Началась новая, одиннадцатая пятилетка. С каких рубежей стартуем мы в нее? Об этом ведут сегодня разговор ученый, инженер, рабочий.

Андрей ПОПОВИЧЕВ, 10-й класс, Москва.

ПЕРЕД СТАРТОМ.

Главный редактор С. В. ЧУМАКОВ

Редакционная коллегия: К. Е. Бавыкин, М. И. Баскин (редактор отдела науки и техники), О. М. Белоцерковский, Б. Б. Буховцев. С. С. Газарян (отв. секретарь), А. А. Дорохов, Л. А. Евсеев, В. В. Ермилов, В. Я. Ивин, В. В. Носова, Б. И. Черемисинов (зам. главного редактора)

редактора)

Художественный редактор А. М. Назаренко
Технический редактор Л. М. Коноплева
Адрес редакции: 125015, Москва, А-15, Новодмитровская ул., 5а. Телефон 285-80-81
Издательство ЦК ВЛКСМ «Молодая гвардия»
Рукописи не возвращаются

Популярный научно-технический журнал ЦК ВЛКСМ и Центрального Совета Всесоюзной организации имени В. И. Ленина

Выходит один раз в месяц Издается с сентября 1956 года № 1 январь 1981

B HOMEPE:

Machipery AAVI Coesby Miles	
И. Хиселев — Взгляд в будущее	2
Б. Патон — Уроки Патона	8
Е, Климченко — Красные кони МТЗ	12
В. Дебабов — Микроорганизм на «операционном столе» .	16
Информация	20
А. Спиридонов — Превращения старого колеса	22
И. Казанский — Младший брат воздушных лайнеров	26
Вести с пяти материков	28
Р. шекли — Необходимая вещь (фантастический рассказ)	30
Нагла консультация	38
Пал нтное бюро ЮТ	40
К. Завыкин — Вижу мыслы	47
Т. Чугунова — Задания для поступающих в ЗФТШ	53
	58
А. Бобошко — Тобоган	
Сделай для школы	60
Н. Гулиа — История одного заблуждения	63
А. Фролов — Канатоходец	66
Ателье «ЮТ» — Халаты	68
Колнекция эрудита	74
ZONNES INVEST DE FACTORIO DE LA CHANTE DE LINO CO	76

На первой странице обложки рисунок А. Анно. На третьей странице обложки рисунок О. Ведерникова.

Сдано в набор 10.11.80. Подп. к печ. 15.12.80. А 02742. Формат $84 \times 108^{1}/_{30}$. Печать офсетная. Печ. л. 2,5 (4,2). Уч.-изд. л. 6,0. Тираж 1.880.000 экз. Цена 20 коп. Заказ 1729. Типография ордена Трудового Красного Знамени издательства ЦК ВЛКСМ «Молодая гвардия». 103030. Москва, К-30, ГСП-4, Сущевская, 21.

Есть события, которые становятся этапными вехами на пути нашей страны к коммунизму. 23 февраля 1981 года займет особое место в календаре — в этот день начнет работу XXVI съезд КПСС. «Каждый съезд открывап новые горизонты перед нашей партией и страной. Уверен, что таковым будет и предстоящий съезд», — сказал Генеральный секретарь ЦК КПСС товарищ Л. И. Брежнев.

Весь народ обсуждает ныне Проект ЦК КПСС, из которого ясно видно, каких высот достигнет наша Родина через пять лет, каким будет СССР через десять

лет.

Первый вопрос съезда — «Отчет Центрального Комитета КПСС и очередные задачи партии в области внешней и внутренней политики». Докладчик — Генеральный секретарь ЦК КПСС товарищ Л. И. Брежнев, аыдающийся марксист-ленинец, пламенный борец за мир во всем мире.

В составе ЦК КПСС, избранного XXV съездом, лучшие представители рабочего класса и колхозного крестьянства, видные партийные и государственные деятели, военачальники, ученые, конструкторы, писатели, художники...

Сегодня о своей жизни и труде тебе, читатель, рассказывают директор завода, академик, рабочий — члены ЦК КПСС, партим насчитывающей в своих сплоченных рядах более 17 миллионов коммунистов-ленинцев.

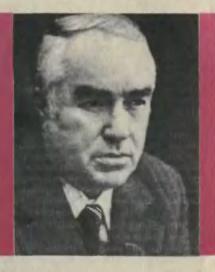
абочая смена закончилась. Из главной проходной нескончаемой чередой шли оживленно переговаривающиеся на ходу люди. В четырехэтажном здании заводом, зажигались окна. По пути к стеклянному подъезду заводочуправления я заметил на стене табличку: «Завод заложен 2 мая 1930 года. Вступил в строй 1 января 1932 года».

В приемной генерального директора, несмотря на сравнительно поздний час, многолюдно: работа на заводе не прекращается ведь ни на минуту, рабочие смены чередуются. Когда подошла моя очередь, я вспомнил табличку: «Завод... вступил в строй 1 января 1932 года». Я уже знал, именно с этого года со знаменитым заводом связана судьба его

генерального директора...

— Иван Иванович, продукцию вашего завода знают все: нет, наверное, в стране ни одного населенного пункта, где не работали бы грузовые или легковые автомобили, собранные в Горьком. А если представить, какой путь прошли все вместе машины, когда-либо сходившие с конвейеров ГАЗа, получится...

 Да, здесь придется оперировать цифрами, сравнимыми с теми, что используются разве только астрономами, счет может


пойти на парсеки.

— А можно ли было в том далеком уже 1932 году представить, каким станет сегодня автозавод? И еще один, личный вопрос: каким вы представляли тогда свое собственное будущее?

— В начале тридцатых годов советские люди работали именно для того, чтобы сегодня мы располагали заводами-гигантами, мощным, развитым производством. То было время великих строек: Днепрогэс, Магнитка... Стройки первых пятилеток можно, пожалуй, сравнить с семенами, которые должны были взой-

ВЗГЛЯД В БУДУЩЕЕ

На вопросы корреспондента «Юного техника» отвечает член ЦК КПСС, Герой Социалистического Труда, лауреат Ленинской и Государственной премий, генеральный директор Горьковского автомобильного завода Иван Иванович КИСЕЛЕВ.

ти, дав урожай сторицей. А какой пахарь во время сева не думает о том, каким будет урожай!.. И хотя самое первое оборудование для ГАЗа было закуплено у Форда, хотя еще невелик был выпуск первых автомобилей — легкового ГАЗ-А и грузовой полуторки ГАЗ-АА, - люди, начинавшие наш завод, умели смотреть в будущее и верить в него.

А о себе... В 1932 году мне было пятнадцать лет. Это время выбора жизненного пути, поисков. Я рад, что именно тогда впервые прошел через проходную ГАЗа и окунулся в новый для себя мир машин, инструментов. производства. И, думая тогда о своем будущем, я твердо верил: оно будет всегда связано с Горьковским автомобильным заводом. До этого я и понятия не имел о крупном производстве: отец и мать занимались кустарным делом в маленьком городке Юрьевце Ивановской области — шили шапки. В 1932 году я пришел в автомеханический техникум при автозаводе. Меня рекомендовал старший брат, который здесь, в

Горьком, уже получил рабочую специальность.

- Вы закончили техникум. Когда?

— В 1937 году. И стал технологом по эксплуатации инструментов. Профессию эту можно назвать универсальной: ведь в любом из заводских цехов - и в кузнечном, и в прессовом, и в сборочном — используются те или иные инструменты, станки, механизмы. Именно универсальность моей первой профессии позволила сравнительно быстро познакомиться со всеми цехами завода, понять, какой это сложный и в то же время на удивление слаженный организм...

— Иван Иванович, думаю, не ошибусь, если скажу, что всем нашим читателям было бы интересно пройти вместе с вами весь ваш жизненный путь по заводу от технолога 'до генерального ди-

ректора...

— Пройти?.. Это долго. Можно промчаться... с несколькими остановками. До войны я занимался нормативами на расход инструмента. Поясню, что это значит. Каждый инструмент, будь то ста-

нок или обыкновенный молоток, работает лучше всего, если учтены все особенности той операции, в которой он используется, — и режим работы, и материал, который он обрабатывает, и т. д.

А незадолго до войны, месяцев за восемь, я стал заниматься технадзором за эксплуатацией инструментов — наблюдать за тем, чтобы инструменты использовались в соответствии с нормати-

вами, чтобы правильно применялись режимы резания, смазывающие и охлаждающие вещества, не нарушался установленный режим работы... И в это время, и в войну тоже я продолжал учиться на вечернем отделении Горьковского политехнического института, которое было открыто при автозаводе. В Горьковском кремле стоят сегодня образцы нашей продукции военного времени: боевая машина БМ-13, которая вошла в историю с легендарным именем «катюша», самоходная установ-ка СУ-76. Наши горьковские машины, в том числе и танк Т-70, громили врага на всех фронтах... В 1945 году я получил диплом инженера-механика.

А следующие этапы моей работы на автозаводе были такими: руководитель технадзора, ститель начальника цеха по производству режущих инструментов, начальник цеха. С 1954 года я был техническим руководителем производства торного завода. Считаю тот период своей жизни одним из самых трудных, интересных и важных для Meня: я приобрел познания и опыт в той части автомобилестроения, которая занимается выпуском самой главной части любой машины, ее сердца — мотора. Сердце машины должно быть надежным, выносливым, безотказным, мощным... Не раз людей, впервые испытывающих новый, только что собранный двигатель, сравнивали с чуткими, внимательными врачами, которые не смеют пропустить малейшее нарушение в работе сердца. И человеческого STO полностью справедсравнение ливо.

— Завод в ту пору уже выпускал знаменитые «Победы»..?

— ...и не менее знаменитые прузовики ГАЗ-51. В 1955 году я стал заместителем главного инженера завода, затем главным инженером. Несколько лет спустя был назначен директором ГАЗа.

— Иван Иванович, а как за все эти годы менялся, развивался автозавод?

— Думаю, он переживал примерно то же, что и любое другое крупное производство, хотя, разумеется, со своими, свойственными только ему особенностями. Появлялись новые, более совершенные инструменты, менялась технология многих процессов, богаче становился рабочий, инже-

нерный, конструкторский опыт, Любое производство можно сравнить с живым организмом, который постоянно развивается. Горьковский автомобильный завод, пожалуй, всегда развивался с особой стремительностью: что-то претерпевало коренные изменения, ломку. Так, например, когда завод переходил на производство автомобилей грузоподъемностью в две с половиной тонны взамен полуторок, это еще не потребовало коренных преобразований в цехах. Однако, когда мы подошли к производству четырехтонного ГАЗ-53, это вызвало настоящую технологическую революцию.

Для этого автомобиля потребовались новая коробка скоростей, новая передняя ось, новый задний мост, многие другие детали — для потребовалось их производства создавать принципиально технологические линии. И сколько таких коренных изменений, в которых участвуют конструкторы, инструментальщики, технологи, было уже в истории Горьковского автозавода! Забегая вперед, скажу о том, что нас ждет в недалеком будущем еще одна коренная перестройка производства, которую требует время. И поэтому, когда говорят о том, что Горьковский автомобильный завод был построен в рекордно короткие сроки, менее чем за два года, с этим можно согласиться только частично: тогда, в 1932 году, была построена лишь его первая часть, а по сути завод, как и любое другое крупное производство, никогда не останавливал стройку. Если говорить только о десятой пятилетке, TO 38 время нами были построены (не надо забывать, что теперь ГАЗ — это целое объединение различных производств, которые сами уже называются заводами) новый завод коробок скоростей. завод мостов. Это здесь, в городе Горьком. Кроме того, появились или были значительно перестроены филиалы ГАЗа: заводы

запасных частей к нашим автомобилям в Канибадаме, в Чернигове, в Арзамасе. В автомобильной промышленности проблема запасных частей крайне важна, они должны выпускаться до тех пор, пока на них есть спрос, и мы об этом не забываем.

 Давайте теперь заглянем будущее. Сейчас ведь автозавод осваивает новую модель легковой «Волги» ГАЗ-3102?..

— Да, первую партию этих машин мы выпустим к XXVI съезду КПСС.

 Эти машины уже созданы, испытаны, готовы к работе. Но хотелось бы представить, какой будет «Волга», скажем, 1990 года?

— Отвечающей самым строгим мировым стандартам, надежной, экономичной машиной. И, что немаловажно, нешумной — проблема шума в больших городах, к сожалению, приобретает остроту.

Однако производство легковых автомобилей будет, по сути, продолжением тех тенденций, уже намечены. А вот в производстве грузовых автомобилей Hac ждет совершенно новый, ственно новый этап. Работа над новой моделью нашего грузового автомобиля и потребует той коренной перестройки завода, о которой я говорил. ГАЗ будет выпускать продукцию, аналогов которой у нас еще не было, - автопоезда.

(На цветных фотографиях, которые протягивает мне Иван Иванович, показан экспериментальный образец. Машина с прицепом отличается какой-то удивительной, несвойственной бы грузовому автомобилю элегантностью, линии ее просты и лаконичны, но за ними угадывается и мощь двигателя, и возможная скорость, Что ж, это действительно так. Грузоподъемность автопоезда 8-9 тонн, но и с такой нагрузкой он сможет развить скорость до 80 километров. Впрочем, главная особенность модели не скорость и не грузоподъемность, а экономичность. Двигателем модели будет дизель с воздушным охлаждением грузовых машин с такими двигателями еще не выпускала советская промышленность.)

— Для того чтобы разработать специальный дизель ГАЗ-542, на заводе было создано конструкторское бюро, работа потребовала немалых усилий. Теперь уже есть опытные образцы автопоезда ГАЗ-4301, однако серийный их выпуск потребует коренного изме-**МНОГИХ** технологических процессов, освоенных заводом. Видимо, это дело даже не только одиннадцатой, а частично и двенадцатой пятилетки.

— Иван Иванович, наша встреча подходит к концу. Хочется задать вот такой вопрос — на него наводят ваши последние слова. Перед тем как прийти в ваш кабинет, я видел, как выходили с завода, закончив смену, рабочие. В большинстве это молодые люди. Наверное, в одиннадцатой, в двенадцатой пятилетках на завод придут некоторые из наших читателей. Что ждет их здесь?

— Здесь их встретят квалифицированные инженерные и рабочие кадры, здесь их ждет интересное дело и возможность учиться.

г. Горький

Беседу вел В. МАЛОВ

УРОКИ ПАТОНА

Беседа нашего специального корреспоидента с дважды Героем Социалистического Труда, лауреатом Ленинской и Государственной премий, членом ЦК КПСС, президентом АН УССР академиком Борисом Евгеньевичем ПАТОНОМ.

— **Б** орис Евгеньевич, как утверждают специалисты, основа, фундамент будущих достижений начинает закладываться еще в детские годы, в юности. Каким бы мы увидели вас, скажем, полвека назад?

— С мнением ученых-педагогов нельзя не согласиться. Но, боюсь, ничего особенного в те годы со мной не происходило. Учился я в киевской средней школе № 79, на моем столе были те же учебники, что у тысяч сверстников, и оригинальностью юношеских литературных страстий я похвастаться не мог -настольными книгами были романы Жюля Верна, Джека Лондона... Уже плавали под водой «наутилусы», прочно вошло в жизнь воздухоплавание, не за горами было претворение и других мечтаний великого фантаста. Самые смелые мечты сбываются, если они становятся целью сильных и знающих людей. Это был, пожалуй, один из главных уроков французского писателя. А лучшие герои Лондона звали к воспитанию воли, к целеустремленности в труде, каким бы тяжелым он ни был.

— Но ведь были наверняка и

уроки, так сказать, очные, те, что давал отец — знаменитый инженер и ученый Евгений Оскарович Патон, характер у которого, по воспоминаниям современников, был никак не слабее, чем у самых крупных литературных героев.

— Смыслом всей жизни для отца был труд. Он никогда — ни в институте, ни дома - не требовал от других больше, чем от себя. Но его самоотдача в любом деле позволяла требовать того же. Мое трудовое воспитание начиналось на нашей старой даче под Киевом. Отдыхал отец. работая в саду, в огороде. Свои грядки имели и мы с братом и отвечали за них перед отцом по всей строгости. В наши обязанности входило также пилить и колоть дрова. Вот так просто закладывалась отцом привычка делать что-то своими руками, привычка на всю жизнь.

В юности я не испытывал никакого особенного желания стать организатором науки. Меня скорее привлекал путь ученого-одиночки. Электричество, его воздействия на вещество — вот что манило в науку, с чем связывал первые научные надежды. Окончив электротехнический факультет Киевского политехнического института, поехал в Горький на завод «Красное Сормово». Там работал инженером в заводской электротехнической лаборатории.

Перелом во взгляде на науку и свое место в ней произошел в годы войны. Институт электросварки, которым руководил отец, звакуировали на Урал. В 1942 году он вызвал меня из Горького — было много работы, ответственной, срочной, требовались сотрудники.

Помню морозное январское утро 42-го. Отец привел меня в лабораторию: «Вот, Боря, проволока, вот куски металла, флюс в ведре. Учись варить. Товарищи расскажут, помогут. А скоро тебе самому придется учить других. Помни об этом».

Институт в те суровые дни разработал автоматическую сварку под флюсом, которая позволила быстро, не сбавляя скорости конвейера, накрепко сшивать броню легендарных танков — тридцатьчетверок.

- Мне как-то довелось слышать, что с именем Евгения Оскаровича связана фронтовая легенда...
- Да, рассказывают, бытовала такая легенда среди танкистов. Мол, ходит по заводу, где строят танки, седой старик профессор, выстукивает броню молотком, и машины, по которым профессорский молоток прошелся, будто бы становятся для снарядов неуязвимыми...

Многому меня научили те трудные годы. При необходимости работать приходилось монтером, наладчиком, сварщиком-автоматчиком, а потом переключаться на фундаментальные исследования природы сварочных процессов, изучать условия работы автоматических сварочных головок.

С того времени наука для меня начинается в заводском цехе с земных практических задач и потребностей людей, отсюда она должна стартовать в глубины фундаментальных исследований, чтобы обогащенной пониманием глубинной сути явлений вернуться на производство — новыми процессами, аппаратами, машинами.

- Борис Евгеньевич, думается, теперь мы подошли к вопросам сегодняшнего дня. Я имел возможность познакомиться с институтом, которым вы руководите, институтом, прямо скажем, необычным. В его музее и своеобразном выставочном зале я увидел десятки разнообразных аппаратов, машин, устройств. И все это до последнего винтика продукция института, уже внедренная в практику или готовая к внедрению. Налицо как будто чисто прикладной характер работ института...
- А в научно-исследовательской части, в лабораториях побывали?
- Да, побывал. И, насколько могу судить, по оснащению многие лаборатории скорее похожи на чисто физические, где добывают самые сокровенные знания о веществе, о тончайших явлениях.
- По-моему, особенно сегодня одно без другого обойтись просто не может. Без фундаментальных исследований не было бы разработанных в институте новых методов сварки, которых до этого не знала мировая практика, в которых работает плазма, вакуум, злектронный луч. Не было бы и еще одного совершенно нового направления работ института, а теперь уже нового производства — специальной электрометаллургии особо чистых и особо качественных металлов. С другой стороны, вряд ли вы могли бы увидеть в таком количестве нашу продукцию, не будь под крышей института опытного конструкторско-технологического бюро и опытных заводов. Кстати, наши конструкторы и технологи

не в меньшей степени творцы, чем наши исследователи.

В чем практическая сущность научно-технической революции? На мой взгляд, прежде всего технологий. CYMME новых При определении важнейших задач науки на XXV съезде КПСС была подчеркнута особая ценность создания принципиально новых технологий, производственных процессов. А рождает их, как правило, мысль, почерпнутая фундаментальных изучении свойств природы. Осуществление глубокой идеи почти всегда ведет к впечатляющему эффекту для практики. Причем нередко в самых неожиданных ее отраслях.

Возьмем тому пример. Украинские теплофизики вели фундаментальные исследования процестепломассообмена разных веществ в различных состояниях. В сущности, это чисто академические исследования. А в результате появилась совершенно новая идея... сушки сахарной свеклы! Были предложены методы сушки свекловичной стружки, которую получают в своеобразных устройствах, подобных в чем-то обычной мясорубке, с последующим доизмельчением. Окончательно порошок содержит больше 70 процентов сахарозы и других ценных веществ. В качестве промышленного сырья он позволяет заменять сахар. А вывод такой: вместо новых посевных площадей и строительства новых сахарных заводов всего лишь усовершенствование технологии переработки свеклы.

