Методы вычислений

Численные методы поиска экстремумов функций

Андрей Леонидович Масленников amas@bmstu.ru

Численные методы поиска экстремумов функций

Оптимизация

Задача оптимизации

Метод оптимизации

Метод поиска экстремума функции

Задача оптимизации — это задача при решении которой требуется добиться минимума (реже максимума) некоторого критерия при заданных ограничениях.

Метод оптимизации — это, фактически, математическая постановка задачи оптимизации в которой задается критерий **J**, теоретически показываются и обосновываются, доказываются свойства сходимости, точности и др.

Численный метод поиска экстремума функции — это вычислительный алгоритм, который позволяет подобрать такой \mathbf{X} , при котором достигается \mathbf{J}_{\min}

Векторная форма постановки задачи
$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{X}} \|\mathbf{J}(\mathbf{x})\| = \arg\min_{\mathbf{x} \in \mathcal{X}} \sum_k J_k(\mathbf{x})$$
 область допустимых значений аргумента

Численные методы поиска экстремумов функций

Классификация

по типу поиска х:

- локальные;
- глобальные.

по характеру задачи оптимизации:

- детерминированные;
- стохастические;
- смешанные.

по гладкости $f(\mathbf{x})$ и существованию производных:

- прямые;
- первого порядка требуется знание $\nabla f(\mathbf{x})$;
- второго порядка требуется знание $abla^2 f(\mathbf{x})$.

одномерные:

- метод полного перебора;
- метод дихотомии;
- метод золотого сечения;
- и другие.

прямые:

- метод Гаусса;
- метод Хука—Дживса;
- метод Нелдера—Мида;
- и другие.

первого порядка:

- метод покоординатного спуска;
- метод градиентного спуска;
- метод наискорейшего спуска.

второго порядка:

- метод Ньютона;
- метод Ньютона—Рафсона;
- квази-Ньютоновские методы;
- метод Левенберга—Марквардта;
- и другие.

Метод полного перебора

Метод полного перебора — это метод поиска экстремума функции, в котором в интервале поиска [a,b] формируется n равноотстоящих точек значений аргумента x, для которых последовательно вычисляются значения функции f(x), после чего из полученного набора выбирается минимальное значение $f_{\min}(x_{\min})$ и соответствующее значение аргумента x_{\min} .

Точность поиска экстремума составляет

$$\varepsilon = \frac{1}{2} \frac{b - a}{n}$$

Метод крайне вычислительно не эффективен

while
$$k < n$$

$$x_k = a + k \frac{b - a}{n + 1}$$
if $f(x_k) < f_{min}(x)$

$$f_{min}(x) = f(x_k)$$

$$x_{min} = x_k$$
end
$$k = k + 1$$
end

Метод дихотомии

Метод дихотомии — это метод поиска экстремума функции, котором интервале поиска [a,b] после каждой итерации уменьшается в два раза

Критерий остановки

$$|b-a|<\varepsilon$$

Значение δ

$$|b-a| < \varepsilon$$

$$\delta \in \left(0, \frac{b-a}{2}\right)$$

while
$$|b-a| > \varepsilon$$

$$x_k = \frac{a+b}{2}$$
if $f(x_k - \delta) \ge f(x_k + \delta)$

$$a = x_k$$

else

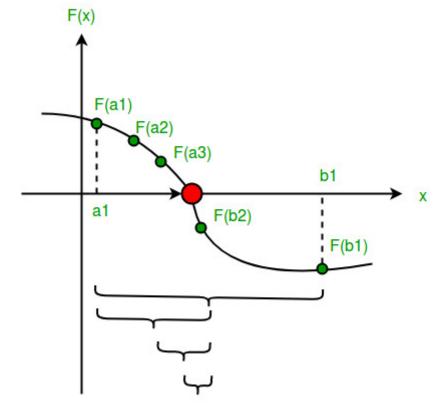
$$b = x_k$$

end

$$k = k + 1$$

end

$$x_{\min} = \frac{a+b}{2}$$
$$f_{\min} = f(x_{\min})$$



Метод дихотомии. Пример

Начальные условия

$$f(x) = (x-1)^{2}$$
$$[a,b] = [0.0,1.5]$$
$$\varepsilon = 0.1$$
$$\delta = \frac{b-a}{4}$$

