1	3,43 3,43 4,08 4,0	5,0 4,4,4,5 0,0 7,0 9,0 0,0 0,0 1,0 0,0	ດີດີດີດີດ ດີດີດີດີດີດີ 	đ
0	118° 15,9' 118° 15,9' 117 45,5 117 28,8 117 28,8	116 52,0 116 31,9 116 10,8 115 48,4 115 24,9	115 00,2 114 34,2 114 06,9 113 38,4 113 08,4	$\begin{array}{c} 112 & 37,2 \\ 112 & 37,2 \\ 112 & 04,5 \\ 111 & 30,4 \\ 110 & 54,7 \\ 110 & 17,5 \end{array}$	0,
- / 0	15 11 19 19	2322	29 29 29 29 29	32 33 33 33 33 33 32 34	-

¹ В. Аоливо-Добровольский, там же.

апнажгородП

« для тригональных кристаллов

-	35 36 39 30 30 30 30 30 30 30 30 30 30 30 30 30	0 1 11111111111111111111111111111111111	45 47 47 49 49	51 51 52 53	55 57 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	°/-
60'	108° 58,4' 108° 58,4' 107 32,5 106 46,9 105 59,5	$\begin{array}{c} 105 & 10,1 \\ 104 & 18,7 \\ 103 & 25,4 \\ 102 & 29,8 \\ 101 & 32,2 \end{array}$	100 32,3 99 30,0 98 25,3 97 18,2 96 08,4	94 55,9 93 40,7 92 22,6 91 01,6 89 37,4	88 10,2 85 39,6 85 05,7 83 28,2 81 47,2 81 47,2	60'
d ,	6,8 7,7 8,0	0,00,00 0,00,00 0,00,00	10,2 11,0 11,3 11,8	12,3 12,7 13,7 14,3	14,8 15,4 15,8 16,5 17,1	p v
50'	109° 05,2' 108 23,5 107 40,0 106 54,6 106 07,5	$\begin{array}{c} 105 & 18,4 \\ 104 & 27,5 \\ 103 & 34,4 \\ 102 & 39,3 \\ 101 & 41,9 \end{array}$	100 42,5 99 40,6 98 36,3 97 29,5 96 20,2	95 08,2 93 53,4 92 35,8 91 15,3 89 51,7	88 25,0 86 55,0 83 21,5 83 44,7 82 04,3	50'
d	6,8 7,7 8,0 8,0	ფ ფ ტ ტ ტ ტ დ ტ ტ ტ ტ ტ	10,0 10,5 110,8 111,3 111,7	12,2 12,8 13,2 14,1	14,6 15,2 16,4 17,0	t p
,0†	109° 12,0' 108° 30,5 107° 47,3 107° 47,3 106° 15,5	105 26,7 104 36,2 103 43,4 102 48,6 101 51,7	100 52,5 99 51,1 98 47,1 97 40,8 96 31,9	95 20,4 94 06,2 92 49,0 91 29,0 90 05,8	88 39,6 87 10,2 85 37,4 84 01,1 82 21,3	,U†
q	6,8 7,1 8,0 8,0	6,000 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	10,0 10,3 11,2 11,6	12,1 12,5 13,1 13,5 14,0	14,6 15,1 15,7 15,7 16,3 16,9	- p
30′	109 ² 18,8' 108 37,6 107 54,7 107 54,7 107 29,9	105 35,1 104 44,7 103 52,3 102 57,8 102 01,3	101 02,5 100 01,4 98 57,9 97 52,0 96 43,5	95 32,5 94 18,7 93 02,1 91 42,5 90 19,8	88 54,2 87 25, 3 85 53,1 84 17,4 82 38,2	30′
q	6,9 6,9 7,8 7,8	888900 1708890	10,0 10,4 10,9 11,2 11,7 11,7	12,1 12,5 12,5 13,4 14,0	14,5 15,0 15,6 16,8 16,8	p
20'	109° 25,5′ 108 44,5 108 01,9 107 17,5 106 31,3	105 43,2 104 53,2 104 01,2 103 07,1 102 10,9	101 12,5 101 11,8 99 08,8 98 03,2 96 55,2	95 44,6 94 31,2 93 15,0 91 55,9 90 33,8	89 08,7 87 -40,3 86 08,7 84 33,6 82 55,0	20′
ų	7,5 7,5 7,9	လွလွလွတ်သူ ပျက် ဆိုပျက်	9,9 10,6 11,1 11,5	11,9 12,4 13,4 14,0	14,4 15,0 115,5 16,1 16,1	<i>p</i>
10,	109° 32,2' 108 51,5 108 09,1 107 25,0 106 39,2	$\begin{array}{c} 105 \ 51,4\\ 105 \ 01,7\\ 104 \ 10,0\\ 103 \ 16,3\\ 102 \ 20,4 \end{array}$	101 22,4 100 22,1 99 19,4 98 14,3 97 06,7	95 56,5 94 43,6 93 27,9 92 09,3 90 47,8	89 23,1 86 25,3 86 24,2 84 49,7 83 11,6 83 11,6	10,
, p	6,5 7,5 7,5	888 7,40 7,40 7,40	9,8 10,2 11,0 11,5	. 11.9 12,3 13,8 13,8 13,8	14,9 15,4 16,6 16,6	p
0,	109°38,7' 108 58,4 108 16,3 107 32,5 106 46,9	$\begin{array}{c} 105 \ 59,5 \\ 105 \ 10,1 \\ 104 \ 18,7 \\ 103 \ 25,4 \\ 102 \ 29,8 \end{array}$	101 32,2 100 32,3 99 30,0 97 18,2	96 08,4 94 55,9 93 40,7 92 22,6 91 01,6	89 37,4 88 10,2 86 39,6 85 05,7 83 28,2	0,
-	35 33 33 33 33 33 35 35 35 35 35 35 35 3	01101 011000000	45 44 48 49	51 21 21 21 21 21 21 21 20	55 56 58 58 59	•