В том же ряду и другой пример, когда фундаментальные разработки наших ученых легли в основу создания технологии так называемого монодисперсного гранулирования минеральных удобрений. Суть его в том, что гранулы обретают более совершенную форму и большую прочность. Одно это увеличивает урожайность зерновых культур и сахарной свеклы на 10 процентов!

Наша технология электрошлакового литья — она тоже основана на фундаментальных исследованиях. Результат: можно, к примеру, отливать вал судового двигателя с таким качеством и точностью, что отливка уже не требует прикосновения резца, экономно расходуется дорогой металл. Прокатные станы, разработанные под руководством академика Александра Ивановича Целикова. С которых сходят готовые детали, тоже появились после глубоких исследований пластического деформирования металла.

Примеры можно продолжать еще долго. Но, думаю, и этого достаточно, чтобы оценить эффект новых технологий.

— Время ученых-одиночек прошло. Вы это повторяли много раз в беседах с журналистами, так же как и то, что ученый, дабы оставаться таковым, должен непрестанно творить. У вас большой институт, академия, много других почетных и важных обязанностей. А в сутках, как известно, всего 24 часа...

(Здесь необходимо небольшое авторское отступление. в том, что в первый же день пребывания в Институте злектросварки имени Е. О. Патона я узнал о стиле работы Бориса Евгеньевича весьма интересную деталь. Речь идет о ставших уже знаменитыми в институте его записках. На листке бумаги поменьше тетрадной страницы Борис Евгеньевич пишет несколько фраз, адресуя их кому-либо из многотысячного коллектива. Получивший такой листок, как с улыбкой сказал один из сотрудников, «лишается покоя». В записке всегда лаконично и просто изложена новая идея Патона. Таких записок в день бывает до двух десятков!.. Они проходят через особого контролера, их размножают, их вводят в память ЭВМ. Бывают среди записок и такие, в которых предлагается тому или ино-

му сотруднику срочно прочесть статью в свежем номере одного из специальных зарубежных журналов. Патон читает на трех иностранных языках. Что стоит за этими записками? Вряд ли можно ошибиться в ответе, если сказать: огромный, ежедневный и многолетний труд, неустанная работа мысли. Но об этом хотелось узнать у самого Бориса Евгеньевича подробнее.)

— Как родилась эта своеобразная форма работы? В чем ее

сила?

— В общем-то, эту форму я не изобретал, она скорее досталась мне в наследство — ее практиковал отец. Форма записок мне представляется очень удобной как средство общения с большим коллективом. С другой стороны, времени самостоятельно довести свою идею до практического результата, как бы этого ни хотелось, у меня нет. Поэтому записки — это и форма моего творчества.

Осуществляется она следующим образом. В записке указываю точный срок, к какому адресат должен в первом приближении проработать идею. В намеченный день собираем совещамие квалифицированных оппонентов для всесторониего обсуждения. Иногда обсуждение интересной и жизнеспособной идеи, но недостаточно хорошо разработан-

ной, перерастает в своеобразный мозговой штурм. Совещание, как правило, имеет решающее значение.

- Борис Евгеньевич, в науке нередко бывало так, что ученый долго вынашивал идею, до поры до времени держал ее в тайне от других...
- Думаю, это будет встречаться все реже. Наука становится коллективной. Даже немногим выдающимся теоретикам, ученым, как говорят, «от бога», нужен большой коллектив для претворения идеи. Она особенно хороша, когда быстро, вовремя внедрена на практике. Задержать идею значит отстать, потерятьтемп. Поэтому сегодня каждый ученый обязан быть щедрым, способным делиться идеей.
- А что чувствует знаменитый ученый, когда его предложение отвергают? Ведь и у вас, наверное, случалось такое?
- Любой ученый чувствует себя в этом случае неважно. Тут нужно быть просто честным и еще, пожалуй, любить ю м о р лучшее средство снять любую напряженность... Подчас бывает важен первый творческий импульс. Из умной критики даже не совсем удачного предложения может родиться новая жизнеспособная идея.
- Борис Евгеньевич, вы автор и соавтор более ста изобретений. В области сварки или металлургии ваши изобретения вполне естественны. А случайность ли то, что вы изобрели... ковш экскаватора?
- Нужно сразу оговориться: изобретение это не так уж и далеко от моих специальных интересов речь идет о ковше сварной конструкции. А в принципе подобные изобретения весьма закономерны. Вряд ли придумал бы тот ковш конструктор экскаваторостроения. Помимо прочего, его сковывает традиционность мышления.

У читателей вашего журнала, думаю, особенная любовь к технике, конструированию, изобретательству. Опыт подсказывает такой им совет. Нужно обязательно быть настоящим специалистом в выбранной по душе области. Но при этом ни в коем случае нельзя в ней замыкаться. Чем шире кругозор конструктора или ученого, тем больше вероятность появления новых, полезных идей.

— Борис Евгеньевич, если уж мы коснулись столь близкой нашим читателям темы, то вот еще один вопрос-пример. Двое ребят занимаются моделизмом. Один работает долго, что называется, вылизывает свою модель, совершенствует. Другой не успеет сделать одну конструкцию, как берется за другую, третью. Причем он вовсе не бестолковый парень — он пробует, ищет. Кого из них вы предпочли бы видеть у себя в институте, в КБ?

(Здесь мы хотим напомнить вам, ребята, о том, что одним из самых почетных призов во Всесоюзном смотре «Юные техники и натуралисты — Родине», посвященном 110-й годовщине со дня рождения В. И. Ленина, в котором многие из вас участвуют, будет приз академика Бориса Евгеньевича Патона.)

— Обоихі.. Просто каждому нужно поручить ту работу, где проявляются достоинства и менедостатки. Хотя нее заметны лично мне более симпатичен второй. Темп работы, способность генерировать идеи - теперь это особенно ценно. Но мои симпатии вовсе не значат, что ему будет позволено постоянно витать облаках. В ученом или консурукторе я ценю не только его идеи, одержимость, но и целеустремленность, постоянное видение конечной цели своей работы — ее пользы для людей.

Когда к нам приходят с экскурсией школьники, им обязательно показываем наши заводские музеи. Их два. В одном собраны документы, фотографии, различные вещи, предметы, относящиеся к истории предприятия. В другом, разместившемся на первом этаже головного конструкторского бюро, расположена коллекция тракторов с маркой минского завода.

Вот первенец — КД-35, сошедший с конвейера в 1950 году, в канун годовщины Октябрьской революции. Он был во главе заводской колонны на праздничной демонстрации.

Спустя три года начался серииный выпуск первого трактора, разработанного заводскими конструкторами. Эта колесная машина - МТЗ-2 мощностью 36 лошадиных сил — стала родоначальницей большого и разнообразного тракторов, носящих семейства имя «Беларусь». Их второе коление. созданное в начале 60-х годов на основе базовой модели МТЗ-50, до сих пор исправно несет свою службу на хлебных нивах и виноградниках, картофельных и хлопковых полях.

А ныне им на смену пришло уже третье поколение минских тракторов — МТЗ-80 и его модификации. Это о нем было сказано в «Основных направлениях развития народного хозяйства СССР на 1976—1980 годы», принятых XXV съездом КПСС: «В тракторостроении завершить переход на выпуск тракторов «Беларусь» МТЗ-80».

Что это за машина, которая для коллектива нашего предприятия стала своеобразным символом десятой пятилетки? Даже внешне трактор красивее предшественников, но, главное, он в полтора раза мощнее, следовательно, и производительнее, способен работать с сельскохозяйственными машинами и орудиями более двухсот наименований. Колея

красные кони МТЗ

Рассказывает слесарь-инструментальщик Минского тракторостроительного объединения имени В. И. Ленина, Герой Социалистического Труда, член ЦК КПСС Евгений Иванович КЛИМЧЕНКО.

трактора переменная, регулируется от 1200 до 1800 м. Оснащен герметизированной термошумо-изолированной кабиной, сиденье снабжено гидроамортизатором, может регулироваться по росту и весу водителя...

Весу водителя...

Сейчас трудно представить деревню без тракторов, комбайнов, автомашин, другой самой разнообразной техники. Но в книгах или журналах многие, наверно, видели фотографии с таким сюжетом: по полю движется трактор с плугом, а за ним, утопая лаптями в свежевспаханной борозде, идут удивленные мужики. Поодаль застыла запряженная в соху лошаденка, недоуменно косящая глаз на неведомого «конкурента».

Все верно на этих снимках, относящихся к поре коллективизации, первых пятилеток. Такое мальчишкой я видел наяву в 35-м году. Мне было десять лет, когда в моей родной деревне Лаговщине, в Витебской области, появился первый трактор. Вся округа дивилась и самому факту существования такого «чуда», и тому, что был привезен трактор не из заморских земель, а сделан на советском заводе в Харькове.

Как говорится, много воды утекло с тех пор, а в памяти жив тот весенний день в образе рокочущего трактора, который идет по кромке поля. А мы, деревенские мальчишки, опережая взрослых, босоногим десантом вокруг него.

Всегда вспоминается этот трактор, когда захожу в наш музей. Потому, видимо, что с каждой из стоящих здесь машин тоже связано что-то личное, такое, что навсегда отложилось в памяти и душе, что стало не только вещественной приметой времени, но и страничкой собственной судьбы, хотя между первым увиденным трактором и первым, который довелось строить, пролегло немало лет и было за эти годы много такого, что из памяти тоже не исчезнет.

В мае 1941 года я закончил Витебскую школу ФЗО. Группу выпускников, слесарей-инструментальщиков, направили работать на один из машиностроительных заводов Новосибирска. Едва освоились на новом месте, как началась война. Вместе со всем це-

хом и мы пошли в военкомат. Многих добровольцев направили в армию, а нас не берут — возрастом не вышли. Но мы все-таки добились своего. В октябре я стал солдатом. Попал в железнодорожные войска, чем поначалу весьма огорчился. Но хватило и на мою долю схваток с врагом и боевых наград. Мы доставляли на фронт боеприпасы и технику. обеспечивали движение поездов по рокадам (так называются военном языке железные дороги вдоль фронта), в тяжкое время отступления защищали железнодорожные станции. Занимались и ремонтом техники, оружия, различных приборов. приспособлений.

Эта практика пригодилась и потом, когда я, демобилизовавшись, приехал в 49-м году на Минский тракторный.

Завод еще строился. На окраине белорусской столицы, сливаясь с большим городом, возрождавшимся из пепла и руин, поднимались новые корпуса, неподалеку вырастали кварталы жилых домов для тракторостроителей.

Трудностей в ту пору, конечно же, было немало. И одна из них — нехватка квалифицированных специалистов, токарей, слесарей, сверловщиков, шлифовщиков, кузнецов, одним словом, рабочих самых разных профессий.

Учились все: и недавние фронтовики, и партизаны, и юные парни и девушки, приехавшие на завод по комсомольским путевкам из многих городов и сел республики. На завод приезжали ветераны труда, кадровые рабочие предприятий Урала, Алтая. Они учили новичков своему мастерству, передавали свой опыт. Многие минчане ездили учиться в разные города страны. Я лично тем, что умею сейчас, во многом обязан рабочим Ленинградского завода имени С. М. Кирова, московских имени И. А. Лихачева и «Калибр».

Многие республики, области, города помогали становлению нашего завода. Липецкие и московские конструкторы разработали проект первого нашего трактора КД-35, многие тракторостроительные предприятия помогли освоить технологию производства. Без все-

го этого невозможным было бы рождение нашей собственной модели.

Период, когда завод выпускал МТЗ-2 и его модификации и усовершенствованные варианты, теперь можно оценить как «время разбега» или, лучше, «время набора высоты». Отлаживались технологические цепочки предприятия, наращивали мощь цехи и участки.

Эти годы связаны с началом моего бригадирства.

Наша бригада слесарей-инструментальщиков небольшая. Но, как и у других коллективов, наш участок работы немаловажен и ответствен. Мы ремонтируем и производим наладку различных измерительных приборов высокой точности, универсальных и инструментальных микроскопов, которые обеспечивают работу десятков станков и механизмов во всех цехах предприятия.

В нынешнем своем составе бригада сформировалась, спаялась в те годы, когда с главного конвейера стали сходить нескончаемой колонной МТЗ-50. Нет. пожалуй, такого колхоза и совхоза, в которых бы не знали этот универсальный, удобный и простой в управлении трактор. За его создание и за достигнутые успехи в выполнении заданий семилетнего плана, внедрение новой техники завод в 1966 году получил орден Ленина. Многие работники граждены высокими правительственными наградами. Несколько человек, среди которых выпала высокая честь быть и мне, удостоены звания Героя Социалистического Труда.

Эту награду полностью отношу на счет своей бригады, цеха. Без моих товарищей — Александра и Николая Неборских, Анатолия Шарановича, Алексея Давыденко, всех членов нашей многотысячной семьи минских тракторостроителей — без нашего коллективного труда, нашей общности и единства в достижении целей, начертанных партией великого Ленина, немыслим был бы ничей личный успех, удовлетворение от своей работы.

Это я еще раз остро ощутил тогда, когда товарищи-коммунисты избрали меня делегатом XXV съезда КПСС. Участвуя в его заседаниях, а потом в работе Пленумов ЦК нашей партии, мне, рабочему человеку, приходилось участвовать в выработке и принятии важных решений, определяющих курс дальнейшего развития нашей социалистической державы. Всякий раз, высказывая свое мнение, мысленно советуешься с теми, с кем вместе придется выполнять задуманное...

Пятилетку мы завершили почти на полтора месяца раньше срока. Сверх плана выпущено более девяти тысяч первоклассных тракторов. Это достойный рабочий подарок XXVI съезду КПСС.

Переход на выпуск новых машин без остановки производства стал возможным благодаря научно-технической перевооруженности предприятия, продолжавшейся в десятой пятилетке. К примеру, в нашем цехе появились станки с числовым программным управлением, световой индикацией, другая сложнейшая техника.

Новшества затронули буквально все производства: литейное, кузнечно-штамповочное, сварных работ, термической и механической обработки, точного стального литья и т. д.

Именно такая многогранность технического обновления предопределила счастливую судьбу «восьмидесятки», которой присвоен государственный Знак качества.

Каждый день сходят с конвейера нашего завода 340 тракторов — каждый пятый, выпускаемый отечественной промышленностью. Они идут на поля и плантации нашей страны, зтих сильных стальных коней покупают почти 80 государств всех континентов.

...Ну а те, кому удастся побывать в нашем тракторном музее, увидят МТЗ-100... 142... 240... Хотя они и находятся здесь, но по-настоящему музейными экспонатастим им еще предстоит стать в будущем. Пока что эти машины проходят полевые испытания.

Записал В. МАЙОРОВ

МИКРООРГАНИЗМ НА «ОПЕРАЦИОННОМ СТОЛЕ»

Генная инженерия

Чтобы увеличить производство мяса, скот надо хорошо кормить. Это аксиома. Но что значит хорошо кормить? Давать овса вволю? А что значит вволю? Сколько это, если говорить языком

цифр?

Оказывается, на получение одной тонны мяса требуется примерно 9 тонн зерна. Зерно - наиболее питательный растительный корм, и тем не менее такое вот соотношение - один к девяти. Дело в том, что большая часть корма не усваивается организмом: животное ест, можно сказать, автоматически зерно до тех пор. пока в организме не накопится необходимое количество определенных веществ — аминокислот. Аминокислоты — своеобразные «кирпичики», из которых состоят белки, а без белков невозможен обмен веществ, а значит, невозможна жизнедеятельность opra-

В природе около 20 типов аминокислот. Большую часть из них вырабатывают из глюкозы сами клетки живого организма. Но четыре аминокислоты: лизин, метионин, треонин и триптофан (их называют лимитирующими) — организм должен получать в готовом

— Нам удалось получить треонин в промышленных установках. Для этого использовали бактерию — обыкновенную кишечную палочку, которая обладает свойствами синтезировать эту аминомислоту из глюкозы. Но такой мнкроорганизм, существующий в природе, очень «скуп» и производит треонина лишь столько, сколь-

виде вместе с пищей. И никаким другим веществом их не заменишь.

А они необходимы: ведь если ввести в рацион нужное количество аминокислот, то усвоится пища значительно легче, полнее, а значит — это путь к увеличению производства мяса и одновременно к экономии кормов.

В нашей стране налажено промышленное производство лизина и метионина для нужд животноводства. Но выпуск двух аминокислот — треонина и триптофана — в больших объемах вообще в мире еще не начат. Химический способ получения этих аминокислот для нужд фармацевтической промышленности крайне дорог и непроизводителен.

Ученые Всесоюзного научно-исследовательского института генетики и селекции промышленных микроорганизмов предложили новый дешевый метод получения

треонина.

Вот что рассказал об этом в беседе с нашим корреспондентом В. Беловым директор НИИ генетики и селекции промышленных микроорганизмов доктор биологических наук, профессор В. Г. ДЕБАБОВ.

ко необходимо самому для жизни. Мы заставили бактерию работать сверх нормы. Но, прежде чем рассказывать, как это удалось сделать, давайте разберемся в строении клетки бактерии. В отличие от высших организмов клетки бактерий устроены проще. У них нет ядра, а есть только оболочка и цитоплазма.

И прямо в этой цитоплазме плавает хромосома, которая представляет собой очень сложную большую молекулу. Называется она дезоксирибонуклеиновая кислота, или сокращенно ДНК. В ней-то и хранится информация о наследственных признаках организма, а значит, там заложена и эта «скупость» бактерии. В хромосоме умещается примерно пять тысяч генов, ответственных тот или иной наследуемый признак, в том числе и гены, ответственные за производство треонина. Так устроена обычная клетка бактерии.

Клетки устроены так, что большая хромосома может нести не более пяти тысяч генов. Они обеспечивают передачу наследственности для выживания микроорганизма в нормальных условиях. Но бактерии могут попасть в какие-то необычные условия, грозящие им гибелью. Природа распорядилась очень разумно, застраховав себя от случайностей. На всякий случай одна клетка из миллиона имеет еще и дополнительные маленькие хромосомы, так называемые мини-хромосомы. Они устроены так же, как большая хромосома, HO несут значительно меньше генов: от пяти до ста. Без этих мини-хромосом такая уникальная клетка может свободно жить, их можно удалять безболезненно для бактерии. Но гены, размещенные в мини-хромосомах, передают микроорганизму дополнительные свойства: например, устойчивость к лекарствам, агрессивным средам, обучают бактерии выживать экстремальных, самых неожиданных ситуациях. Самое важное, что в этой клетке 30 мини-хромосом, и все они копии друг друга. Причем достаточно внести изменения в одну из тридцати, все остальные повторят его. Это свойство мы и решили использовать. Мы «прооперировали» шечную палочку и получили встречающийся в природе микро-

организм. Нам удалось выделить из больщой хромосомы гены, ответственные за производство треонина, и «вшить» их в мини-хромосомы, которые, как говорилось в отличие от большой хромосомы представлены в клетках в 30 копиях. А это значит, что ген, «вшитый» в мини-хромосому, также представлен в 30 копиях и синтезнрует треонина в 30 раз больше, чем нужно самой бактерии. Так мы решили проблему «сверхпроизводства».

— Но какими инструментами удалось «прооперировать» практически невидимую бактерию? Как среди миллионов клеток отыскали те, в которых есть необходимые мини-хромосомы?

— Конечно же, невозможно найти скальпель, чтобы прооперировать микроорганизм, в сравнении с которым маковое зерно -планета. Операция была биохимической и проходила не на хирура в пробирке. гическом столе. Схематично она выглядела Бактерии обработали специальными ферментами — бнологическими Они катализаторами. словно оболочки скальпели разрушили разделили ДНК клеток И фрагменты по 50-60 генов. Получилась густая масса. Чтобы выделить фрагменты ДНК хромосом в чистом виде, эту массу смещали с фенолом. Фенол «подобрал» осколки клеточных оболочек, то есть весь ненужный «мусор». А так как удельный вес этого фенольного сгустка больше удельного веса ДНК, то на обычной центрифуге несложно было отделить ДНК. В конце концов получился раствор, в котором плавали куски хромосом — фрагменты. Часть из иих новой партией ферментов разделена на кусочки по 4-5 генов. С ними биохирургу работать удобнее.