Таблица решения

а	b	δ	x	$f(x-\delta)$		$f(x+\delta)$	b-a
0	1.500	0.3750	0.7500	0.3906	>	0.0156	0.7500
0.7500	1.500	0.1875	1.1250	0.0039	<	0.0977	0.3750
0.7500	1.1250	0.0938	0.9375	0.0244	>	0.0010	0.1875
0.9375	1.1250	0.0469	1.0313	0.0002	<	0.0061	0.0938
0.9375	1.0313						

Итоговое решение

$$x_{\min} = \frac{0.9375 + 1.0313}{2} = 0.9844$$

$$f(x_{\min}) = 0.0002$$

меньше ε

Метод золотого сечения

Метод золотого сечения — это метод поиска экстремума функции, в котором интервал поиска [a,b] после каждой итерации уменьшается пропорционально числу φ .

Критерий остановки

$$|b-a|<\varepsilon$$

3начение ϕ

$$\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.62$$

$$x_{1} = b - \frac{b - a}{\varphi}$$

$$x_{2} = a + \frac{b - a}{\varphi}$$

$$\mathbf{while} \ |b - a| > \varepsilon$$

$$\mathbf{if} \quad f(x_{1}) \ge f(x_{2})$$

$$a = x_{1}, \qquad x_{1} = x_{2}, \qquad x_{2} = \dots$$

$$\mathbf{else}$$

$$b = x_{2}, \qquad x_{2} = x_{1}, \qquad x_{1} = \dots$$

$$\mathbf{end}$$

end

$$x_{\min} = \frac{a+b}{2}$$
$$f_{\min} = f(x_{\min})$$

Метод золотого сечения. Пример

Начальные условия

$$f(x) = (x-1)^{2}$$
$$[a,b] = [0.4,1.5]$$
$$\varepsilon = 0.1$$

Таблица решения

a	b	x_1	x_2	$f(x_1)$		$f(x_2)$	b-a
0.4000	1.5000	0.8202	1.0798	0.0323	>	0.0064	0.6798
0.8202	1.5000	1.0798	_ 1.2403	0.0064	<	0.0578	0.4202
0.8202	1.2403	0.9807	_ 1.0798	0.0004	>	0.0064	0.2597
0.8202	1.0798	0.9193	0.9807	0.0065	<	0.0004	0.1605
0.9193	1.0798	0.9807	1.0185	0.0004	>	0.0003	0.0992
0.9807	1.0798						

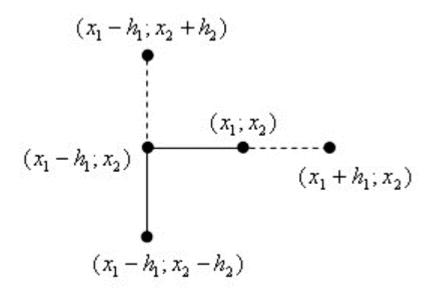
меньше ε

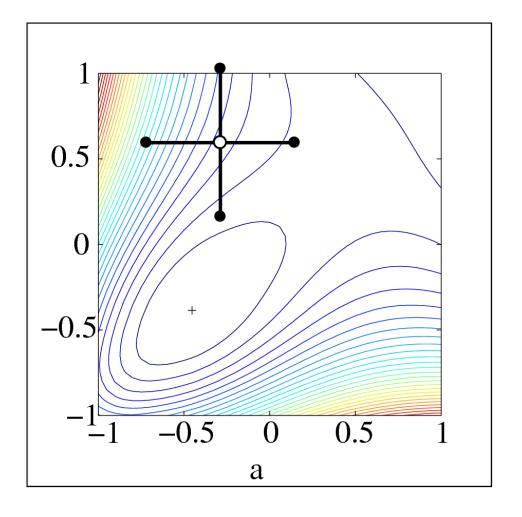
Итоговое решение

$$x_{\min} = \frac{0.9807 + 1.0798}{2} = 1.0302$$
$$f(x_{\min}) = 9.1469 \times 10^{-4}$$