Продолжение

для тригональных кристаллов

8

.

-	66 64 64 65 64 64 64 64 64 64 64 66 64 60 64 60 64 60 64 60 64 60 64 60 64 60 64 64 66 64 66 66 66 66 66 66 66 66 66	65 66 67 68 69	70 71 72 73 74	75 76 77 78 78	81 82 83 84 84	°/-
60'	80°02;5′ 78 13,9 76 21,5 74 25,0 72 24,6	70 20 68 11 65 57 63 39 61 17	58 50 56 19 53 43 48 18	45 28 42 35 39 37 36 35 33 29	30 19 27 06 23 50 20 31 17 13	60′
q	17,7 18,4 19,0 19,7 20,3	242332323232323232323232323232323232323	25 25 26 27 27	31 30 30 30 30 30 30 30 30 30 30 30 30 30	$33 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 32 \\ 33 \\ 32 \\ 32$	q
50'	80°20,2' 78 32,3 76 40,5 74 44,7 72 44,9	70 41 68 32 66 20 64 03 61 41	59 15 56 44 51 29 51 29 48 45	45 57 43 04 40 07 37 05 34 00	30 51 27 39 24 23 21 05 17 44	50'
d.	17,6 18,3 18,9 19,6 20,2	2322222222222222222222222222222222222	25 26 27 28 28	31 33 33 33 33 33 33 33 33 33 33 33 33 3	$34 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\$	q
40′	80°37,8' 78 50,6 76 59,4 75 04,3 73 05,1	71 02 68 54 66 42 64 26 62 05	59 40 57 10 51 35 49 13	46 25 43 33 40 36 31 36 34 31	31 23 28 11 24 56 21 38 21 38 18 18	. 40'
ų	17,6 18,1 18,8 19,5 20,1	22 23 23 23 23 23 24 23 23 23 23 23 23 23 23 23 23 23 23 23	24 25 26 27 28	30 30 30 30 30 30 30 30 30 30 30 30 30 3	33 33 33 33 33 33 33 33 33 33 33 33 33 3	q
30'	80°55,4' 79 08,7 77 18,2 75 23,8 73 25,2	71 23 69 16 67 05 64 49 62 29	60 04 57 35 55 01 49 41	46 53 44 02 41 06 38 06 35 02	31 55 28 43 25 29 25 29 25 11 18 51 18 51	30'
р	17,3 18,0 18,7 19,3 20,1	23222	25 25 27 27 27	338333	333333 333333 3433333	q
20'	81°12,7' 79 26,7 77 36,9 75 43,1 73 45,3	71 43 69 37 67 27 65 12 63 52	60 29 58 00 55 27 50 08 50 08	47 22 44 31 41 36 38 36 35 33	32 26 29 15 26 01 22 44 19 25	20'
q	17,3 17,9 18,6 19,3 19,9	$222 \\ 2423 \\ 222 \\ 2423 \\ 222 \\ 242 \\ 222 \\ 222 \\ 221 \\ 22$	24 25 27 27 27	31239	333333 3333333	q
10′	81°30,0' 79 44,6 77 55,5 76 02,4 74 05,2	72 04 69 58 67 49 63 16 63 16	60 53 58 25 53 17 50 35 30 35	47 50 45 00 42 05 39 07 36 04	3 2 57 29 47 26 34 23 17 19 58	10'
đ	17,2 17,9 18,4 19,1 19,8	232222	24 25 26 27 27	30 30 28 30 30 28 31 30 32	333333333 3333333333333333333333333333	р
0,	81°47,2' 80 02,5 78 13,9 76 21,5 74 25,0	72 25 70 20 68 11 63 39 63 39	61 17 58 50 56 19 51 02 51 02	48 18 45 28 42 35 39 37 36 35	33 29 30 19 27 06 23 50 20 31 20 31	0,
-	60 61 63 64	65 66 68 68 69	70 71 73 74	75 77 78 79	82 83 84 84 84	-