Теперь в ход опять пустили биоскальпель — ферменты, но такие, которые могут распознать гены, ответственные за производство треонина. Ферменты выбра-

ли нужные хромосомы и «вырезали» из них отдельные гены, причем так искусно, что у каждого гена остались его липкие кончики — своеобразные присоски, которыми он сцепляется с другими генами.

Подобным, но более сложным способом в другой пробирке обработали мини-хромосомы. Фермент разорвал кольцо мини-хромосомы, и у нее тоже образовались липкие кончики.

Затем оба раствора смешали.

Начавщийся вслед за этим процесс, к сожалению, пока неуправляем и идет в пробирке, можно сказать, хаотически. И возможны самые разные биохимические превращения. Скажем, гены могут склеиться друг с другом и образовать как бы ниточку. Фрагменты хромосом могут соединяться и образовывать новую хромосому, возрождаются клетки, растут новые микроорганизмы - целые колонии микроорганизмов. Но происходит и самое главное, то, что нам требуется: «вырезанный» из хромосомы ген, который отвечает за производство нужной аминокислоты — треонина, присоединяется в это время к мини-хромосоме, как бы «вщивается» нее. Это шитье пока дело случая (хотя ожидаемого). На рисунке вы видите условную схему операции.

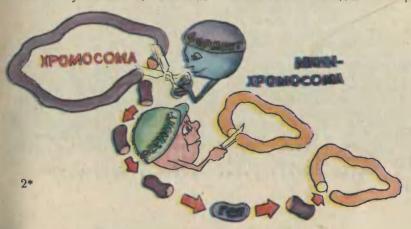
Итак, в огромных колониях, насчитывающих миллионы бактерий, теперь есть мини-хромосомы, которые встроены гены, нужные нам. Уже «работают» в нескольких из восстановленных микроорганизмов — в бактериях. Нужно выделить считанные бактерии «прооперированной» мини-хромосомой. Задача эта примерно такая же, как если бы мы захотели выделить какие-то нюансы одного человека на переполненном шумящими болельщиками стадионе, вмещающем миллиард зрителей. И решается эта задача в два этапа.

Для того чтобы избавиться от

«сорняков», все микроорганизмы поместили в питательную среду, а затем туда добавили антибиотики, то есть создали экстремальную ситуацию, о которой говорили выше. Сразу же погибли все клетки, в которых вообще

мини-хромосом.

Теперь остались два типа клеток, а значит, и микроорганизмов: те, у которых имеются мини-хромосомы со «вшитым» геном, ответственным за производство треонина, и те, у которых «вшитого» гена нет. После «операции» практически не остается клеток, которые бы не потеряли треонинный ген (за исключением тех, в минихромосомы которых OH «ВШИТ»).


Клетки, из хромосом которых был «вырезан» этот ген, не могут жить без добавки треонина и через некоторое время погибают. Таким образом, останутся лишь те удачно «прооперированные» клетки, которые сами могут вырабатывать эту аминокислоту.

устойчива. - Ho насколько бактерия, жизнеспособна новая вырабатывающая треонина 30 раз больше? Ведь ей придется работать не в пробирке, а в про-

мышленных установках?

 Да, это очень сложная задача. Ведь гены, которые находятся в большой хромосоме, устойчиво наследуемый материал. Мини-хромосомы очень неустойчивы, а значит, могут потерять нужные качества. Для решения проблемы устойчивости, жизнеспособности микроорганизма мы применили очень интересный прием своего рода антиселекцию. В результате генетических экспериментов нам удалось достигнуть того, что любое изменение. которое может повредить избыточному бносинтезу треонина, убъет бактерию. То есть в промышленных условиях на простой минеральной питательной среде (это глюкоза) выживают только те клетки, которые производят избыточное количество аминокислот. Как только бактерия становится нормальной. она гибнет. Таким образом, создали микроорганизм, способный устойчиво работать в больших промышленных установках ферментерах.

Но высокая продуктивность устойчивость нашего микроорганизма не единственные положнтельные качества. На его развитие требуется очень мало времени: весь процесс — он называется ферментацией — проходит за 24 часа. Если учесть, что все микробиологические процессы должны проходить в стерильных условиях, то сразу станет ясно, какие преимущества дает малый период ферментации. В промышленных условиях несложно поддерживать стерильность в течение суток даже в стакубометровых ферментерах. Это вполне понятно: скажем, сохранить чистыми вымытые руки легче в течение часа, чем целый день. Наш микроорганизм мы испытали на двух микробиологических заводах. Лабора-

торные разработки подтвердились хорошими результатами. Практически создан устойчивый микроорганизм, готовый к промышленному производству. По нашим оценкам, килограмм треонина будет стоить меньше 10 рублей, что в шесть раз ниже мировых цен.

— И последний вопрос. Владимир Георгиевич, в вашем институте удалось сконструировать микроорганизм с совершенно новыми свойствами, не встречающийся в природе. Нет ли опасности, что эта бактерия вдруг выйдет из-под контроля ученых, случайно попадет в организм человека и вызовет какие-либо отрицательные последствия?

— Прежде всего надо сказать, что необходимые меры предосторожности соблюдаются постоянно. И никуда бактерия случайно попасть не может. Да и сама она безопасна: погибает в кншечнике человека через сутки.

Вы можете возразить, что минихромосомы могут передать свои признаки кишечным палочкам, которые уже имеются в организме человека, и впоследствии вызвать нежелательные явления. При конструировании нашего микроорганизма мы учли и это, сделав невозможным переход наследственной информацин к микроорганизмам других видов.

Таким образом, наш микроорганизм удовлетворяет всем требованиям и промышленного производства, и вопросам безопасностн.

Итак, не природой, а человеком сконструирован микроорганизм, который в скором времени будет широко использоваться в промышленном производстве важной кормовой добавки. Впереди работы и по микробиологическому получению второй аминокислоты, о которой мы говорили в начале, — триптофана.

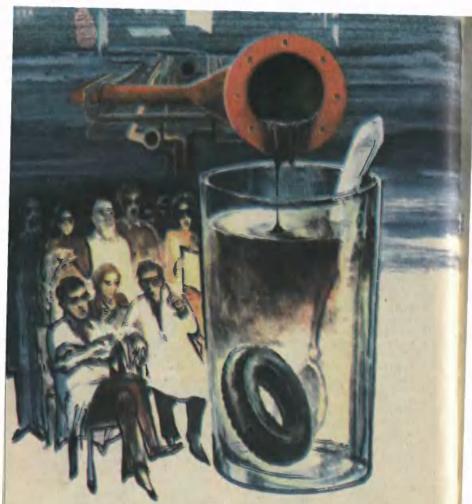
> Рисунки О. ВЕДЕРНИКОВА и А. НАЗАРЕНКО

ИНФОРМАЦИЯ

ГАЗ СОЕДИНЯЕТ ДЕТА-ЛИ. Способов соединения деталей известно множество. Но, пожалуй, один из самых необычных предложен недавно изобретателями из подмосковного рода Подольска. Основан он на интересном некоторые металлы и сплавы, если их насыщать водородом, резко увеличивают свой объем. Титан. сплавы титана с железом, хрома с никелем «разбухают» при этом примерно на 20 %! Нужно, скажем, соединить две трубы разного диаметра. Для этого можно изготовить кольцо из «разбухающего» материала, насадить его на конец меньшей трубы, а затем вставить ее в большую. участок будущего Потом соединения помещают среду водорода с высокой температурой. Примерно через час вставка, насытившись водородом, бухнет и надежно скрепит трубы. Такое соединение сварщики называют «внахлестку». Легко сообразить, что разбухающими вставками различной фор-

мы можно соединять праклюбые детали. тически Причем, как показали первые испытания, прочность соединения получается достаточно высокой. Особенно ценным этот оригинальный способ может оказаться для соединения деталей из разных, сильно отличающихся по физико-химическим свойствам мате-Например, риалов. можно соединить детали тугоплавкого вольфрама и легкоплавкого алюминия, для которых не гопится ни пайка, ни сварка,

ЛАВСАН С ЖЕЛЕЗОМ. Ученым Института физико-органической химии АН БССР удалось придать новые свойства лавсану. макромолекулу давно известного полимера ввели органические вещества, содержащие железо. Материал получился прочным. По сравнению с обычным лавсаном он приобрел еще одно пенное качество термостойкость, На него можно наносить металлические покрытия. Например, после нанесения на пленку вого лавсана тончайшего слоя алюминия материал приобретает красивый бронзовый оттенок. Его можно использовать для отделки интерьеров зданий.


НЕФТЕХРАН И Л И Щ Е НЫРЯЕТ. Дием солнце нагревает огромную серебристую колонну нефтехраиилища, ночью она остывает. В течение суток значительно меняется давление внугри резервуара. Выравнива-

ют его, выпуская время от времени пары нефти через особые клапаны. Это не только вредное «дыхание», с ним в атмосферу уходят сотни тонн ценных нефтепропуктов.

Оригинальное решение проблемы нашел уфимский изобретатель О. И. Прокопов. Он предложил... опускать иефтехранилиша на дно водоемов, рек. Ведь на глубине всего в несколько метров температура воды за сутки почти не меняется. Используя эту идею, Проконов разработал конструкцию ныряющего нефтехранилища, которое благодаря системе клапанов. поплавков, подвижному дну резервуара, работающему словно поршень, не только легко опускается на дно и всплывает на поверх-

ность, но и полностью исключает загрязнение воды нефтью. Кроме того, для наготовления подводного нефтехранилища вовсе не нужны материалы особой прочности, как для наземного. Давление в нем всегда будет равио давлению на глубине, на которой оно находится.

ПРЕВРАЩЕНИЯ СТАРОГО КОЛЕСА

Предугадать судьбу отслуживших свой срок изделий чаще всего нетрудно. Бумага, сданная в приемный пункт макулатуры, снова станет бумагой или картоном. Старые автомобили, став металлоломом, вернутся в жизнь новым тепловозом, стиральной машиной, новым автомобилем.

Но есть много вещей, для которых подобное возрождение, увы, невозможно. Например, старые колеса автомобиля, точнее, его шины уже никогда не станут новыми. Вернуть первоначальные свойства шинной резине, загрязненной на дорогах множеством веществ, которые накапливаются

в этом пористом материале, практически невозможно. Помимо чисто химических сложностей, этому препятствует и большая трудоемкость извлечения из резины кордовой ткани — стальных проволочек, которыми усиливают ее при изготовлении.

Так автопокрышка со стершимся протекторным слоем становится отходом. Ежегодно это происходит с миллионами и миллионами автопокрышек. Куда девать это огромное количество резины? Специалисты проявляют, казалось бы, максимум выдумки: старыми шинами укрепляют волнорезы на морском побережье, из устраивают охранительные барьеры на горных дорогах, ими огораживают особые участки акваторий для нереста рыбы... Есть, разумеется, способы вторичного использования, более сложные -химические. Из старых колес в специальных печах выжигают топливо — горючие газы. Покрышки как сырье иногда годятся для изготовления не слишком ответственных синтетических изделий пакетов, различных упаковок. Но опять-таки все способы переработки этих отходов дают... новые отходы.

Как тут быть? Озабочены этой проблемой специалисты многих стран мира.

...Каких только «образцов» промышленных отходов я не увидел на кафедре профессора Анатолия Ивановича Родионова в Московском химико-технологическом институте имени Д. И. Менделеева! Шлаки и зола ТЭЦ, древесные стружки и металлические опилки, пустые горные породы... Но, пожалуй, самое главное место среди этой своеобразной коллекции занимало старенькое автомобильное колесо.

Как и зачем все это оказалось здесь, мне пояснили просто и лаконично: чтобы все это раз и навсегда перестало быть приносящим столько хлопот отходом. А принцип, которым руковод-

ствуются ученые кафедры, мне пояснили следующим образом. Чтобы сделать, скажем, автомобиль, обычно объединяют усилия нескольких заводов — каждый делает свою продукцию, из которой потом собирают готовую машину. У каждого завода неизбежны свои отходы производства. А нельзя ли и отходы различных производств тоже соединить, прием так, чтобы они, в свою очередь, стали полезной продукцией?...

Теперь можно рассказать историю превращения старого колеса, о которой довелось услышать на кафедре.

Началась она с исследований, на первый взгляд не имеющих к этой проблеме никакого касательства. На кафедре занимались способами очистки промышленных стоков, загрязненных цветными металлами, Методов очистки было предложено и опробовано множество. Ионы меди, цинка, никеля, хрома можно, например, переводить в труднорастворимые соединения известковым молоком, растворами едкого натра или соды, а затем осаждать и отфильтровывать эти соединения. Но на это идет слишком много реагентов, в очищенных стоках все же остается большое количество кальция. Степень очистки оставляет желать лучшего. Использование же ионообменных смол, электролиза, электрофлотации и других тонких методов пока дорого.

Но есть в арсенале химиков еще один давний, многими десятилетиями испытанный метод очистки, на принципе которого работает, кстати, обычный противогаз. Основан этот способ, как известно, на свойстве многих пористых или сильно измельченных веществ поглощать из жидкостей и газов различные примеси. Явление это называют сорбцией (от латинского «сорбео» — поглощаю), а методы, на нем основанные, — сорбционными.

Изучая возможности сорбционных методов очистки стоков. исследователи и пришли к мысли соединить проблему стоков старых колес.

Что такое резина? Это мягкий пористый материал, а значит, материал, обладающий сорбционными способностями. Так не поручить ли бросовым колесам полезное дело — возвращать загрязненной воде чистоту?..

Но хватит ли у шинной резины поглотительных способностей для столь тонкого процесса? Это было первое и, пожалуй, наиболее серьезное сомнение. Заманчивая идея, которую взялись проверить исследователи под руководством профессора Родионова, могла быть отвергнута в первом опыте.

Так оно чуть было и не случилось... В лаборатории приготовили так называемый модельный раствор с содержанием цветных металлов, равным обычной их концентрации в стоках. Старую автопокрышку порезали в мелкую крошку, дабы еще большей стала поверхность поглощения. Затем крошку засыпали в раствор, выдержали там определенное время, после чего снова измерили концентрацию раствора. Она оказалась много ниже первоначальной!.. Однако она все же несколько выше величины ПДК — предельно допустимой концентрации после очистки.

Увеличили расход резиновой крошки — не помогло. Продлили процесс очистки - тот же неутешительный результат...

Впору было разочароваться и поставить на заманчивой идее крест.

А работу все-таки решили продолжать. Первая неудача лишь подстегнула исследователей, ставила их смотреть на проблему шире, более глубоко разобраться в существе процесса. Родионов не уставал подбадривать СВОИХ молодых сотрудников, аспирантов: «Чем труднее дается успех,

тем он радостней и, как правило, значимее!»

Почему шинной резине не хвапоглотительных возможностей, или, как говорят ученые, сорбционной емкости? Во-первых, исследования показали, все-таки недостает пористости. Во-вторых, у нее невысока физико-химическая активность. сорбция — это не чисто механический процесс. В поры сорбента ионы металлов заходят не сами по себе — их втягивает особая сила, рождаемая разностью химических потенциалов у этих ионов и веществ, которые находятся на поверхности пор. У резины на поверхности пор могут быть самые разные элементы: кальций, натрий, кислород, водород, сера, а также их соединения. Подобно магниту, они притягивают ионы металлов, а некоторые из них, например сера, могут химически связывать «УЛОВ».

Что тут можно еще сказать: неважный сорбент оказался в руках исследователей. Был бы на его месте, скажем, кокс — все решается просто. У него и поверхность сорбционная много больше, и меньше засорена она тяжелыми углеводородами, смолами, которые прикрывают собой вещества, создающие разность химических потенциалов, служат бы изоляторами. Но кокс — это вовсе не отход, а продукт, причем весьма дорогой, и опять же, какое он имеет отношение к старым колесам?

Оказалось, имеет, вернее, может иметь. Дело в том, что при переработке старых шин способом пиролиза, когда в герметичном аппарате при высокой температуре без доступа воздуха из них выжигают ценное топливо -горючие газы, сами шины обугливаются, превращаясь в ни на что не годный кокс, загрязненный множеством химических примесей.

Так еще один стопроцентный

отход оказался в лаборатории. Шинный кокс испытали. Заветная ПДК была достигнута в первых же экспериментах. Раствор почти полностью очищался от меди и хрома, от всевозможных масел и нефтепродуктов, которые часто попадают в стоки. Промышленные испытания на Московском заводе по обработке цветных металлов подтвердили результаты лабораторных опытов.

Но как быть с цинком и никелем, которые по-прежнему оставались неуловимыми для этого

необычного фильтра?

Эта задача вынудила все-таки ученых пойти на своего рода жертву. Им очень не хотелось использовать в превращениях, где участвуют только бросовые отходы, какую-либо дополнительную энергию. Но, как они ни бились, шинный кокс цинка и никеля не принимал. Тогда решили обработать его водяным паром при температуре в несколько сот градусов для того, чтобы резко увеличить число пор в шинном коксе. После многих экспериментов были найдены наилучшие условия обработки, при которых перегретый пар всего за полчаса удалял из него почти полностью смолу и углеводороды.

Активированный таким образом кокс стал легко «переваривать» все без исключения ионы.

Впрочем, расходы на лишнюю энергию, отступление от чистоты процесса тоже оказались мнимыми. Перегретый пар получили, сжигая горючие газы, что получают при пиролизе старых колес...

На этом ученым вполне можно было бы поставить точку. Новый способ очистки стоков позволял перевести многие производства на замкнутый водооборотный цикл, их не нужно постоянно подпитывать чистой водой из рек и озер.

Но логика исследований вела химиков дальше. Очистка замыкает водооборот завода. А нельзя ли замкнуть и весь процесс с участием старого колеса?

Родилась идея нового аппарата. В нижней его части сток проходит через резиновую крошку. Тут он долго не задерживается - резина успевает очистить его только от масел и нефтепродуктов. В верхней части аппарата в работу вступает активированный кокс. Он отбирает из стока металлы, и уже чистая вода уходит снова на завод. Резиновая крошка, впитавшая горючие продукты, периодически уходит в печь, где из отхода получают энергию и кокс, но уже, как мы помним, не бросовый. Активированный кокс из аппарата очистки также периодически отправляют в установку регенерации, где он отдает накопленные цветные металлы...

Такой комплекс станет, наверное, самым логичным завершением истории превращения старого колеса. Он как бы принимает в себя два потока разных отходов — старые шины и вредные стоки, а выходят из него чистая вода, топливо, ценные металлы.

Но сколько еще нового, неожиданного принесет этот интересный принцип подхода к важной и злободневной проблеме — «отходы против отходов». На кафедре мне привели несколько примеров последних исследований в этом направлении. Оказалось, что ионы меди и никеля из сточных вод могут извлекать... обыкновенные древесные опилки, а ионы кадмия хорошо впитывает... кочерыжка кукурузного початка. Бурый уголь, точнее, ту его часть, которая из-за плохого качества сегодня оказывается в отвалах пустых пород, можно использовать для очистки стоков от ионов хрома и никеля. И каждое подобное открытие — это и забота о чистоте окружающей нас природы, и немалая польза народному хозяйству.

А. СПИРИДОНОВ

Рисунок Г. АЛЕКСЕЕВА

МЛАДШИЙ БРАТ ВОЗДУШНЫХ ЛАЙНЕРОВ

Кроме больших городов, как известно, есть города малые. А воздушные трассы, соединяющие их, называют местными воздушными линиями (сокращенно МВЛ). Пролегают они всего лишь на сотню-другую километров. Использовать на этих линиях многоместные лайнеры невыгодно. Здесь нужен самолет маленький. проворный, нетребовательный к размерам и качеству аэродрома...

Как-то получилось, что авиаконструкторы соревновались в создании все более вместительных кораблей, на МВЛ бессменно целую четверть века трудился скромный Ан-2, прозванный за свою универсальность «кукурузником» (он не только перевозит пассажиров, но и работает в сельском хозяйстве). Наконец пришел и его черед уступить новым самолетам небесную дорогу.

Преемником Ан-2 СТОНОВИТСЯ разработанный чехословацкими авиаконструкторами в содружестве с советскими инженерами самолет Л-410. На трассы нашей Родины он впервые вышел в 1976—1977 годах, поднявшись центральных

графия внедрения не случайна: самолет для МВЛ должен уметь летать и в жару, и в трескучий мороз.