Метод Хука—Дживса (pattern search)

Метод Хука—Дживса — это метод n -мерной сетке вычисляются значения функции в точках, отстающих от заданной базовой точки на величину λ , последовательно по каждой координате с перемещением в точку с минимальным значением функции. λ для каждого x_i постепенно уменьшается.





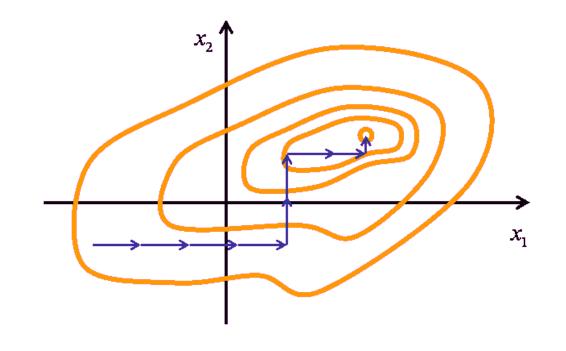
Метод Гаусса

Формируется итерационный процесс на каждой k-ой итерации которого последовательно по каждой компоненте вектора ${\bf x}$ сдвигается базовая точка:

$$x_{i,k} = x_{i,k-1} + \lambda_{i,k} e_i$$

где e_i — формируют ортонормированный базис, а $\lambda_{i,k}$ находится решением своей оптимизационной задачи

$$\lambda_{i,k} = \underset{\lambda_{i,k}}{\operatorname{arg\,min}} f\left(x_{i,k-1} + \lambda_{i,k} e_i\right)$$



Отличительная особенность метода состоит в том, что направление движения по каждой координате — фиксировано

Методы первого порядка

Метод покоординатного спуска

$$x_{i,k} = x_{i,k-1} + \lambda_{i,k} \nabla f_i(\mathbf{x}_{k-1})$$

Метод градиентного спуска

$$\mathbf{x}_{k} = \mathbf{x}_{k-1} + \lambda_{k} \nabla f(\mathbf{x}_{k-1})$$

где

 λ_k — шаг перехода в сторону минимума; $abla f(\mathbf{x_k})$ — вектор градиентов функции, который определяется как

$$\nabla f(\mathbf{x}_k) = -\frac{\partial f(\mathbf{x})}{\partial x_i}\bigg|_{\mathbf{x}_i}$$

как в методе Гаусса, только направление поиска не постоянно, а определяется градиентом

движение к минимуму идет сразу по всем координатам одновременно

Варианты задания λ

 $\lambda = const$

(как в методе Гаусса, но может расходиться)

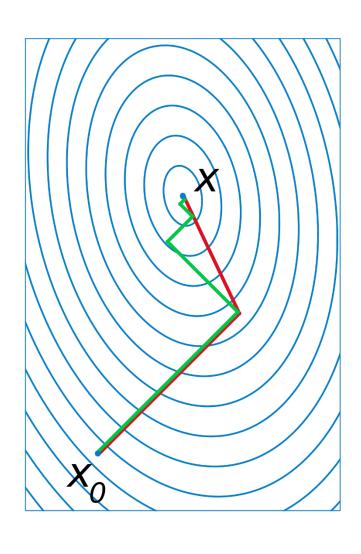
$$\lambda_k = \frac{\lambda_{k-1}}{p}$$

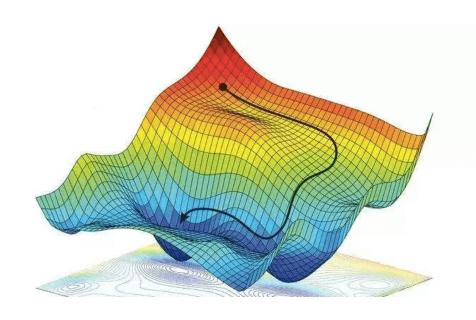
(уменьшается с каждым шагом, следовательно может не сходиться к минимуму)