оглавление

		Стр.
От	автора	3
	Глава I. Теорстическое обоснование графических и вычислительных методов	
	 § 1. Закон Аюи и символы граней и ребер	5 7 8 10 11 12
	Глава II. Графические методы определения символов граней	
	§ 1. Предварительные замечания	12
	Метод основного треугольника	
	 \$ 2. Общий случай \$ 3. Частные случаи положения искомой грапи при общем положении основных граней \$ 4. Одна из основных граней параллельна оси проскций \$ 5. Две из основных граней параллельны оси проскций \$ 6. Сводка всех частных случаев метода основного треуголынка	13 18 20 22 24 25
	Глава III. Зональные графические методы	
	 § 1. Зависимость между ищексами зоны и ищексами грани данной зоны § 2. Определение символа зоны по символам двух граней этой зоны § 3. Определение символа грани по символам двух зон § 4. Метод развития зон § 5. Зональные индексы грапей § 6. Зональные индексы при определении символов граней на пересечении двух зон § 7. Метод отрезков прямой зоны § 8. Метод отрезков произвольной прямой	30 32 34 34 38 43 43 44 49 54
	Глава IV. Графическое определение положения граней по нх символам	
	 § 1. Определение положения граней методом развития зоп § 2. Определение положения граней методом отрезков прямой § 3. Определение положения граней методом основного треугольника § 4. Определение положения граней методом основного параллелограма 	55 57 59 62
	Глава V. Первоначальная обработка результатов изме- рения кристаллов	
	 § 1. Главные этапы вычисления кристаллов	63 64 65 67 68 69 76 78