Поднимают в небо новый самолет два турбовинтовых двигателя чехословацкого Производства

мощностью по 740 л. с.

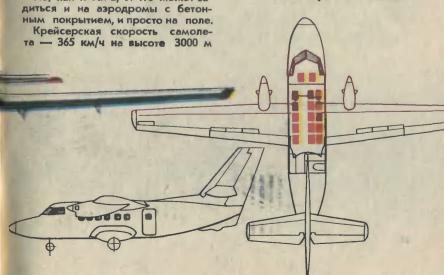
Винты двигателей — трехлопастные, реверсивные, то есть возможность дающие получать тягу не только вперед, но и назад — при торможении на земле. В случае отказа двигателя предусмотрен перевод винта режим так называемого флюгирования. При этом винт свободно вращается встречным потоком воздуха и не создает дополнительного сопротивления полету.

Фюзеляж самолета собран из металлических панелей. В передней его части расположена пилотская кабина (экипаж состоит из двух человек — командира и второго пилота).

В средней части фюзеляжа пассажирский салон, в котором

в два ряда установлены 17 удобных кресел. Салон имеет вентипяцию и отопление (в отличие от пассажирской кабины Ан-2). Поэтому при любой температуре воздуха за бортом в салоне поддерживается нормальная комнатная температура. Горячий воздух для обогрева отбирается из компрессора двигателя, холодный из специальных воздухозаборников. При смешивании двух потоков и получается воздух требуемой температуры,

Крылья самолета — трапециевидные, внутри крыльев находятся топливные баки. Передняя кромка каждого крыла имеет пневмапротивообледенительтическую ную систему. По кромке проходит так называемый протектор полый внутри, он сделан из резины. В него при необходимости нагнетается воздух, протектор расширяется, и лед, намерзший на крыле, скалывается. Так же защишается от обледенения и хвостовое оперение. Современная авиационная аппаратура и надежная защита от обледенения позволяют самолету летать днем и ночью, в сложных метеоусловиях. Он может садиться при видимости земных ориентиров с высоты всего 60 метров, а для «аннушки» этот потолок в 2,5 раз выше — 150 м.


Но, как и Ан-2, Л-410 может са-Крейсерская скорость самоле(подъем на большие высоты предусмотрен, так как пилотская кабина и пассажирский салон не герметизированы). Максимальная дальность полета без пассажиров ОКОЛО 1000 км, практическая дальность в зависимости от загрузки — от 300 до 800 км.

была быстро Новая машина работниками гражданосвоена По достоинству ской авиации. оценили ее и пассажиры, которые хорошо отзываются о ее более устойчивом, чем у Ан-2, полете, комфорте, практически не уступающем условиям полета на большом воздушном лайнере.

А конструкторы уже подумали о дальнейшем совершенствовании самолета. Дело в том, что самолет Л-410 требует взлетно-посадочную полосу большей длины, чем требуется для Ан-2. ЭТОГО приходится переоборудовать аэродромы.

Самолету новой модифика-— Л-410УВП (буквы УВП означают «укороченный взлет и посадка»), испытания которого заканчиваются, требуется взлетнопосадочная полоса длиной всего 850 м, и гавани «аннушки» станут родным домом новичка.

> Инженер И. КАЗАНСКИЙ Рисунки В. ХАМКИНА

MAN WE WOOD MAN

курса стали болгарские OPHEHработы Международиой промышностружечных плит, сделанных в разных стралями своеобразного конизделия, Они изготовлены по новой технологии. Раньше древесные частипрессовались вместе со смолой в хаотическом состоянии. Теперь же онн Hebes 4acrMoedba-6yAyа крупные получается раза прочленной ярмарки в Плов--OGL испытания древеси победитеи более прочные «тонут» виутренние. спецналисты сначала проходят «ВСПЛЫВАЮТ», внешние слок ДЕЛО В В дни вибратор. Мелкие плита в два плиты, MKDa. результате образуя ВСЕ Д диве вели Hax 121

нее обычной

специалистасовершать маневры не прибегая к страхующим фалам. Вмес системой жизнеобеспечения ранец снаб-ABHFaтельной установной. Новое средство передвижев космосе предполавокруг мосмического жопозволит астронав гают использовать вывода на орбиту небольшой Шаттл». KAHCKNMH «Спейс рабля. Her Me KII

ДЛЯ ТРЕНИРОВКИ ФУТБОЛИСТОВ, Недавно

здали робот «Играюший

шведские инженеры со-

универсал», Автомат способен - в зависимости

ровной вратарей. Он спо-5от справляется с тренисобен раз за разом точно ранее определенной скоодним словом: «Здорово!» полета мяча. Первые футболистов о выбрасывать мячи MOWHO жиую точку I ner. времени DOCTOR 36IBbl BIIIKe

ФОТОАППАРАТ - **ИЗМЕ**-РИТЕЛЬ. Взрывные рабо-До последнего их результаты более результаты оценивались так, Пробы грунта делались выводы о том, насколько хорошо измельгы в горном деле примепросеивались сивозь ханнческие сита. По пученным фракциям VHe размельченного HAIOTCA BOT

crepeo-HOMBOCTY рассыпаются по земле и COTOC фотокамерой, Затем снимни анализируются при пои минрональкулятора. Таним образом удается получить гораздо более точные данные о размерах кусков взорванной порошаровые другое технологическое оборудование удается использовать мощи масштабной сетии с гораздо большей жили специалисты грамметричесной фотографируются Теперь npoebl рективностью. мельницы и HUHE Abl.

> Habecпрострельные отработии осваивать

от программы --

форвардам

Barb HPIE

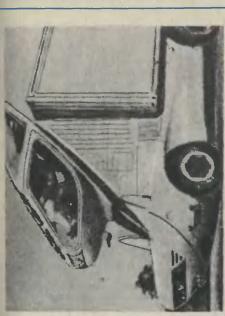
HZH

подкаты и другие приеостановки и отбора мяча. Но лучше всего ро-

ME

защитникам

BODOT C


ударов с лета, помогает

HUH!

передачи

ameduразработанный PAKETHЫЙ

столиновении гидравлическая система мгновенно подбрасывает кабину безопасную высоту.

КАТАПУЛЬТА

-84 жерле вулкана. Зачем это ВА. Группа западногерманских специалистов создала установку, в ноторой воспроизводятся процессы, происходящие нужно? Оказывается, тественная пористая CHHTETHYECKAR выбрасываемая

товить большие ги и обладает шили делать используемые строительный строительный получивший зобетома, I уступает нако из OHHPIMM MEHHOM

На кокце каждого крыла самолет, могущий летать меняться при строительтальной плоскости. Затем двигатели постепенно повертолет превращается ворачиваются на 90° жэнтан», уже начал нового летательного парата установлены стве жилых домов. со сноростью до **НОНВЕ**ОТОПЛАН CAMOJET TONET. B самолета петному гатели HOL TOB такие паматериал, превосходный ему в прочиостериала не удается изгоградостроительустановки. Синтетичесний материал. Она в 5 раз легче желепраитически не исключительными теплоизоляципанели, B COBDeстве. Вот инженеры и рецебня при помощи новой название нели из глины. песка свойствами. природного MQU нратера

взлете лопасти винвращаются по-верто-

с пропеллерами.

создан - гибрид вертолета.

1716C CILA горизон-

8

500 KM/4.

ся к идеям, уже известрешений обрашаютиапример, случилось при разработке новой конструкции автоперевозии нонтейнеров. Западногеробеспечения безопасности водителя решили приме-**Катапультирова**-BOSMOKKIOM АВТОМОБИЛЯ. Порою инженеры поисиах новых **КОНСТРУНТОРЫ** ANR Tak. MOGHAR MAHCKNE HHTb... HHKK.

НЕОБХОДИМАЯ ВЕЩЬ

Фантастический рассказ

Роберт ШЕКЛИ

Рисунки О. СОЛОВЬЕВОЙ

Ричард Грегор сидел за своим столом в офисе «ААА. Служба Обеззараживания Планет», без всякого энтузиазма разглядывая лежащий перед ним длинный список из 2305 наименований и пытаясь вспомнить, не упустил ли он чего-либо.

Антирадиационная мазь? Осветительные ракеты? Очиститель воды? Нет, перечень включал все необходимое. Грегор зевнул и посмотрел на часы. Арнольду, его партнеру, пора бы и вернуться. Тот отправился заказывать эти 2305 наименований и должен был проследить за их доставкой на орт космического корабля. Ченесколько часов «ААА» предло приступить к очередной те.

все ли он записал? Косми-

рянный в океане остров, и если на Дементии-2, например, кончится фасоль, вряд ли удастся найти там магазин и пополнить запас. И спасательный корабль не прилетит по первому зову, чтобы заменить сгоревшчй отражательный экран маршевого двигателя. Запасной экран надо везти с собой вместе с инструкциями и оборудованием для его установки...

Через несколько минут появился Арнольд. Грегор подозрительно посмотрел на своего партнера. Обычно его сияющее лицо и подпрыгивающая походка означали неприятности для «ААА».

— Ты все достал? — спросил Грегор.

— Даже больше!— с гордостью ответил Арнольд.

— Мы должны стартовать..

— Конечно, конечно, — перебил его Арнольд, усевшись на край стола. — Сегодня я сэкономил нам значительную сумму.

— О, — вздохнул Грегор. —

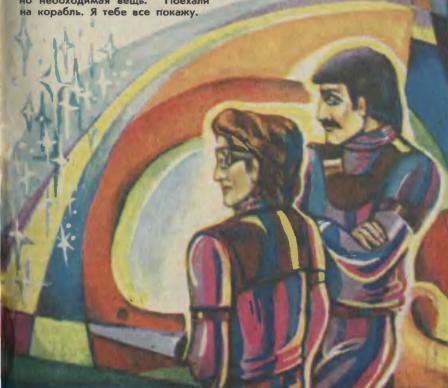
Каким же образом?

— Ты же знаешь, — важно объяснил Арнольд, — сколько денег уходит на оснащение обычной экспедиции. Мы берем с собой 2305 наименований на случай, что они, возможно, нам пригодятся. А в корабле тесно, и большая часть оборудования никогда не используется.

— Кроме тех случаев, — заметил Грегор, — когда оно спасает

нам жизнь.

— Я это учел. И вообще рассмотрел эту проблему в целом. И смог значительно сократить список. Совершенно случайно я наткнулся на одну штуку, которую действительно надо везти с собой. Единственная действительно необходимая вещь. Поехали на корабль. Я тебе все покажу. По дороге в космопорт Арчольд не произнес ни слова и лишь загадочно улыбался. Корабль уже стоял на стартовой площадке.


— Смотри! — воскликнул Арнольд, откинув люк. — Мечта всех космических путешественни-

Грегор увидел большую, необычного вида машину. По всей поверхности клавиши, кнопки, диски, приборы, индикаторные лампочки.

— Что это?

— Разве не прелесть?! — Арнольд с любовью похлопал по передней панели. — Джо, Межзвездный Старьевщик, случайно нашел ее у себя. Я приобрел ее буквально за гроши.

Грегору все стало ясно. Он уже имел дело с Джо. Продаваемый им хлам, конечно, работал, но мог

выкинуть самый неожиданный фортель

— Ни один из товаров Джо не полетит со мной в космос, — отрезал он. — Надеюсь, мы сумеем продать это на металлолом.

— Подожди, — взмолился Арнольд. — Представь себе следующее: мы в глубоком космосе, и тут забарахлил маршевый двигатель. Проверка показала, что в топливном проводе соскочила стопорная гайка из дюраллоя. Гайку мы найти не можем. Что делать?

 — Мы берем новую гайку из тех самых 2305 наименований, взятых именно для этой цели,

ответил Грегор.

— Aral Но в твоем списке нет дюраллоевых гаек диаметром четверть дюйма! — победоносно воскликнул Арнольд. — Я проверил. Что тогда!

— Не знаю. Может быть, ты

мне скажешь?

Арнольд подошел к машине и нажал кнопку,

 Гайка из дюраллоя диаметром четверть дюйма, — сказал он громко и отчетливо.

В машине что-то зажужжало, замигали индикаторные лампочки. Затем передняя панель отошла в сторону, и перед партнерами появилась блестящая, только что изготовленная дюраллоевая гайка.

— Вот что мы сделаем! — В голосе Арнольда слышалось удо-

влетворение.

 Однако... — Грегор, несомненно, удивился. — Значит, она делает дюраллоевые гайки. Что еще?

Арнольд снова нажал кнопку. — Фунт свежих креветок,

На этот раз за панелью оказал-

ся фунт свежих креветок.
— Лучше бы я заказал их очищенными, — вздохнул Арнольд и, нажав кнопку, добавил: — Графитовый стержень, длина четыре фута, диаметр два дюйма.

— Значит, она может все?

Именно. Это Конфигуратор.
 Попробуй сам.

Грегор нажал на кнопку и получил пинту чистой воды, наручные часы и бутылку кока-колы.

— Однако... — повторил он.

— Разве лучше тащить с собой 2305 наименований? Гораздо проще и логичнее получать необходимое в нужный момент.

— Неплохо, — согласился Гре-

гор. — Но...

— Что но?

Действительно, что? Он не мог найти ни одного довода. Просто знал, что ни одна из машин Джо не работала так хорошо, как казалось с первого взгляда.

Через час корабль покинул Землю. Они летели к Деннетту-4, небольшой планете в созвездии Девы. Этот жаркий и плодородный мир имел лишь один существенный недостаток: там практически непрерывно шел дождь.

Им предстояла не слишком сложная работа. Достаточно хорошо исследованные методы контроля климата, многократно проверенные на других планетах, испытывающих аналогичные трудности, позволяли надеяться, что «ААА» справится с ней максимум за неделю и планета станет пригодной для жизни.

Полет прошел без происш ствий, и вот на экране передне обзора показался Деннетт. Ар нольд выключил автопилот и повел корабль на посадку сквоза плотные слои облаков. Наконеи показались вершины гор, а затем они приблизились к плоской, без единого дерева серой равнине.

— Какой странный цвет у эт

почвы, -- заметил Грегор.

Арнольд согласно кивнул. Вровняв корабль, он подвел его к ровной площадке и выключил двигатель.

— Интересно, почему нет растительности? — спросил Грегор.

Через мгновение он получил ответ. Корабль провалился сквозь равнину и, пролетев, как потом выяснилось, еще десяток футов,

шлепнулся на землю.

Такой плотный туман, который они приняли за твердую поверхность, мог сформироваться только на Деннетте. Торопливо ощупав себя и убедившись, что кости целы, отстегнули предохранительные ремни и приступили к осмотру корабля.

Свободное падение не пошло ему на пользу. Радиостанция и автопилот разлетелись вдребезги, помялась обшивка и, что самое худшее, пострадала система

управления двигателем.

Нам еще повезло, — заметил Арнольд.

— Да, — согласился Грегор, всматриваясь в окружающий их туман, — но в следующий раз при посадке надо пользоваться приборами.

— В какой-то степени я даже рад случившемуся, — продолжал Арнольд. — Теперь ты увидишь, зачем нам нужен Конфигуратор.

Они составили перечень поврежденных деталей и узлов. Арнольд подошел к Конфигуратору, нажал на кнопку и сказал:

— Анодная пластина ускорителя, площадь пять квадратных дюймов, толщина полдюйма, сплав 342.

Машина м**гнов**енно выполнила приказание.

— Нам нужно десять штук, — напомнил Грегор.

— Я знаю. Еще одну, — сказал Арнольд, нажимая кнопку.

Конфигуратор не прореагиро-

— Наверное, требуется полная

3 «Юный техник» № 1

команда, — Арнольд внов нажал на кнопку и повторил заказ. Конфигуратор безмолествовал.

— Странно, — удивился Арнольд, попробовал еще раз и снова безрезультатно. Затем он глубоко задумался и снова нажал на кнопку. — Пластмассовая чашка!

Передняя панель отошла в сторону, открыв ярко-голубую пласт-

массовую чашку.

— Еще одну!

Машина оставила просьбу без ответа. Тогда Арнольд потребовал цветной мелок и тут же получил его.

— Еще один мелокі

Никакой реакции.

 Очевидно, Конфигуратор может сделать все, что угодно.
 Но только в одном экземпляре, — заметил Арнольд.

 Все это хорошо, — проворчал Грегор, — но нам нужно еще девять анодных пластин. И четыре одинаковых элемента системы управления. Что ты собираешься

делать? — Мы что-нибудь придумаем.

— Надеюсь, — вздохнул Грегор.

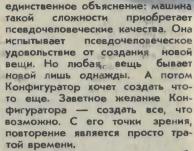
Они сели и глубоко задума-

— Есть только одно объяснение, — воскликнул Арнольд несколько часов спустя. — Принцип удовольствия!

— А? — Грегор испуганно вздрогнул. Он уже давно дремал, убаюканный мерным шумом па-

на обшивку корабля капаль дождя.

— Эта машина, несомненно, обладает определенным уровнем сознания, — продолжал Арнольд. — Она получает приказ, анализирует его и выдает требуемый продукт, карактеристики которого заложены в ее памяти.


— Но только в единственном

числе, — отметил Грегор.

— Но почему? Думаю, мы столкнулись с самоналоженным ограничением, связанным с тягой к наслаждениям. Или, возможно, к псевдонаслаждениям.

— Что-то не пойму тебя.

 Послушай. Создатели Конфигуратора не могли так сузить его возможности. Отсюда следует

— Никогда не слышал подобной ерунды, — Грегор зевнул. — Допустим, ты прав. Но нам-то что

делать?

— Не знаю.

— Я так и думал.

В этот день на обед Конфигуратор приготовил вполне сносный бифштекс, а на десерт партнеры получили яблочный пирог и швейцарский сыр. Настроение их существенно улучшилось,

— Заменители! — воскликнул Грегор, наслаждаясь полученной из машины гаванской сигарой. — Вот что стоит попробовать. Пластины можно изготовить не только из сплава 342. Нам ведь нужно лишь дотянуть до Земли.

Однако получить пластины из железа или содержащих его сплавов, аналогичных 342-му, им не удалось. С бронзой все получилось, но ничего не вышло с медью и оловом. Затем последовали алюминий, кадмий, платина, золото и серебро. Пластина из вольфрама казалась настоящим чудом. Арнольд дорого бы отдал, чтобы узнать, как машина ее сделала. Грегор отказался от плутония, но вспомнил о сверхпрочной керамике. Последнюю пластину они получили из цинка.

Друзья славно потрудились и отметили это прекрасным ужином.

На следующий день они поставили пластины на место. Теперь двигатель по внешнему виду напоминал лоскутное одеяло.

— По-моему, неплохо, — сказал Арнольд.

— Надеюсь, выдержит, — вздохнул Грегор. — Давай займемся системой управления.

Итак, не хватало четырех идентичных элементов, сложных, точных конструкций из стекла и металла. Тут заменители не подходили.

Первый элемент Конфигуратор выдал без промедления. И все. К полудню партнеры выдохлись.

— Есть идеи? — спросил Грегор.

Давай сделаем перерыв и пообедаем.

Они заказали салат из крабов. Конфигуратор на мгновение зажужжал, но передняя панель не сдвинулась с места.

— Что случилось? — спросил

Грегор.

— Этого-то я и боялся, — вздохнул Арнольд.

— Чего этого? Мы же еще не

заказывали крабов.

- Нет, но уже получили креветки. И те и другие имеют хитиновый покров. Боюсь, Конфигуратор знаком с классификацией видов.
- Тогда придется открыть кон-

сервы.

— Ну, — слабо улыбнулся Арнольд, — купив Конфигуратор, я решил, что не стоит беспокоиться... Ну, в общем...

— Консервов нет?

— Нет.

Они попросили семгу, форель, тунца. Безрезультатно. Жареную свинину, баранью ногу, говяжью вырезку. Ничего.

- Похоже, что наш вчерашний бифштекс олицетворял всех млекопитающих, сказал Арнольд. Это интересно. Кажется, мы сможем создать новую теорию класс...
- Умирая от голода, прервал его Грегор. Он попросил жареного цыпленка и тут же получил его.

— Эврика! — воскликнул Арнольд.

— Черті — выругался Грегор.. — Надо было просить печеного страуса.