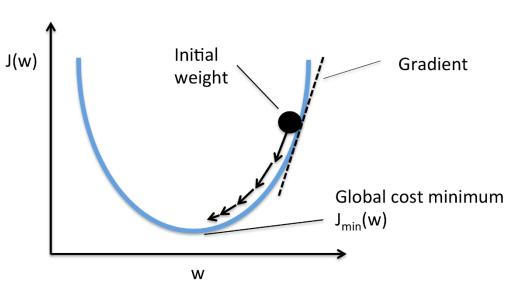
$$\lambda_k = \operatorname*{argmin} f(\mathbf{x}_{k-1} + \lambda_k \nabla f(\mathbf{x}_{k-1}))$$
 (решается через скалярную задачу оптимизации)

только в этом случае градиентный метод называется **методом наискорейшего спуска**

Методы первого порядка







Методы первого порядка

Алгоритм покоординатных методов

while criteia ok
for
$$i = i : n$$

$$\nabla f_i(\mathbf{x}_k) = \dots$$

$$\lambda_{i,k} = \dots$$

$$x_{i,k} = \dots$$

end

$$k = k + 1$$

end

Алгоритм непокоординатных методов

while criteia ok

$$\nabla f(\mathbf{x}_k) = \dots$$

$$\lambda_k = \dots$$

$$\mathbf{x}_k = \dots$$

$$k = k + 1$$

end

Выход по значению функции

$$\left| f(\mathbf{x}_k) - f(\mathbf{x}_{k-1}) \right| < \varepsilon_f$$

Выход по значению аргумента

$$\left\|\mathbf{x}_{k}-\mathbf{x}_{k-1}\right\|<\varepsilon_{x}$$

Выход по объему вычислений

$$k > k_{\text{max}}$$

$$k_f > k_{f, \text{max}}$$

максимальное количество вычислений значений функции $f(\mathbf{x}_k)$

Методы второго порядка

Методы второго порядка — это метод поиска экстремума функции нескольких переменных, шаг поиска минимума в которых определяется матрицей Гессе

$$\mathbf{x}_{k} = \mathbf{x}_{k-1} + \mathbf{H}^{-1}(\mathbf{x}_{k-1})\nabla f(\mathbf{x}_{k-1})$$

Метод Ньютона—Рафсона

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \lambda_k \mathbf{H}^{-1}(\mathbf{x}_k) \nabla f(\mathbf{x}_k)$$

а λ_k находится решением оптимизационной задачи:

$$\lambda_k = \underset{\lambda_k}{\operatorname{arg\,min}} f\left(\mathbf{x}_k + \lambda_k \mathbf{H}^{-1}(\mathbf{x}_k) \nabla f(\mathbf{x}_k)\right)$$

Матрица Гессе

$$\mathbf{H}(\mathbf{x}_{k}) = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{n}} \end{bmatrix}_{\mathbf{x}_{k}}$$

Проблемы применения методов второго порядка

- вычисление матрицы Гессе; (большой объем вычислений, особенно если численно)
- вычисление обратной матрицы Гессе; (большой объем вычислений, потенциальная неустойчивость)

Квази-Ньютоновские методы

Методы оптимизации

Метод наименьших квадратов

Методы наименьших квадратов — это оптимизации, в котором минимизируется среднеквадратичная величина ошибки

$$\sum_{i} e^{2} = \sum_{i} (f(\mathbf{x}_{i}) - y_{i})^{2} \rightarrow \min$$

Аппроксимация экспериментальных данных

— это численный подбор параметров (вектор θ) функции $f(\theta,t)$, наиболее точно описывающих (повторяющих) характер изменения набора данных y(t), полученного экспериментально.

$$\theta = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \sum_{i} \left(f(\theta, t_i) - y_i(t_i) \right)^2$$