Глава VI. Основные формулы для вычисления индексов	Стр.
и сферических координат	
§ 1. Общая зависимость между индексами и сферическими координатами § 2. Предварительные замечания к формулам. Обозначения	81 83
Триклинная (агирная) сингония	
 § 3. Юстировка по зоне [001] § 4. Юстировка по грани (001) 	86 94
Моноклинная (моногирная) сингония	
 § 5. Юстировка по зоне [001] § 6. Юстировка по грани (001) § 7. Юстировка по грани (010) или по зоне [010] 	100 105 109
Ромбическая (дигирная) сингония	
§ 8. Юстировка по зоне [001] или по грани (001)	112
Тетрагональная (тетрагирная) сингония	
§ 9. Юстировка по зоне [001] или по грани (001)	117
Кубическая (полигирная) сингония	
§ 10. Юстировка по зоне [001] или по грани (001)	119
Гексагональная (гексагирная) сингония	
 § 11. Установка Браве § 12. Установка Федорова § 12. Установка Федорова § 13. Тригональная (тригирная, ромбоэдрическая) сингония или гипосингония § 14. Путь уточнения вычислений координат граней по их индексам 	$121 \\ 126 \\ 126 \\ 130$
Глава VII. Вычисление сферических координат основных и единичной граней по координатам других граней	
 § 1. Предваритсльные замечания § 2. Общий метод вычисления § 3. Преобразование символов граней при изменении установки кристаллов. 	131 132 136
Триклинная (агирная) сингония. Юстировка по зоне [001]	
§ 4. Долгота φ_p грани P (100)	$142 \\ 145 \\ 146$
Триклинная (агирная) сингония. Юстировка по грани R (001)	
§ 7. Координаты φ_{ρ} и ρ_{ρ} грани P (100)	148
Моноклинная (моногирная) сингония	
§ 8. Полярное расстояние ρ_r грани R (001). Юстнровка по зонс [001] § 9. Полярное расстояние ρ_p грани P (100). Юстировка по грани R (001) § 10. Долгота φ_p грани P (100). Юстировка по грани Q (010)	149 150 151
Тригональная (тригирная, ромбоэдрическая) сингония. Юстировка по зоне [111]	
 § 11. Полярпое расстоянис ρ_ρ грани P (100) § 12. Координаты φ_u и ρ_u грани U (111) 	152 153
Вычисление координат единичной грани U (111) по двум граням в зонах	
основных граней § 13. Триклинная (агирпая) сипгония § 14. Моноклинная (моногирпая) сипгония § 15. Ромбическая (дигирная) сипгония § 16. Тетрагональная (тетрагирная) сингопия § 17. Гексагопальная (гексагирпая) сингопия	155 159 162 164 164 299

Глава VIII. Зопальные вычисления

CT	D۴
~	PF.

 § 1. Зависимость между индексами и сферическими координатами граней одной зопы	165 167 169 173 173
 \$ 3. Координаты кристаллографических осей, выраженные через координаты основных граней \$ 4. Углы между кристаллографическими осями. Общий случай \$ 5. Отношение единичных отрезков на кристаллографических осях. Общий случай 	179 180 180
Геометрические константы кристалла. Частные случаи	
 6. Триклинная сингония. Юстировка по зоне [001]	182 185 185 186 187 188 189 190 192
Глава Х. Вычисление координат основных и единичной	
ранен по элементам кристаллов § 1. Триклинная сингония § 2. Моноклинная сингония § 3. Ромбическая сингония § 4. Тетрагональная сингония § 5. Гексагональная сингония § 6. Тригональная сингония	194 196 197 198 198 199
Приложение 1. Гномонические проекции и их связь с другими кристаллографиче- скими проекциями	200 203 205 207
ТАБЛИЦЫ	
 Десятичные эквиваленты Натуральные котангенсы и тангенсы Натуральные котангенсы и тангенсы Кратные тангенсы и котангенсы Храполнительная таблица кратных тангенсов и котангенсов Углы φ и отношение p:q для кубических и тетрагональных кристаллов (к § 9 и 10 гл. VI). 	214 215 235 250 253
 VI. УГЛЫ Ф И ОТНОШЕНИЕ <i>p</i>: <i>q</i> для гексагональных кристаллов (к § 11 гл. VI). VII. УГЛЫ Р И ИПДЕКС <i>r</i> для кубических кристаллов (к § 10 гл. VI). VIII. Вспомогательная таблица для вычисления угла ρ в тетрагональных кристаллах (к § 9 гл. VI) IX. Вспомогательная таблица для вычисления угла ρ в гексагональных кристаллах (к § 11, гл. VI) IX. Вспомогательная таблица для вычисления угла ρ в гексагональных кристаллах (к § 11, гл. VI) IX. Вспомогательная таблица для вычисления угла ρ в гексагональных кристаллах (к § 11, гл. VI) IX. Вспомогательная таблица для вычисления угла ρ в гексагональных кристаллах (к § 11, гл. VI) X. Вспичина <i>с</i> для тетрагональных кристаллов (к § 12 гл. IX и § 4 гл. X) X. Величина <i>с</i> для гексагональных кристаллов (к § 13 гл. IX и § 5 гл. X) XII. Угол α для тригональных кристаллов (к § 14 гл. IX и § 6 гл. X) 	253 254 256 258 260 292 292 295

15 руб.