После скромного ужина, состоящего из остатков цыпленка, Арнольд подошел к Грегору.

— Может получиться, — ска-

зал он.

-- Получиться что?

— Принцип удовольствия. — Он зашагал по каюте. — Машина обладает псевдочеловеческим качеством. Определенно, она склонна к обучению. Думаю, нам удастся научить ее испытывать наслаждение от многократного воспроизведения одного и того же предмета. В частности, элемента системы управления.

— Стоит попробовать, — согла-

сился Грегор.

Всю ночь они говорили с Конфигуратором. Арнольд убедительно нашептывал о прелестях повторяемости. Грегор важно рассуждал об эстетических достоинствах, присущих созданию такого сложного устройства, как элемент системы управления, и не единожды, а многократно, с абсолютной идентичностью каждого из них.

Мигание лампочек показывало, что Конфигуратор внимательно слушает. И наконец, при первых проблесках туманной зари Арнольд нажал на кнопку и дал команду на изготовление элемента системы управления.

Машина заколебалась. В усилившемся жужжании слышалась охватившая ее неуверенность. И тут панель отошла в сторону, открыв еще один элемент систе-

мы управления.

— Победа! — закричал Грегор и попросил еще один элемент. В жужжании появились басовые нотки, но панель не шевельнулась.

Грегор попробовал еще раз, но панель не сдвинулась с места. Те-

перь намерения Конфигуратора не вызывали сомнений: никаких двойников.

— Что это с ним? — спросил Грегор.

— Все, очевидно, — грустно объяснил Арнольд. — Конфигуратор решил попробовать, что же такое повторение. И пришел к выводу, что оно ему не нравится.

— Это бесчеловечно! — просто-

нал Грегор.

 Наоборот — это так похоже на человека, — печально заметил Арнольд.

Подошло время еды, и партнерам пришлось поломать голову,

чтобы получить что-то, хотя бы отдаленно напоминающее обед. Овощи не вызвали трудностей, но оказались не слишком питательны. Машина выдала им кусок хлеба, но отказала в торте. Съеденный днем раньше сыр вывел из их рациона молочные продукты. Лишь после долгих мучений они добились фунта китового мяса.

После еды Грегор снова принялся убеждать Конфигуратор, расписывая радости повторения. Мерное жужжание и едва заметное мерцание ламп указывали на то, что Конфигуратор пропускает все его слова мимо ушей.

Во внутренние помещения корабля проникла плесень, на стальной анодной пластине появилась ржавчина. Машина все так же слушала хвалу повторяемости, но

никак не реагировала.

Приблизилось время очередного приема пищи. Они получили... ножки лягушки, кузнечиков, запеченных в тесте (старинное азиатское блюдо), и филе из игуаны. Закусив холоднокровными, насекомыми и кузнечиками, они поняли, что в дальнейшем от Конфигуратора еды не жди...

От ужасной диеты и напряжения длинное лицо Грегора стало еще костлявее, Арнольд обнаружил плесень у себя в волосах. А на планете непрерывно шел дождь. Космический корабль медленно оседал под собственным весом, погружаясь в мягкую почву.

И тут Грегора осенило. Последний крохотный шанс на успех, но и им нельзя пренебрегать. О осторожно приблизился к Конригуратору. Арнольд пристально аблюдал за ним, встревоженный и орадочным блеском глаз партера.

оследний шанс, — прорынал Грегор. Дрожащей рукой он нажал на кнопку и что-то про-

шептал.

В первый момент ничего не изменилось. И вдруг Арнольд закричал: «Отходи, скорее отходи!»

Машина задрожала, замигали огни, индикаторы светились зловешим пурпуром.

— Что ты приказал ей сделать? — спросил Арнольд.

— Себя, — коротко ответил Грегор.

Конфигуратор вздрогнул и выпустил облако черного дыма. Партнеры закашлялись, закрыли лицо руками. Когда дым рассеялся, рядом с покрытым облугившейся краской Конфигуратором стоял его новенький, сияющий глянцем двойник.

— Ура! — воскликнул Арнольд, хлопая Грегора по спине. — Ты кас cnac!

Тот сухо улыбнулся:

— И не только — я сделал нам состояние.

Подошел к двойнику, нажал на кнопку. И из черного облака дыма возник еще один Конфигу-

ратор.

Через неделю Арнольд, Грегор и три Конфигуратора прибыли в космопорт, полностью закончив работу на Деннетте. Арнольд первым делом отправился на Кэнел-стрит, затем в центр Нью-Йорка. Через три часа вернулся на корабль.

— Все в порядке, — радостно прокричал он. — Я встретился с несколькими ювелирами. Мы можем продать примерно двадцать крупных алмазов, не сбивая цен. Потом, полагаю, мы переключимся на платину, а... что случилось?

-- Ничего не замечаешь? --

резко спросил Грегор.

— А что? — Арнольд растеряно оглядел жаюту, Грегора, Кофигураторы. Наконец он понякогда он уезжал, их было тритеперь стало четыре.

— Ты приказал сделать один? — спросил Арнольд. Прекрасно. А сейчас давай пр

ступим к алмазам...

— Ты ничего не понял, — покачал головой Грегор. — Смотри.

Он нажал на кнопку ближайшего Конфигуратора и сказал: «Алмаз!»

Конфигуратор выплюнул облако дыма и... очередной Конфигура-

Topl

— Проклятый принцип удовольствия! — рявкнул Грегор. — Повторение! Эти чертовы машины сошли с ума!

Перевел с английского В. ВЕБЕР

НАША КОНСУЛЬТАЦ

ОБЗОР ПУБЛИКАЦИЙ

В 1972 году в нашем журнале появился новый раздел, названный «Наша консультация». Цель его публикаций — знакомить тателя с разными профессиями, рассказывать о том, какие качества нужно воспитать в себе, чтобы стать мастером своего дела.

«Наша консультация» познакомила читателей со многими специальностями. По традиции в каждом первом номере мы даем обзор публикаций раздела «Наша консультация» за последние два года.

1979 год

Художником по металлу можно стать, если овладеть профессией токаря так, как знает свое дело призер Всесоюзного конкурпрофессионального мастерства, токарь-инструментальщик завода «Ростсельмаш» Владимир Каргапольцев.

Очерк о молодом мастере чи-

тайте в первом номере.

«Умеете ли вы читать?» Так называется статья во втором номере. Действительно, умеете ли вы правильно читать, так, чтобы чтение было не только развлечением (это тоже допустимо), серьезной умственной работой, которая обогатит новыми знаниями, расширит кругозор?

профессии повара, о том, какой становится сегодня древняя профессия, об изобрете-

ниях, которые облегчают труд поваров, вы найдете рассказ в четвертом номере журнала.

«Среди тысяч — одна» статья в шестом номере рассказывает о некоторых основных вопросах, которые приходится решать молодому человеку, выбирающему профессию, например, откуда получить сведения о той или иной профессии.

О людях, которые превращают выжженные солнцем пустыни хлопковые и рисовые поля, а болота в плодородную пашню, о мелиораторах — рассказывает инженер-гидротехник П. Щербаков в статье «Преобразователи земли» (номер 8).

В одиннадцатом и двенадцатом номерах журнала под заголовком «Стратегия выбора» даются таблицы и схемы так называемой профессиограммы, в основу которой положены разработки советского ученого Е. Климова.

какой-то Профессиограмма в мере может стать путеводной нитью в выборе дела по душе, своим возможностям, объективным данным. Условно поиск решения этой нелегкой задачи можно разбить на пять действий. Действие первое - определить свои склонности, а для этого прежде всего сориентироваться в мире современных профессий.

Действие второе - определить свои способности.

Действие третье нет ли противопоказаний по состоянию здоровья какой-либо работе.

Действие четвертое — определить пути и способы получения профессии (нужна ли специальная подготовка, виды обучения и т. п.).

Действие пятое — выяснить потребность в интересующих вас профессиях и перспективы их развития в районе, где предполагаете работать. На публикации «Стратегия выбора» советуем обратить особое внимание.

1980 год

«Почтальоны — спутники каждого в беде и радости». Их роль в нашей жизни по-прежнему велика, и оттого по-прежнему строги предъявленные к этой профессии требования». Это выдержка из статьи «Почтальон и почта», опубликованной во втором номере. В статье рассказывается, какими качествами должен обладать человек «с толстой сумкой на ремне», как современная техника облегчает труд почтальона.

В третьем номере публикуется рассказ о знатном донецком шахтере Герое Социалистического Труда Михаиле Павловиче Чихе.

Путь в любимую профессию, путь к победам, рекордам начинался для известного шахтера не на шахте, а в колхозном поле. Пути в профессию ведут разные, важно выполнять одно условие: за какую бы работу человек ни брался, пусть даже это временная работа, — делать ее нужно честно.

Трудолюбие, ответственность за порученное дело, умение отстаивать свою точку зрения важны в любом деле. К этому призывает биография Героя Труда М. П. Чиха.

В номере девятом мастер машинного доения 1-го класса Любовь Скрюкова рассказывает о работе современной доярки.

Техника и животные — вот с

чем имеет дело мастер доения. Работа доярки стала физически легче, производительней и вместе с тем, конечно же, сложнее, интереснее.

Многое на молочных фермах делают машины. И все-таки, кроме умения работать со сложной техникой, у мастеров машинного доения остается многое от доярок всех времен — с буренками надо обращаться ласково, быть к ним внимательным.

Людям, которые сражаются с камнем и водой, газом и огнем, — горноспасателям — посвящен очерк «Человек против беды» в десятом номере.

Но прежде чем стать горноспасателем, надо научиться шахтерскому делу. Тот, кто не привыкнет к каждодневному труду в шахте, вряд ли справится с аварийной ситуацией. Такой вывод делаешь, прочитав рассказ о горноспасателях.

Статью «Как не надо выбирать» (она опубликована в одиннадцатом номере) мы советуем прочитать с особым вниманием. Автор призывает не откладывать такое важное решение — выбор жизненного пути — на весенние дни выпускного класса.

Из статьи вы узнаете, что такое «эффект 31 июля» и что пятерка за школьный предмет еще не гарантия призвания.

О железнодорожниках рассказывает статья «Ритм, скорость, качество». Навернсе, многие из вас, прочитав заголовок, решили, что речь пойдет о машинистах. Но к скорости, ритму движения поездов имеют отношения люди многих специальностей и профессий, объединенных одним словом — железнодорожники.

Герой статьи молодой рабочий Сергей Ступак — железнодорожник-ремонтник, а точнее ремонтник-приборист, в школе мечтал об авиации. О том, как стал Сергей железнодорожником и какое удовлетворение приносит работа, рассказывает материал.

NOTEHTHOE DE LA LINE D

ЭЛЕКТРИЧЕСТВО ДАЕТ ОКЕАН

Предлагаю проект волновой электростанции, в которой механическая энергия волн используется для привода поршневых насосов, подающих морскую воду в бассейн. Уровень воды в бассейне на 20—30 м выше уровня моря, чтобы обеспечить перепад высот. Из бассейна вода самотеком поступает в гидравлическую турбину, которая вращает электрический генератор. Электрический ток можно использовать для освещения улиц небольшого приморского города.

- Сергей Прибылов, г. Владивосток



В выпуске ПБ рассказывается о двух необычных проектах электростанций и других интересных предложениях.

ЕЩЕ ОДНА ВОЛНОВАЯ

Как мне кажется, энергию морских волн можно преобразовывать э электрическую без всяких промежуточных устройств. В вертикальной трубе [без дна] установлен поплавок. При волнении моря поплавок перемещается в трубе вверх-вниз. Возаратно-поступательные движения через шток передаются сильному постоянному магниту, на сердечник которого надета спираль проводника. Когда спираль-проводник пересекает силовые линии магнита, в проводнике генерируется ток.

Александр Самсонов, г. Мурманск

КОММЕНТАРИЙ

СПЕЦИАЛИСТА

Ветер раскачивает поверхность морей и океанов. Во время бриза образуется едва заметная рябь. Ветер стал ураганным — и на берег обрушиваются огромные валы. Если взглянуть на поверхность моря с крутого берега, может показаться — вода движется вместе с волной. Но в действительности перемещается не вода, а лишь ее поверхность. Так, например, пробка, плаваюшая на поверхности моря, «танцует» вверх-вниз и незначительно подвигается в направлении движения волны. Когда же волна подходит к берегу, ее гребень опрокидывается, перемещая огромные массы воды вперед.

На эти две особенности и обращают внимание изобретатели. И вот почему. Береговая линия нашей страны, обращенная только к Тихому океану, протянулась многие тысячи километров. подсчетам энергетиков, на нее обрушиваются волны, суммарная знергия которых составляет половину от вырабатываемой в настоящее время всеми За поэлектростанциями страны. десятилетие предследнее ложено много проектов электростанций, преобразующих даровую энергию волн в знергию электрическую. Правда, построены и дают промышленный пока лишь единицы. Чем же объяснить, что до сих пор не используются огромные запасы механической энергии морских волн, которые в масштабах Земли сравнимы с энергией 400 000 таких энергетических гигантов, Красноярская ГЭС? Причин несколько. Первая — механическая знергия рассеяна по волнам. имеющим различную высоту длину. Вторая - очень трудно использовать полностью знергию волны. Лучшие экспериментальные образцы электростанций преобразуют механическую знергию волн в энергию электрическую с козффициентом полезного действия, не превышающим процентов. И последняя. третья, причина заключается в малой мощности отдельного энергоблока, отчего стоимость строительства и зксплуатации всей волновой электростанции значительно возрастает. Это станет понятнее, если скажем, что каждый метр береговой пинии может дать в среднем до 10 кВт, если, конечно, эту энергию использовать полностью.

Посмотрим, как же пытаются преодолеть эти трудности Сергей Прибылов и Александр Самсонов. Оба автора рассматривают прибрежный вариант волновых злектростанций. И совершенно правильно. У берега разница в высоте между горбом и впадиной волны, или ее амплитуда, будет наибольшей. Правда, в проекте Александра Самсонова волны не играет существенной роли — лишь бы она была вообще. Дело в том, что вертикальные перемещения штока ограничены высотой пружинного водника. В проекте же Сергея Прибылова высота волны, наоборот, имеет существенное ние. Чтобы станция могла работать, когда волнение ROOM превышает двух баллов, Сергей придумал необычный гидравлический усилитель. По сути дела, это железобетонный желоб, установленный перпендикулярно волнам. У желоба есть маленькая хитрость - его горловина напоминает воронку, разрезанную вдоль оси. Накатившаяся на такой желоб волна благодаря суживающимся стенкам поднимается, действие на поплавкоусиливая вые механизмы в несколько раз. А сами поплавки связаны рычагами со штоками поршневых насосов одностороннего действия. Морская вода засасывается десятками таких насосов и подается наверх в резервуар. Оттуда она самотеком устремится по трубам на лопатки гидравлической турбины. Дальше электростанция Прибылова работает как обычная гидравлическая станция. Обращаем ваше внимание на одну любопытную сторону проекта Сергея. Он рассматривает свою станцию не только как волновую и гидравлическую, но и как гидроаккумулирующую. Это означает: если в электрической сети появилось избыточное электричество (такое имеет место после пиковых нагрузок, например ночью), можно использовать подкачки воды в резервуар.

Очевидно, что ни длина волны, ни ее направление, ни ее высота для обоих проектов существенного значения не имеют. Если волнение моря будет превышать два балла, обе электростанции способны вырабатывать электричество.

Пойдем дальше. В проекте Сергея энергия морских волн преобразуется в электрическую через цепочку машин. Тут рычаги, поршневые насосы, клапаны, трубопроводы, гидравлическая турбина. В каждом звене этой цепочки возникают потери, связанные с трением. Поэтому коэффициент полезного действия такой станции в целом будет не очень высоким.

В проекте Александра подобная механическая цепочка отсутствует. Энергия воли непосредственно преобразуется в энергию электрическую. Потери, конечно, и здесь есть, но они небольшие, лишь на трение штоков в подшипниках. Все устройство преобразователя состоит из постоянно-

го магнита и проводника-пружины. По закону Ленца индукционный ток, возникающий в проводнике, имеет такое направление, при котором его магнитное поле противодействует изменению магнитного потока, вызывающему этот ток. Следовательно, ток, генерируемый этим преобразователем, будет переменный, а электрическая энергия будет получаться согласно закону сохранения и превращения энергии за счет эквивалентного количества энергии, затрачиваемой волной на перемещения поплавка.

Значит, коэффициент полезного действия волновой электростанции Самсонова будет, несомненно, выше, чем электростанции Прибылова.

И наконец, интересно сравнить затраты на строительство и эксплуатацию равных по злектрической мощности волновых электростанций наших юных изобретателей. Строительство железобетонных желобов, механических узлов электрической станции Прибылова пришлось бы развертывать на воде или в каньоне, отделенном от моря временной насыпью. Сделать это не так-то просто и очень дорого. Кроме того, сборка трубопроводов, строительство резервуара, здания станции потребовало бы также огромных затрат. Да и для эксплуатации такой станции нужен большой штат обслуживающего персонала, следящего за работой многочисленных ее частей.

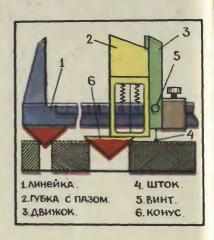
Гораздо проще волновая станция Самсонова. Монтаж отдельных блоков можно производить в заводских условиях. А сборку блоков в секции легко производить на берегу, где мощный плавучий кран быстро установит секции на предварительно вбитые в дно опоры. Остается соединить части секций параллельно и последовательно, чтобы увеличить ток и напряжение.

Член экспертного совета инженер В. ЗАВОРОТОВ

Рационализация

ЗАСЛОНКА-ЭЛЕКТРОМАГНИТ

Мы не раз уже рассказывали о предложениях, в которых использовались магнитные силы. Новое интересное применение ДЛЯ электромагнита нашел Вадим Бычков из Орла, «На некоторых заводах, - написал он, - руду транспортируют следующим образом: ее измельчают, заливают водой и эту пульпу перегоняют по трубам. При этом иногда приходится увеличивать скорость пульпы либо уменьшать. Для этого используют специальные заслонки, которые, сдвигаясь или раздвигаясь, токномен сечение трубы...»


Но механические заслонки быстро изнашиваются. Согласно идее Вадима их можно заменить электромагнитом.

Принцип действия прост. Один из участков трубы делается из немагнитного материала (чтобы на работу устройства не влиял остаточный магнетизм), и нв нем помещается электромагнит. Изменяя при помощи реостата силу тока, можно регулировать количество частиц железной руды, приставших к стенке трубы, и тем самым — диаметр сечения, через которое идет пульпа.

ШТАНГЕНЦИРКУЛЬ-УНИВЕРСАЛ

Мастеру часто приходится измерять расстояние между двумя отверстиями. Например, чтобы состыковать две детали или при выполнении чертежа. Для упрощения такой задачи Игорь Чехомов из Ижевска решил доработать обычный штангенциркуль. Устройство усовершенствованного штангенциркуля показано на рисунке. Одна из ножек инструмента сделана на пружине — для того, чтобы можно было измерять отвер-

стия разных диаметров. В конструкции предусмотрен шток, высоту которого можно регулировать, — это позволит устанавливать измерительную линейку параллельно поверхности. Чтобы ножка, закрепленная на пружине, держалась плотно, в ней сделан паз, в который плотно входит направляющая.

по закону сосудов

Комнатные цветы любят, когда их поливают через строго определенные промежутки времени.

Удачную конструкцию для томатического полива разработал Игорь Сухомлинов из Ворошиловградской области. Конструкция из резервуара с Игоря состоит водой, накопительного бака и поливающего устройства. С помощью крана скорость воды, вытекающей из резервуара в накопительный бак, регулируется так, чтобы он наполнялся за какое-то определенное время, например за сутки. В накопительном баке помещена изогнутая трубка. Когда вода в баке поднимется до ее вершины, вода по трубке

(вспомним закон сообщающихся сосудов) начнет перетекать в поливающее устройство. Подача воды прекратится, когда бак опустеет.

Стадион ПБ

В СЕКТОРЕ ДЛЯ ПРЫЖКОВ

Прыгуны в длину нередко «заступают за черту», и тогда прыжок не засчитывают. Устройство для определения, был заступ или

нет, предложил восьмиклассник Олег Огородников из подмосковного города Каширы. За планкой, от которой отталкивается спортсмен, помещается гибкая пластина, под которой находится кнопочный выключатель. Если прыгун наступит на пластину, замкнется электрическая цепь и загорится сигнальная лампочка. Такая несложная конструкция вполне может найти применение на школьном стадионе.

Возвращаясь к напечатанному

СНОВА О «БАРЖЕМОБИЛЕ»

Идея Василия Быкова из Нефтеюганска, предложившего конструкцию автопарома (№ 12 за 1979 год), вызвала большой интерес. Ребята работали над усовершенствованием автопарома, но, пожалуй, наиболее удачной окалась конструкция Алексея Прокина из села Новая Яксарка Пензенской области.

Автопаром согласно его идее приводится в движение дву-

мя гребными винтами. Их вращение обеспечивается через тяговые ролики и редукторы задними колесами автомобиля. Для того чтобы повернуть паром вправо или влево, достаточно зафиксировать соответствующий тяговый ролик можно использовать для этого,

например, ленточный тормоз. Эта операция проводится с помощью поворотных рычагов, установленных так, что управлять ими можно непосредственно с места водителя.

И еще одно немаловажное достоинство есть у конструкции Алексея. Как известно, задние колеса автомобиля связаны ду собой дифференциалом. Когда один из тяговых роликов будет зафиксирован неподвижно, второе колесо за счет особенностей конструкции дифференциала будет вращаться со скоростью, заметно превышающей скорость совместного вращения Значит, поворот или разворот «баржемобиля» можно будет произвести с очень малым радиусом кривизны - автопаром окажется весьма маневренным.

Рисунки В. РОДИНА

Экспертный совет отметил авторскими свидетельствами журнала предложения Сергея ПРИБЫЛОВА из Владивостока и Александра САМСОНОВА из Мурманска. Предложения Игоря СУХОМЛИНОВА из Ворошиловградской области, Вадима БЫЧКОВА из Орла, Игоря ЧЕХОМОВА из Ижевска, Олега ОГОРОДНИКОВА из Каширы и Алексея ПРОКИНА из Пензенской области отмечены почетными дипломами.

Кроме авторов предложений, о которых рассказывалось в этом выпуске ПБ, экспертный совет отметил почетными дипломами предложения Владимира Бердникова из Йошкар-Олы, И. Краснокутского из Ярославля, Дмитрия Пелипейченко из Жданова, Юрия Маркарова из Телави и Сергея Макулина из Ворошиловградской области.

вижу мыслы

Каждый раз мы с волнением начинаем просматривать очередную пачку писем с предложениями, которые вы присылаете в Патентное бюро нашего журнала. Наше нетерпение вполне объяснимо: а вдруг, как бывает нередко, и сегодня найдется чтонибудь неожиданное, свежее, оригинальное, что было бы достойно не только опубликования на страницах журнала, но, может быть, и внедрения в производство.

К сожалению, зта очень приятная и радостная для нас работа слишком часто омрачается тем, что приходится разгадывать, словно ребусы, ваши малопонятные, а то и вовсе непонятные чертежи и рисунки. Что тут изображено? Как механизм работает? Что где крепится? Как взаимодействуют детали? Хорошо еще, если в конце концов становится ясен замысел автора и замысел этот оригинален и свеж. Но чаще всего, увы, небрежный эскиз свидетельствует лишь о том, что автор предложения сам не до конца разобрался в собственных мыслях. Конструктору такое туманное воплощение своих идей на бумаге, мягко говоря, непривычно. Он привык к другому: если на стол лег чертеж, то все в нем ясно и понятно. Конечно же, вопросы возникают всегда, если это не окончательный рабочий чертеж, а проект. Причем много вопросов. Но среди них нет такого: «А что тут изображено!» Другими словами, чтение чертежа не стапроблемой. мыслы» - можно сказать сразу.

А здесь, в почте Патентного бюро, повторяем, в проблему очень часто вырастает само чтение чертежа. Вскрываем конверт, вглядываемся в хаотичное нагро-

мождение линий и не видим мысли. Может, она и есть, но добраться до нее чрезвычайно трудно.

Вот мы и решили напечатать несколько статей в помощь тем, кто не умеет достаточно четко и ясно изображать свой замысел на бумаге.

Но делаем мы это не только для того, чтобы облегчить себе чтение ваших чертежей и рисунков. Гораздо важнее, чтобы вы сами до конца разобрались в собственных мыслях.

Тут вы можете возразить: «Раз уж поспали предложение в редакцию, значит, разобрались до конца, по крайней мере для себя».

Мы в корне не согласимся с таким возражением, ибо знаем по опыту, что пока идеи не обрели логической последовательности и не выразились на бумаге четко и грамотно, они остаются лишь в увлеченном воображении автора и малодоступны для понимания, а следовательно и для реализации.

Более того, часто бывает так: накалываешь на чертежную доску чистый лист ватмана, берешь остро заточенный карандаш, начинаешь чертить и вдруг осознаешь, что вопросов возникает гораздо больше, чем ответов, хотя перед этим была уверенность, что мысли окончательно созрели и остается только удовлетворить их желание выплеснуться на бумагу. В памяти трудно удерживать, да еще и анализировать пемногообразие ремежающееся идей. Чертежи-то и дают возможность не только фиксировать, но и анализировать принятые решения, сопоставлять и оценивать их.

Вообще чертежи обладают ценнейшим свойством дисципли-

нировать процесс создания новой конструкции на всех этапах, от замысла до воплощения.

Сейчас производство любого изделия начинается с рабочих чертежей. Ни авторучку, ни даже ложку или вилку завод не возъмется делать, не имея чертежей. В наши дни домашнюю поделку и то неприлично делать без чертежа, на глазок. Так что же говорить о машинах и механизмах?

Представьте себе совершенно невероятную ситуацию: авиационному заводу прислали полное собрание сочинений Николая Егоровича Жуковского, где на самом высоком теоретическом уровне даны основы воздухоплавания, и попросили, руководствуясь этими трудами, начать выпуск самолетов. Не умаляя величайших научных заслуг «отца русской авиации», мы должны признать, что если на заводе нет хорошего конструкторского бюро, ЭТУ просьбу при всем желании выполнить невозможно. На заводе

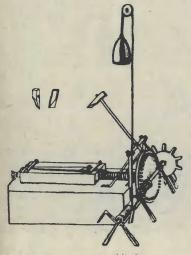
Самолет Як-42.

работают тысячи людей, и, конечно, все понимают, что надо строить самолеты, но они должны знать конкретно, что и как для этого будет делать каждый. Ответ на этот вопрос дают рабочие чертежи, а точнее — комплект конструкторской и технологической документации. Для постройки сложной машины заводу нужно очень много чертежей — тысячи, а иногда и десятки тысячлистов.

Иной раз приходится наблюдать такую картину: два человека склонились над рабочим чертежом — один показывает его, другой изучает. И оба молчат — ну разве что обмениваются междометиями. Постороннему может показаться, что сошлись два неразговорчивых человека. На самом же деле эти люди оживленно беседуют, только на другом

языке — на языке техники. Чертеж — это и есть язык техники, и он не требует и не терпит лишних слов. Чертежи могут безмолвно рассказать о конструкции абсолютно все до мельчайших подробностей.

Писатель, желая донести до читателя свои мысли, создает литературное произведение.


Композитор с помощью нотных знаков записывает мелодии, возникающие в его воображении.

Конструктор тоже фиксирует свои мысли на бумаге, выражая многообразие взаимосвязей будией машины.

У зтих примеров единая основа: фиксация мыслительной деятельности средствами, доступными для прочтения. В результате в свет выходят книги, ноты, чертежи...

Между этими примерами есть сходства, есть и различия. В частности, язык нот и чертежей ин-

Леонардо да Винчи. Предварительный эскиз станка для насечки напильников.

тернационален, а книгу, написанную на французском языке, прочтет только владеющий французским.

Но коренное отличие чертежа от нот и текста в другом. Текст можно прочитать с разным выражением, по-разному расставить акценты. Музыку даже один и тот же оркестр под руководством разных дирижеров исполняет тоже по-разному. А язык чертежа предельно точен и не допускает разночтений. И при всей его лаконичности он определяет и форму, и размеры, и материал, и обработку детали или сборки. Поэтому мастерство производственников направлено не на поиски красивых нюансов, а на решение главной задачи -- выпускать продукцию без отклонений от чертежей. В то же время никому не запрещается - больше того, поощряется -- улучшать деталь или конструкцию. Но опять-таки, если улучшение очевидно и с ним согласен сам разработчик, оно вносится в чертеж. И снова измененный чертеж становится неукоснительным документом в отличие от литературного текста, который можно читать так и этак, и от нот, которые тоже допускают интерпретацию.

Вы спросите, не натянуто ли сравнение чертежей с литературой. Но смотрите: как в любом виде искусства, в технике есть немало всемирно известных шедевров. Вспомните хотя бы Эйфелеву башню, висячие мосты, современные авиалайнеры. Взгляните на фотографию Як-42. Какой красавец! А ведь кроме красоты формы он обладает еще и прекрасными летно-техническими и эксплуатационными качествами. Умение добиваться такого совершенства — большое искусство.

Предвидим еще одно ваше возражение. Строили же люди шедевры архитектуры, скажете вы, когда и в помине не было никаких чертежей.

Это только так кажется. Были

и рисунки, и эскизы, и планы здания, расчерченные прямо на земле. При раскопках Вавилона нашли статую зодчего, который читает чертежи, вырубленные на каменной плите.

Так что чертежи были, но очень несовершенные. Поэтому человечество несколько тысячелетий искало приемлемый метод, с помощью которого можно было бы зафиксировать блеснувшую идею и достаточно доходчиво и точно изобразить ее.

Общеизвестна легенда о том, как Архимед перед гибелью от вражеского меча успел крикнуть: «Не трогай мои чертежи!» Следовательно, он уже умел — и не только щепкой на песке — изображать свои мысли.

Сохранилось много великолепных технических рисунков Леонардо да Винчи, которые отличаются ясностью замысла и глубиной детализации, но по форме исполнения они, как и у Архимеда, очень далеки от сегодняшних требований к чертежам.

В России чертежи, тоже мало похожие на современные, появились лет триста назад. «...По указу великого государя привезти ж к Москве из тульских и каширских заводов... пушечные ядра и гранаты, которые для посылок в полки и по чертежам генерала Николая Бовмана сделаны».

Когда первые далеко не совершенные чертежи поступали в работу, конструктору или архитектору приходилось брать на себя обязанности постоянного руководителя работ, а точнее, технического надзирателя, отвечать на бесконечный поток непрерывно возникающих вопросов, устранять неизбежные неувязки. И так до полного окончания работы, до сдачи ее заказчику. Например, замечательный русский архитектор Андрей Никифорович Воронихин десять лет жизни отдал строительству Казанского собора в Петербурге, разделяя со строи-

Посмотрим на фотонамеру с трех сторон. V — вид спереди, по которому вычерчивается вертинальная проенция. Н — вид сверху, по которому вычерчивается горизонтальная проекция. W — вид сбоиу, по которому вычерчивается профильная проекция.

телями тяготы и невзгоды их нелегкого труда.

Иногда мастерам давали задание на изготовление деталей, а то и целых сооружений «по образцу». Естественно, при этом растрачивалось очень много времени. А качество? Оно целиком зависело от способностей, а больше от совести исполнителя.

Словом, необходимость общедоступного и точного технического языка стала неоспоримой. Во-первых, потому, что технической продукции стало больше и по количеству, и по ассортименту, и разбазаривание времени на объяснения «на пальцах» стало невыносимым. Во-вторых, появилась необходимость разделения труда, вплоть до того, что детали одной и той же машины стали делать даже не в разных цехах одного завода, а на разных заводах. И в-третьих, конструктор отдалился от исполнителя. Скажем, он мог жить и творить в Москве, а его замыслы воплощали где-нибудь на уральских заводах.

Когда какая-нибудь проблема встает слишком остро и настойчиво, обычно вскоре следует ее разрешение. Так случилось и с теорией черчения. Во второй половине XVIII века французский математик и инженер Гаспар Монж обобщил и научно обосновал накопившийся опыт достаточно простого и точного изображе-

Пользуясь правилами начертателькой геометрии, мы развернули три взаимно перпендикулярные плоскости проекций по линиям их пересечений. Теперь все проекции фотокамеры лежат в одной плоскости — в плоскости чертежа.

ния пространственных фигур к предметов на плоском чертеже, дал общий метод стереометрических построений на плоскости и назвал его начертательной геометрией. И если чертеж - язык техники, то начертательная метрия стала его грамматикой. Решение чертежной проблемы произвело ошеломляющий фект. Труды Монжа немедленно засекретили, запретив ему чтолибо публиковать из боязни, что иностранцы могут воспользоваться достижениями французской науки в ущерб интересам Франции. Более двадцати лет этот труд не видел света и впервые опубликован только 1798 году.

Теперь взгляните на рисунок Леонардо да Винчи. Построить станок по такому рисунку в общем можно. Но если за постройку возьмутся два не знакомых друг с другом механика, станки получатся разными. Художник хоть и изобразил объемный станок на плоскости, но рисунок не дает и не может дать точного представления о размерах каждой детали. А по чертежу можно при необходимости определить местонахождение любой точки.

Возьмем для примера в руки фотоаппарат (если вы не занимаетесь фотографией, подберите другой предмет). Посмотрим на аппарат со стороны объектива, по его оптической оси, и этот вид мысленно спроектируем на плоскость, расположенную за аппаратом (она называется плоскостью проекций). Таким же об разом спроектируем на взаимноперпендикулярные плоскости проекций вид сверху и сбоку. Теперь изобразим эти три вида, но не будем разбрасывать их по бумаге как попало, а разместим в соответствии с правилами начертательной геометрии.

За основу возьмем вид спереди. Его называют вертикальной или фронтальной проекцией. Вни-

зу расположим горизонтальную проекцию, или план — так называют вид сверху. И наконец. справа от вертикальной проекции разместим вид сбоку - профильную проекцию. Чтобы чертеж был аккуратным и соответствовал натуре, тщательно обмерим камеру и будем строить ее изображение по размерам в приемлемом масштабе. Разумеется. прямые линии проведем по линейке и угольнику, а окружности — циркулем, то есть будем не рисовать, а чертить. Тут и больших художественных способностей не требуется, и обеспечивается необходимая точность.

Итак, мы выполнили классический чертеж в трех проекциях, дающий представление о внешнем виде фотоаппарата «Смена». Но вам-то мало изображать готовые предметы. Вам важно уметь переносить на бумагу собственные замыслы. Этому-то и будут посвящены наши следующие беседы. А в виде заключения к сегодняшнему вступительному разговору добавим вот что: не верьте, если вам скажут, что работать за кульманом скучно. Мол, целый день мается человек, чертит, стирает, снова чертит, а на ватмане как были дебри линий, так и остались. Знайте, что эти дебри и есть зримое выражение полета мысли и богатства фантазии. что в них-то и зарождается нечто новое, оригинальное, именно здесь, на бумаге, впервые материализуются творческие замыслы, что именио в эти мгновения конструктор первым видит свои мысли в реальных очертаниях будущей машины, которая начинает свой путь от карандаша к металлу.

К. БАВЫКИН, инженер-конструктор, лауреат Ленинской и Государственной премий

ЗАОЧНАЯ ФИЗИКО-ТЕХНИЧЕСКАЯ ШКОЛА

при Московском ордена Трудового Красного Знамени физико-техническом институте

ОБЪЯВЛЯЕТ НАБОР УЧАЩИХСЯ

на 1981/82 учебный год

Заочная физико-техническая школа при МФТИ проводит набор учащихся восьмилетних и средних школ, расположенных на территории РСФСР, в 8, 9 и 10-е классы.

Цель нашей школы — помочь ученикам в самостоятельных занятиях по физике и математике. Вот почему при приеме в ЗФТШ предпочтение отдается учащимся, проживающим в сельской местности и рабочих поселках, где такая помощь особенно необходыма. Обучение в школе бесплатное.

ЗФТШ дает хорошие дополнительные знания по физике и математике своим выпускникам, многие из которых стали студентами ведущих вузов нашей страны.

Кроме отдельных учащихся, ЗФТШ принимаются физико-технические кружки, которые могут быть организованы на месте по инициативе двух преподавателей — физики и математики. Руководители кружка набирают и зачисляют в них учащихся, успешно выполнивших вступительное задание ЗФТШ. Кружок принимается в ЗФТШ, если директор школы сообщит в ЗФТШ фамилин руководителей кружка и поименный список членов кружка классам (с указанием итоговых оценок за вступительное задание).

Учащиеся, принятые в ЗФТШ, и руководители физико-техниче-

ских кружков будут регулярно получать задания по физике и математике в соответствии с программой ЗФТШ, а также рекомендуемые ЗФТШ решения этих заданий. Задания ЗФТШ содержат теоретический материал и разбор характерных задач и примеров по теме, а также 10-14 задач для самостоятельного решения. Это и простые задачи, и более сложные (на уровне конкурсных задач в МФТИ). Работы учащихся-заочников проверяют в ЗФТШ или ее филиалах, а членов кружка — его руководители.

С учащимися Москвы проводятся очные занятия по физике и математике два раза в неделю по программе ЗФТШ в вечерних консультационных пунктах (в ряде московских школ), набор в которые проводится или по результатам выполнения вступительного задания ЗФТШ, или по результатам очного собеседования по физике и математике. (Справки по телефону 216-00-05, доб. 2-59.)

Вступительное задание по физике и математике каждый выполняет самостоятельно. Работу надо сделать на русском языке и аккуратно переписать в одну школьную тетрадь. Порядок задач должен быть тот же, что и в задании. Тетрадь перешлите в большом конверте простой бандеролью. Вместе с решением обязательно вышлите справку из шко-

лы, в которой вы учитесь, с указанием класса. Справку наклейте на внутреннюю сторону обложки тетради. Без этой справки решение рассматриваться не будет.

На внешнюю сторону тетради наклейте лист бумаги, заполненный по образцу (адрес пишите,

конечно, свой).

Срок отправления решения — не позднее 1 марта 1981 года (по почтовому штемпелю отправления). Вступительные работы об-

ратно не высылаются.

Зачисление в школу производится приемной комиссией Московского физико-технического института. Решение приемной комиссии будет сообщено не позднее 1 ав-

густа 1981 года.

Тетрадь с выполненными заданиями (обязательно по физике и математике) присылайте (только не сворачивайте в трубку) по адресу: 141700, г. Долгопрудный Московской области, Московский физико-технический институт, для ЗФТШ.

Учащиеся Архангельской, Вологолской, Калининской, Калинин-

градской, Кировской, Ленинградской, Мурманской, Новгородской, Псковской областей, Карельской и Коми АССР высылают работы по адресу: 198904, г. Старый Петергоф, ул. 1 Мая, д. 100, ЛГУ, филиал ЗФТШ при МФТИ.

Учащиеся Амурской, Иркутской, Камчатской, Сахалинской, Читинской областей, Красноярского, Приморского, Хабаровского краев, Бурятской, Тувинской, Якутской АССР, Чукотки высылают работы по адресу: 660607, г. Красноярск, ул. Перенсона, 7, пединститут, филиал ЗФТШ при МФТИ.

Ниже приводятся вступительные задания по физике и математике. В задании по физике задачи 1—5 предназначены для учащихся 7-х классов, задачи 4—10 — для учащихся 8-х классов, задачи 6—12 — для учащихся 9-х классов.

Во вступительном задании по математике задачи 1—5 — для 7-х классов, 3—9 — для 8-х классов, 7—13 — для 9-х классов.

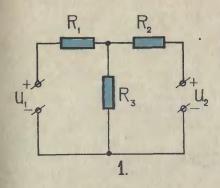
- 1. Область (край или АССР)
- 2. Фамилия, имя, отчество

3. Класс

- 4. Номер и адрес школы
- 5. Профессия родителей и занимаемая должиость отец
- 6. Подробный домашний адрес

Челябинская область Гайнетдинов Рафис Зинатурович восьмой поселок Роза, с. ш. № 19

шахтер швея 456550, Челябинская обл., поселок Роза, пер. Кооперативкый, д. 2.


ВСТУПИТЕЛЬНОЕ ЗАДАНИЕ ПО ФИЗИКЕ

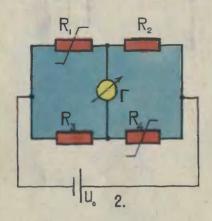
1. Для откачивания воды из колодца глубиной 7 м пользуются насосом, полезная мощность двигателя которого 500 Вт. За какое время двигатель откачает из колодца 10 м³ воды?

2. В ведре находится смесь воды со льдом общей массой М= 10 кг. Какое количество льда было в смеси, если при добавлении 2 л горячей воды температурой 80° С температура воды в ведре оказалась равной 10° С?

3. Электрическая цепь, состоящая из сопротивления R_1 , R_2 и R_3 , подключена к двум источникам постоянного напряжения U_1 и U_2 , как показано на рисунке 1. При каких условиях ток через сопротивление R_1 будет равен нулю?

4. Скорость пловца относительно воды равна $V=0.5\,$ м/с, скорость течения реки $U=0.3\,$ м/с.

В каком направлении должен двигаться пловец, чтобы он попал в противоположную точку на другом берегу? Сколько времени он будет плыть, если ширина реки $L=40\ \text{м}$?


5. Воздушный шар массы M = 120 кг опускается с постоянной скоростью. Какое количество балласта надо выбросить, чтобы шар начал подниматься с той же скоростью? Архимедову силу F₂ = 980 H считать постоянной.

6. Автомобиль массы M=2 т равномерно поднимается по шоссе с углом наклона $a=12^\circ$. Определить, насколько отличается давление передних и задних колес автомобиля на шоссе, если известно, что расстояние между осями колес L=3 м, а центр тяжести автомобиля расположен на равных расстояниях от осей на высоте H=1 м.

7. Схема, изображенная на рисунке 2, состоит из двух одинаковых сопротивлений $R_2=R_3=R$ и двух одинаковых нелинейных со-

противлений $R_1=R_4$, вольтамперная характеристика которых имеет вид $U=aI^2$, где α — некоторый постоянный коэффициент. При каком напряжении источника питания U_0 сила тока через гальванометр Γ равна нулю?

8. При какой продолжительности суток тела на экваторе Земли весили бы в два раза меньше, чем на полюсе? Радиус Земли R_3 =

=6400 km.

9. В цилиндре под поршнем находится n = 2 моля идеального газа. Определить начальную температуру газа, если при сообщении ему тепла Q = 18 кДж объем увеличился в 2,5 раза. Молярная теплоемкость газа при постоянном давлении С ρ = 21 Дж/моль·К.

10. Для заполнения лазерных трубок используется смесь ксено-

на и гелия в молярном отношении 1:9. Имеется баллон с ксеноном $V_1=1$ л с давлением $P_1=300$ мм рт. ст. Сколько баллонов гелия потребуется для полного использования ксенона, если гелий имеется в баллонах объема $V_2=2$ л с давлением $P_2=50$ мм рт. ст.?

11. Человек массы m=70 ка прыгает с берега в лодку, стоящую в неподвижной воде. Его скорость горизонтальна и равна $V_0=3$ м/с. На какое расстояние переместится лодка? Сила трения лодки о воду пропорциональна скорости, и коэффициент пропорциональности K равен $35 \, \text{h-c/m}$.

12. Вычислить объемную плотность ρ электрических зарядов в атмосфере, если известно, что напряженность электрического поля на поверхности Земли $E_3 = 100$ В/м, а на высоте h = 1 км напряженность уменьшается в 2 раза. Считать, что электрические заряды в атмосфере распределены равномерно.

ВСТУПИТЕЛЬНОЕ ЗАДАНИЕ ПО МАТЕМАТИКЕ

1. В футбольном турнире каждая из 8 участвующих команд сыграла с каждой по одному разу. Команды набрали 14, 12, 8, 8, 6, 4, 3, 1 очков. Скольяо очков потеряли команды, занявшие

первые четыре места? За выигрыш команда получает 2 очка.

- 2. Существует ли треугольник, длины двух высот которого меньше 1 см, а площадь равна 400 см²?
- 3. Доказать, что если неотрицательные числа X_1 , X_2 , X_3 удовлетворяют условию

$$\mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3 \leqslant \frac{1}{2} ,$$

то справедливо неравенство

$$(1-X_1)(1-X_2)(1-X_3) > \frac{1}{2}$$
.

- 4. Доказать следующее утверждение: если точка О лежит внутри треугольника ABC, то $[OA] + [OB] + [OC] < [AB] + + \{BC] + [CA]$. Сформулировать обратное утверждение. Верно ли оно?
- 5. Доказать или опровергнуть следующие утверждения:
- а) равнобочная трапеция имеет одну и только одну ось симметрии; б) если четырехугольник имеет одну и только одну ось симметрии, то четырехугольник равнобочная трапеция.
- 6. Доказать, что если рациональные числа a, b, c связаны равенством $\{a+c\}=[b]$, то уравнение $ax^2+bx+c=0$ имеет рациональные корни.
 - 7. Пусть О точка пересече-

ния медиан треугольника АВС. Доказать, что

$$\overrightarrow{3CO} = \overrightarrow{CA} + \overrightarrow{CB}$$
.

8. Даны два утверждения:

а) уравнение $x^2 + (a+1)x + 1 = 0$ имеет два отрицательных корня;

6) неравенство $4x^2 + (a-2)x+1 > 0$ справедливо при всех значениях х.

При каких значениях а одно из этих утверждений истинно, а другое ложно?

- 9. Для того чтобы угол треугольника был острым, необходимо и достаточно, чтобы длина противолежащей стороны треугольника была меньше удвоенной длины медианы, опущенной на указанную сторону.
- 10. Один из учеников 8-го класса собрал 26 кг металлолома, а остальные его одноклассники по 11 кг каждый. Один из учеников 9-го класса собрал 25 кг, а его одноклассники по 10 кг. Сколько учеников в каждом классе, если оба класса собрали одинаковое количество лома, а общий вес собранного лома больше 400 кг, но меньше 600 кг?
- 11. Доказать, что данный разносторонний треугольник никакой прямой нельзя разделить на два конгруэнтных треугольника.
- 12. Доказать, что если сумма положительных чисел а, в, с равна 1, то

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9.$$

13. При каких а, в, с функции f(x) = ax + B, $g(x) = cx^2$ при любом x_{ϵ} R удовлетворяют равенству f(g(x)) = g(f(x))?

Директор ЗФТШ Т. ЧУГУНОВА

Рисунки Т. НЕФЕДКИНОЙ

ТОБОГАН

Сани с одним широким полозом придумали индейцы Северной Америки, которые перевозили на них тяжелую кладь. На тобогане можно кататься со снежных горок, не боясь зарыться в глубоком и рыхлом снегу.

Широкий полоз, как видите на рисунке, состоит из плотно пригнанных одна к другой реек. Спереди они загнуты так, чтобы им никакой сугроб не мог служить помехой. Длина тобогана и его ширина должны соответствовать росту. Для школьников 4-х — 8-х классов длину можно принять равной 1800, а ширину 450 мм. На нашем же рисунке мы показали сани для старшеклассников.

работу Начинать советуем подбора восьми ровных, без сучков и свилей реек. Лучший материал - сосна или ель. Рубанком рейки следует подогнать друг к другу так, чтобы между ними не было заметных на глаз щелей. Лишь после этого приступайте к самой ответственной и трудной операции -- выгибу передних концов. Опустите на три дня концы реек в бочку с водой. Пока дерево размокает, сделайте простейший гибочный станок. Мы не будем останавливаться на коиструкции такого станка, каждый может разработать его самостоятельно.

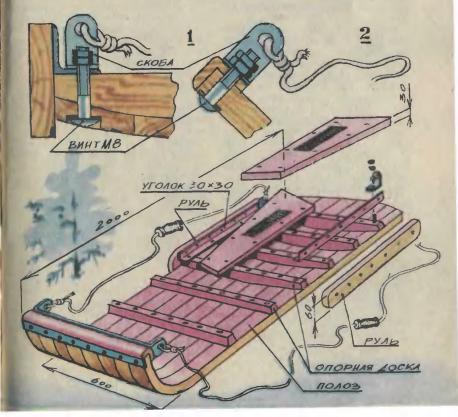
Три дня прошли. Дерево размокло. Концы реек вставьте в зажим станка и загните круче даже, чем передняя часть лыжи. Древесина хвойных пород сгибается хорошо, поэтому рейки, зажатые в станке, оставьте просыхать в таком состоянии дня на три-четыре.

Подготовленные таким образом высохшие рейки стяните в двухтрех местах шпагатом. Теперь их нужно скрепить поперечинами. Заготовьте семь планок из древесины твердых пород --- бука, дуба или ясеня. В планке, которая устанавливается на передней части тобогана, должен быть фигурный вырез. У нее, как и у следующей, второй поперечной планки, все поверхности плоские. У остальных пяти планок нижние поверхности следует обработать по радиусу. Заметьте, чем планка ближе к задней части тобогана, тем радиус меньше.

Наложите готовые поперечины на рейки. Дрелью просверлите отверстия диаметром 5,1 мм так, чтобы винты связывали каждую поперечину со всеми рейками. Под головки винтов и гаек, соединяющих переднюю поперечину, подложите две длинные

стальные полосы толщиной 1—1,5 мм. Притяните рейки к поперечинам винтами М5 с круглыми головками. Не забудьте под головки винтов и гаек подложить шайбы — они предохранят дерево от растрескивания. Таким образом, вы изготовили широкий полоз.

На задней поперечине остается установить опорные доски и рули. Эти детали крепятся шурупами. Резиновые накладки прибейте мелкими гвоздями к опор-


ным доскам.

Чтобы удобно было кататься, на передней и задней поперечинах следует установить скобы (способ их крепления показан на узлах 1 и 2). К скобам привяжите две капроновые веревки диаметром 6 мм. Длину веревок подберите по своему росту. Если веревки будут резать руки, наденьте на них ручки от скакалок. Остается верхнюю поверхность широкого полоза, поперечины и опорные доски покрыть яркими нитрокрасками, а нижнюю поверхность полоза смазать лыжной мазью. Теперь смело можете отправляться на прогулку.

Кататься на тобогане несложно — равновесие удерживается благодаря веревкам. Начинайте осваивать снаряд на невысоких горках с прямолинейной трассой. Постепенно вы научитесь управлять санями, освоите повороты вправо или влево, смещая тело в ту или иную сторону. И только тогда переходите на более крутые склоны горок с более сложными трассами.

А. БОБОШКО

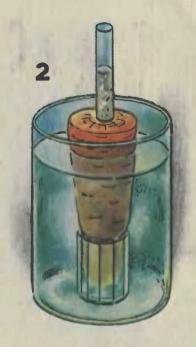
Рисунки А. МАТРОСОВА

ПОЧЕМУ КАПАЕТ БЕРЕЗОВЫЙ СОК

Прежде чем ответить на этот предлагаем проделать вопрос. несколько простых опытов. Налейте в тонкостенный стакан теплой волы. Растворите столовые ложки сахара. Долейте стакан доверху и прикройте его предварительно размоченным в воде листком пергамента или целлофановой пленки (не спутайте с пленкой полиэтиленовой) так, чтобы под ней не было пузырьков воздуха. Края пленки туго перевяжите толстой ниткой.

Опустите стакан в большую стеклянную банку, заполненную водопроводной водой (см. рис.). Часа через два-три вы заметите, что пленка над стаканом вздулась. Секрет столь странного поведения пленки объясняется так. Пергамент или целлофан обладают одной особенностью они словно сито пропускают сквозь себя молекулы, но избирательно. Молекулы воды проходят сквозь них легко, а молекулы сахара нет — ведь крупнее. Материалы, обладающие такими свойствами, в технике получили название полупроницаемых мембран. Значит, листок-перегородка не ствует диффузии - проникновению одних молекул (воды) в другие (сахара) с тем, чтобы по возможности сравнять концентрацию растворов. Химикам давно известно это явление. Оно получило название осмоса.

А что произойдет с пленкой еще через час-другой? Раздуется ли она еще больше, а может, и вовсе лопнет? Не беспокойтесь, ничего такого с пленкой не случится. Дальше выпуклость ее останется неизменной. Дело в том, что пленка испытывает давление со стороны сладкой воды. Это давление получило название осмотического. До какого-то момента осмотическое давление не препятствовало молекулам воды проникать сквозь пленку и разбавлять сироп.

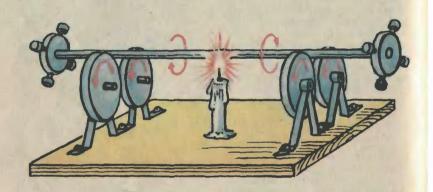

Но как только осмотическое давление сравнялось с давлением на пленку со стороны воды, наступило равновесие. И теперы молекулы воды продолжали про-

ходить сквозь пленку, но уже в обоих направлениях в равных количествах.

Положите свежесрезанную лимонную или апельсиновую дольку на блюдие и присыпьте сахарной пудрой. На поверхности среза начнет выделяться сок. Объяснить это явление теперь сможет каждый. Сок проникает. лиффундирует СКВОЗЬ стенки клеточных мембран и стремится разбавить раствор сахара, образующийся на срезе. Аналогичные явления происходят, свежие овощи нарезать и посолить. Обильное выделение сока можно. например, наблюдать при засолке капусты. При этом вода ведь не добавляется в рассол вовсе, а сока в кадушке получается много.

Еще один опыт. Приготовьте три стеклянные банки. В одну налейте чистую водопроводную волу, во второй воду слегка подсолите, а в третьей приготовьте концентрированный соляной рассол. Вырежьте из картофелины три одинаковых кубика. В каждую банку опустите по кубику. Через два-три часа посмотрите, что же с ними произошло. Кубик, который нахопился в попсоленной воле, остался без изменения. А вот геометрические размеры двух пругих изменились довольно заметно. Тот. что находился в рассоле, стал отдавать свою собственную воду (точнее, сок), он сморщился и стал меньше. Третий кубик, наоборот, впитал в себя дополнительню влагу. размеры увеличились.

И последний опыт. Проделаем его с морковкой. Оказывается, ее можно заставить работать подобно насосу. Отрежьте от морковки головку (см. рис.). Сделайте неглубокую лунку и вставьте в нее стеклянную трубку длиной 100—120 и внутреним диаметром 6—8 мм. Укрепите морковку вертикально на подставке и установите на дно


стеклянной банки, заполненной вопопроводной водой. В стеклянную трубку налейте до половины раствор соли, а лучше сахара. Часа через два-три уровень жилкости в трубке поднимется. Может наступить такой момент, когда сироп начнет переливаться через край. Перелейте сироп в чашку (его можете выпить), добавьте в трубку немного сахару и повторите опыт. Морковка самым настоящим образом перекачивает воду из стакана. Осмотическое павление может быть значительным и поднимать жидкость на большую высоту. роятно, этим и объясняется бурный подъем по стволу сока весной. Концентрация лей в стволе и ветках березы к началу весны заметно возросла. Вот и спешит дерево разбавить, а заодно и напоить себя талой волой.

ТЕПЛОВОЙ ДВИГАТЕЛЬ

В «ЮТ» № 1 за прошлый год мы рассказали о тепловом двигателе Андрея Чистякова из Перми. Коротко напомним суть его предложения. На концы дюралюминиевой трубки длиной 650 и диаметром 8 мм надеты стальные диски весом по 120 г. Такой вот ротор опирается на две линейки, поставленные на ребро. Между линейками взадвереро. Между линейками взадвереро перемещается подставка с горящей свечой. Диски прогибают трубку в вертикальной

случае источник тепловой энергии — свечку — можно закрепить на неподвижной подставке, расположенной между опорными колесиками,

Такой двигатель, как считает Вадим, выгоден прежде ксего тем, что его не нужно останавливать всякий раз для переноса трубки-ротора на исходную позицию. Значит, в новем варианте он работает непрерывно. Чтобы снизить потери на трение и увеличить КПД двигателя, юный

плоскости, а тепло горящей свети выгибает ее в горизонтальной. В результате сложения двух сил центр тяжести трубки ротора смещается с оси. Возникает вращательный момент, под действием которого ротор катится по линейкам.

На несовершенство теплового двигателя Андрея обратил внимание восьмиклассник из Ворошиловграда Вадим Абраменко. Вадим предлагает совсем отказаться от линеек, заменив их двумя парами легко вращающихся колес (см. рис.). В этом

конструктор предлагает установить трубку на колеса с острыми краями. Нам же кажется, что делать этого нельзя. Трубка в этом случае может проскальзывать на острых гранях. Тогда передачи вращения от ротора к колесам не будет. Лучшее решение — наоборот, нужио увеличить поверхность контакта, сделать ее по возможности широкой и даже шероховатой.

В. КРИВОНОСОВ

Рисунки Н. КОБЯКОВОЙ

ИСТОРИЯ ОДНОГО ЗАБЛУЖДЕНИЯ

Однажды в журнале я увидел фото. Над столом парил прибор. Рядом стоял человек и проводил под ним рукой: смотрите, прибор ни на что не опирается.

изобретатель Текст пояснял: Норман Дин придумал машинукоторая двигается инерцоид, по столу и даже может держаться безо всякой опоры в воздухе. Действие этой машины объяснялось вращением множества неуравновешенных маховичков-эксцентриков, при котором центробежные силы, направленные в одну сторону, уравновешиваются, а в другую суммируются. В эту сторону машина движется и даже взлетает. Подвоха, говорилось в тексте, здесь нет, налицо революция в транспорте, а если по большому счету, то и в науке вообще.

Но чем больше присматривался я к фотографии, тем меньше мне нравилась машина Дина. Слишком уж много в ней колес, валов, эксцентриков...

И заработала моя конструктор-

Вначале я представил себе человека на коньках на льду, держащего в вытянутых перед собой руках пару гантелей (рис. 1). Человек сводит и разводит перед собой руки с гантелями, возни-

кают центробежные силы F, направленные от центра. Эти силы можно разложить на две состав-

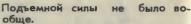
ляющие: F_1 и F_2 . Силы F_1 уравновешиваются, а направленные

вперед силы F_2 сложатся в одну $\xrightarrow{}$ равнодействующую F_3 . Человек поедет вперед, движимый центробежной силой!

Так как ледяной площадки не было, пришлось проделать опыт на модели и запустить ее на

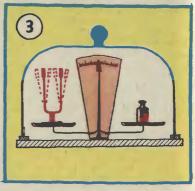
столе (рис. 2).

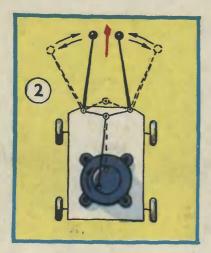
Перед запуском очень волновался, все надеялся, что модель полетит. В том, что она поедет, не сомневался. Что ж, модель действительно поехала, но... рывками и назад. Сперва это меня смутило, но потом подумал: «А не все ли равно — вперед или назад. Главное, что едет!» Но летать модель не хотела. «Слишком мала мощность двигателя», — решил я.


Следующая модель была с двигателем от пылесоса, но и она не взлетала. Несмотря на это, я все-таки оформил и подал заявку на изобретение, назвав его просто «Самодвижущийся блок».

Пока эксперты оценивали мое творение, я продолжал работу. Чтобы определить подъемную силу, решил взвесить ее в работающем и неработающем состояниях. Отсюда можно было точно определить, какой мощности должен быть мотор. Но мотор модели оказался слишком тяжел для точных лабораторных весов, и тогда я решил взвесить камертон. Ведь ножки звучащего камертона колеблются так же, как и грузы на модели.

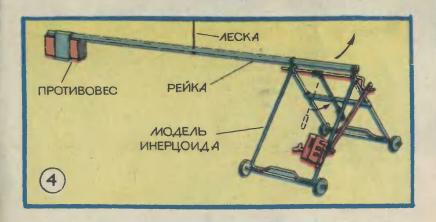
Ухитрился установить весы (рис. 3) под стеклянным колпа-




ком, из-под которого выкачивался воздух (иначе воздух мог бы помешать точному взвешиванию). После уравновешивания камертона гирями воздух был откачан, и специальный молоточек ударил по камертону. Видно было, как ножки камертона пришли в колебательное движение, но равновесие весов не нарушилось.

А вскоре пришел ответ из Комитета по изобретениям. Там был отказ.

По инерцоиду был нанесен удар пока только в моем сознании. И все же мне хотелось разобраться, в чем же здесь дело. Правильно говорят, что новое — это хорошо забытое старое. Относится это и к прогрессивным идеям и к заблуждениям. Прочитав по инерцоидам все, что смог, я узнал о работах всех изобретателей, занимавшихся этим вопросом.



Разобравшись внимательно устройстве всех инерцоидов, подметил одну характерную особенность: в одну сторону массивные грузы перемещаются резко, другую плавно, постепенно. Если груз движется резко, с большим ускорением, то тележка силой реакции груза так же резко ускоряется, но в противоположном направлении. Это следует из **ОСНОВНЫХ** Законов механики, сформулированных Ньютоном. Тележка может преодолеть значительное сопротивление. И наоборот, при плавном движении груза сила реакции уменьшается настолько, что она становится меньше силы трения между тележкой и столом. Если трение отсутствовало бы полностью, тележка после рывка вперед должна была медленно вернуться на свое первоначальное место. И только потому, что на Земле практически невозможно исключить трение, можно создавать инерцоиды.

Предлагаю вам сделать свой инерцоид. Сходите в «Детский мир» и купите игрушечные качели (игрушка стоит не дороже рубля). На стойке качелей (рис. 4) установите перемычку, чтобы маятник качелей в конце

за середину рейку длиной метра два. На одном краю этой рейки укрепите модель вашего инерцоида, а на другой противовес. Система должна быть полностью уравновешена, рейка висит горизонтально. Инерцоид расположита так, чтобы сила его тяги (предполагаемая, так как таковой не будет!) располагалась перпендикулярно рейке.

А теперь включите инерцоид. Если бы он действительно создавал тягу без взаимодействия с внешней средой, рейка незамедлительно пришла бы во все ускоряющееся вращение. Но чу-

хода с силой ударял в нее. Впрочем, каждый из вас может придумать много других вариантов инерцоидов, лишь бы в одну сторону модели удар получался резким.

А теперь заведите пружину и поставьте игрушку на стол. Инерцоид начнет скачками передвигаться в сторону ударов. Можно поставить инерцоид и на колесики. Тогда перемещения игрушки возрастут.

Еще один опыт, думается, поможет вам убедиться в том, что создать машину Дина невозможно. На тонкой леске подвесьте дес не бывает. Рейка начнет лишь колебаться относительно одного центра. Это означает, что никакой тяги инерцоид не создает. Поставьте его снова на стол, и инерцоид бодро, как кузнечик, заскачет в сторону ударов.

Н. ГУЛИА, доктор технических наук

Рисунки В. СКУМПЭ

КАНАТОХОДЕЦ

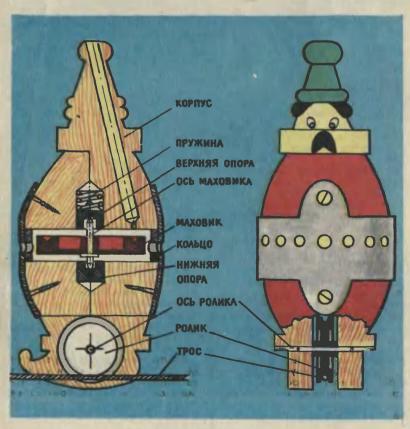
Виктор очень хотел подарить младшему брату в день его рождения что-нибудь такое, необыкновенное. Конечно, он мог бы попросить денег у мамы и купить готовую игрушку. Но Виктор решил сделать подарок своими руками.

У брата была юла. Он часто заводил ее на полу. И однажды у Виктора мелькнула мыслы: хорошо бы запрятать юлу в игрушку, например фигурку человека. Наверное, игрушка могла бы стоять и даже двигаться не падая на одной ноге... Виктор рассказал о своей идее отцу. И они вместе сделали канатоходца, который «ходит» по тросу и не падает даже тогда, когда трос раскачивается.

Внимательно посмотрите на рисунки. Видите, на голове канатоходца головной убор. Это мундштук, внутри которого отверстие, оно проходит сквозь голову, шею и верхнюю пововину корпуса фигурки. Отверстие просверлено не до конца. Но оно и не глухое. В нижней части от него отходит под углом еще одно отверстие меньшего диаметра. Это сопло. Представьте себе, что мы взяли мундштук в рот и подули в него. Струйка воздуха с силой пошла в сопло и ударила в маховик. На верхней грани маховика выемки, сделанные сверлом. Струя воздуха как бы упирается в эти выемки, словно в лопатки турбины, и раскручивает маховик. Если сильно дунуть в мундштук несколько раз подряд, маховик может раскрутиться очень сильно.

Маховик посажен на ось. Верхний и нижний концы оси сточены на конус. Этими концами ось упирается в опоры, причем верхняя опора прижимается пружинкой. Благодаря такой конструкции трение исключительно мало. Поэтому маховик может вращаться в таких подшипниках несколько минут.

Корпус канатоходца вырезан из дерева. Он разборный и состоит из четырех частей. Нетрудно догадаться, что корпус точился на токарном станке из целого куска дерева, а после его аккуратно разрезали тонким ножовочным полотном вдоль и поперек вертикальной оси. Без этого невозможно просверлить отверстия под опоры подшипника. Части корпуса скрепляются между собой кольцом и шурупами.


Ходить по полу канатоходецволчок Виктора Малюгина, конечно же, не сможет. Если маховик игрушки не раскручен, она будет опрокидываться, потому что центр тяжести ее расположен приблизительно посередине, а башмачки имеют выпуклую нижнюю поверхность. Эффектнее игрушка смотрится на длинном тросе. Надо один конец троса привязать, скажем, к ручке двери, а другой держать в руках. Таким образом можно натягивать трос, ослаблять натяжение, даже раскачивать его из стороны в сторону. Игрушка с раскрученным маховиком будет устойчиво катиться на ролике в сторону наклона троса, сохраняя при этом вертикальное положение.

Игрушка брату очень понрави-

лась.

А. ФРОЛОВ, инженер

Рисунки Н. КОБЯКОВОЙ и А. МАШАТИНОЙ

Способ конструирования одежды, предлагаемый нашим ателье, выгодно отличается от шитья по готовым выкройкам. Если вы правильно снимете мерки и аккуратно выполните чертежи, изделие на первой же примерке будет точно соответствовать вашей фигуре. Кроме того, способ этот позволяет конструировать одежду любого размера и роста по единому расчету.

ХАЛАТЫ

По многочисленным просьбам читателей сегодня мы предлагаем две модели халата. Основной чертеж халата общий с выкройкой платья, поэтому желательно сохранить этот номер журнала: потом вы сможете смоделировать по этому чертежу платье. Как это сделать, мы расскажем в одном из последующих выпусков ателье.

Для построения чертежа выкройки снимите следующие мерки

(B CM):	•
Полуобхват шен	17,5
Полуобхват груди	44
Полуобхват талин	34
Полуобхват бедер	50
Длина спины до талии	38
Ширина спины (половина)	17,2
Длина халата	106
Длина переда до талии	42,2
Высота груди	25,2
Длина плеча	13
Центр груди (половина) .	9
Обхват руки	27.3
Длина рукава	59
Длина рукава до локтя	32

Обхват запястья 16 Учтите, что приведенные цифры, соответствующие 44-му размеру, взяты только для примера. Вы должны проставить собственные мерки и при расчете оперировать только ими.

Построение чертежа выкройки спинки и полочки (рис. 1). С левой стороны листа бумаги проведите вертикальную линию, иа которой отложите длину халата (106 см) и поставьте точки А и Н. Вправо от них проведите горизонтальные линии. От А вправо отложите полуобхват груди плюс 5 см и поставьте точку В (АВ = 44+5=49 см). От В вниз опустите перпендикуляр, пересечение с нижней линией обозначьте Н₁.

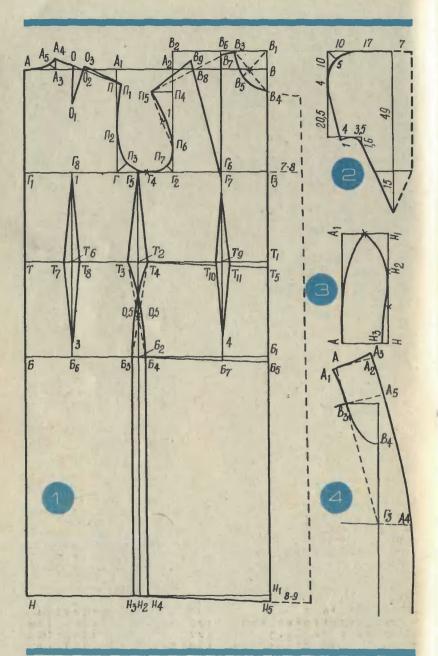
От А вниз отложите длину спины до талии плюс 0,5 см и поставьте точку Т (АТ=38+0,5=38,5 см). От Т вправо проведите горизонтальную линию, пересечение с линией ВН₁ обозначьте Т₁.

От Т вниз отложите половину длины спины до талии и поставьте точку Б (ТБ=38:2=19 см). От Б вправо проведите горизонтальную линию, пересечение с линией ВН₁ обозначьте Б₁.

От А вправо отложите половину ширины спины плюс 1,5 см и поставьте точку A_1 ($AA_1 = 17,2 + 1,5 = 18,7$ см).

От A_1 вправо отложите $^1/_4$ полуобхвата груди плюс 0,5 см и поставьте точку A_2 ($A_1A_2=44:4+0,5=11,5$ см). Это ширина промы — она понадобится в дальнейших расчетах. От A_1 и A_2 опустите перпендикуляры — пока про-

извольной длины. От А вправо отложите 1/3 полуобхвата шеи плюс 0,5 см и поставьте точку A₃ (AA₃=17,5:3+ +0.5=6.3 cm). Из A_3 восставьте перпендикуляр, на котором отложите 1/10 полуобхвата шеи плюс 0,8 см и поставьте точку А. $(A_3A_4=17.5:10+0.8=2.6)$ CM). Угол ААзА4 разделите пополам. от Аз по линии деления угла отложите 1/10 полуобхвата шеи мииус 0,3 см и поставьте точку А5 $(A_3A_5=17,5:10-0,3=1,5 \text{ cm}). \text{ TO4-}$ ки А4, А5, А соедините плавной линией.


От A₁ вниз отложите 2,5 см для нормальных плеч, 1,5 см — для высоких плеч, 3,5 см — для покатых плеч и поставьте точку П.

 A_4 и Π соедините прямой линией, на продолжении которой отложите от A_4 длину плеча плюс 2 см на вытачку плюс 0.5 см на посадку и поставьте точку Π_1 ($A_4\Pi_1$ = = 13+2+0.5=15.5 см).

От A_4 вправо по плечевому срезу отложите 4 см и поставьте точку О. От О вниз проведите вертикальную линию, на которой отложите 8 см и поставьте точку O_1 . От О вправо отложите 2 см и поставьте точку O_2 . O_1 соедините прямой линией с O_2 , на продолжении этой линии отложите величину отрезка OO_1 и поставьте точку O_3 . O_3 и Π_1 соедините.

От П вниз отложите 1/4 полуобхвата груди плюс 7 см и поставьте точку Γ (П Γ =44:4+7= =18 см). Это глубина проймы спинки, она понадобится при расчете рукава. Через точку Г влево и вправо проведите горизонтальную линию. Пересечение с линией АН обозначьте Г1, с линией ширины проймы — Г2, с лииней $\mathrm{BH_1}$ — Γ_3 . От Γ вверх отложите 1/3 расстояния ПГ плюс 2 см и поставьте точку Π_2 ($\Gamma\Pi_2 = 18:3+$ +2=8 см). Угол $\Pi_2\Gamma\Gamma_2$ разделите пополам, от Γ по линии деления угла отложите 1/10 ширины проймы плюс 1,5 см и поставьте точку Π_3 ($\Gamma\Pi_3=11,5:10+1,5=2,7$ см). Линию $\Gamma\Gamma_2$ разделите пополам, точку деления обозначьте Γ_4 . Π_1 , Π_2 , Π_3 , Γ_4 соедините плавной линией, как показано на чертеже.

От Γ_2 вверх отложите 1/4 полуобхвата груди плюс 5 см и поставьте точку Π_4 ($\Gamma_2\Pi_4 = 44:4+$ +5=16 cm). От П₄ влево проведнте горизонтальную линию, на которой отложите 1/10 полуобхвата груди и поставьте точку $(\Pi_4\Pi_5=44:10=4,4$ cm). OT вверх отложите $\frac{1}{3}$ отрезка $\Gamma_2\Pi_4$ и поставьте точку Π_6 ($\Gamma_2\Pi_6$ = =16:3=5,3 см). Π_5 и Π_6 соедините пунктирной линией, разделите ее пополам, от точки деления вправо отложите I см. Угол $\Pi_6\Gamma_2\Gamma_4$ разделите пополам, от Г2 по линии деления угла отложите 1/10

ширины проймы плюс 0.8 см и поставьте точку Π_7 ($\Gamma_2\Pi_7=11.5$: 10+0.8=2 см). Π_5 , 1, Π_6 , Π_7 , Γ_4 соедините плавной линией, как

показано на чертеже.

От Γ_3 вверх по линии H_1B отложите $^1/_2$ полуобхвата груди плюс 1,5 см и поставьте точку B_1 (Γ_3B_1 =44:2+1,5=23,5 см). От Γ_2 по линии Γ_2A_2 отложите столько же и поставьте точку B_2 . B_1 и B_2 соедните.

От B_1 влево отложнте $^{1}/_{3}$ полуобхвата шен плюс 0.5 см и поставьте точку B_3 ($B_1B_3 = 17.5: 3+0.5=6.3$ см). От B_1 вниз отложите $^{1}/_{3}$ полуобхвата шеи плюс 2 см и поставьте точку B_4 ($B_1B_4 = 17.5: 3+2=7.8$ см). B_3 и B_4 соедините пунктирной линией, разделите ее пополам. Точку деления соедините пунктирной линие линией B_1 . От B_1 по этой линии отложите A_1 полуобхвата шеи плюс A_2 и поставьте точку A_3 (A_4 соедините A_4 полуобхвата шеи плюс A_4 соединоставьте точку A_5 (A_5 A_4 соединоставьте точку A_5 $A_$

ните плавной линией.

От Г₃ влево отложите мерку центра груди и поставьте точку Γ_6 ($\Gamma_3\Gamma_6=9$ см). Из Γ_6 восставьте перпендикуляр, пересечение с линией В1В2 обозначьте В6. От В6 отложите высоту груди $(25,2 \, \text{ см})$ и поставьте точку Γ_7 . От В6 вниз отложите 1 см, поставьте точку В7 и соедините ее с Вз. Соедините В7 и П5 пунктирной линией. От П5 вправо по пунктирной линии отложите длину плеча минус величину отрезка В₃В₇, минус 0,3 см и поставьте точку B_8 ($\Pi_5B_8=13-2,8-0,3=9,9$ см). Γ_7 и B_8 соедините прямой линией, на продолжении которой от Г, отложите величии. поставьте равную отрезку $B_7\Gamma_7$, точку Во и соедините ее с Пъ.

От Γ вправо отложите $\frac{1}{8}$ ширины проймы и поставьте точку Γ_6 ($\Gamma\Gamma_5=11,5:3=3,8\,$ см). Из Γ_5 опустите перпендикуляр, пересечения с линиями талии, бедер и низа обозначьте Γ_2 , Γ_2 , Γ_2 , Γ_2 .

Для определения общего раствора вытачек к полуобхвату талии прибавьте 1 см (34+1=35 см),

затем вычтите эту величину из ширнны халата между точками T и T_1 (49—35=14 см). Раствор передней вытачки равен 0,25 общего раствора (14 \times 0,25=3,5 см), боковой — 0,45 общего раствора (14 \times 0,45=6,3 см), задней — 0,3 общего раствора (14 \times 0,3=4,2 см).

Для расчета халата по линни бедер к полуобхвату бедер прибавьте 2 см на свободное облегание, на полученной величины вычтнте ширину халата между точками Б и Б₁ (50+2=52 см; 52—49=3 см). Результат распределите поровну между полочкой и спинкой (3:2=1,5 см). От Б₂ влево и вправо отложите по 1,5 см и поставьте точки Б₃ и Б₄.

От T_2 влево и вправо отложите по половине раствора боковой вытачки (6,3:2=3,2 см), поставьте точки T_3 и T_4 и соедините их прямыми линиями с Γ_5 . T_3 и E_4 , E_4 и E_5 соедините пунктириы илиниями, разделите их пополам, из точек деления в сторону бока отложите по 0,5 см. T_4 соедините через получениую точку плавиой линией с E_5 . Точно так же соедините E_5 соедините E_5 от E_4 соедините E_5 от E_5 от

От B_1 вниз отложите длину переда до талии плюс 0,5 см и поставьте точку T_5 ($B_1T_5=42,2+0,5=42,7$ см). T_4 и T_5 соеди-

ните.

От B_1 вниз отложите величину отрезка T_1T_5 и поставьте точку B_5 . Соедините B_5 с B_4 .

Расстояние между Γ и Γ_1 поделите пополам, точку деления обозначьте Γ_8 . Из Γ_8 опустите перпендикуляр до пересечения с линией $\overline{\mathrm{B}}_{1}$. Пересечения с лиииями талии и бедер обозначьте T_6 и $\overline{\mathrm{B}}_{6}$. От T_6 влево и вправо отложите по половине раствора задней вытачки $(4,2:2=2,1\,\mathrm{cm})$ и поставьте точки T_7 и T_8 . От Γ_8 вниз отложите $1\,\mathrm{cm}$, от $\overline{\mathrm{B}}_6$ вверх — $3\,\mathrm{cm}$. Полученные точки соедините с T_7 и T_8 .

От Γ_6 вниз проведите вертикальную линию до линии $\delta_4\delta_5$. Пересечения с линиями талии и бедер обозначьте Γ_9 и δ_7 . От Γ_9 влево

и вправо отложите по половиие раствора передней вытачки (3,5:2=1,8 см) и поставьте точки T_{10} и T_{11} . От Γ_7 вниз, а от Γ_7 вверх отложите по 4 см. Полученные точки соедините с T_{10} и T_{11} .

От H_1 вниз отложите величину отрезка T_1T_5 , поставьте точку H_5

и соедините ее с Нз.

Для халата с запа́хом иужно от точек B_4 и H_5 вправо отложить вверху 7—8 см, внизу 8—9 см и соединить получившиеся точки. Эти линии показаны пунктиром. Если халат иа «молнии», припуск к линии B_4H_5 сделайте 3 см.

На рисунке 2 показана выкройка капюшона. Цифрами обозначены размеры в сантиметрах. 7 см — это припуск на подгиб.

Халат с запахом можно сделать с пришивным воротником или с цельнокроеным типа «шалька».

Построение пришивного воротника (рис. 3). Проведите горизонтальную линию, на которой отложите половину измеренной горловины вместе с бортами и поставьте точки А и А1. От А и А1 вниз проведите прямые лииии по 9-10 см, поставьте точки Н и Н и соедините их. Расстояние между Н и Н₁ разделите на три части, правую точку деления обозначьте Н2. От Н вверх отложите 1.5 см и поставьте точку H_3 . Расстояние между A_1 и H_1 разделите пополам. Точку деления соедините с Н2, а потом c H₃ плавной линией, как показано на чертеже. Точку деления на линии А Н соедините с А плавной линией.

Построение цельнокроеного воротника «шалька» (рис. 4). Выкраивается воротник вместе с полочкой. Γ_3 соедините пунктирной линией с B_3 и продлите линно вверх. От B_3 по этой линии отложите $^{1}\!\!/_{3}$ полуобхвата шеи плюс 2 см и поставьте точку А ($B_3A=17,5:3+2=7,8$ см). Из точки А влево и вправо восставьте перпендикуляр к линии AB_3 . От А влево отложите 1 см и поставьте точку A_1 . A_1 и B_3 соедините плавточку A_1 . A_1 и B_3 соедините плавтом поставьте точку A_1 . A_1 и A_2 в седините плавтом поставьте точку A_1 . A_1 и A_2 в седините плавтом поставьте точку A_1 . A_1 и A_2 в седините плавтом поставьте точку A_1 . A_1 и A_2 в седините плавтом поставьте точку A_1 . A_1 и A_2 в седините плавтом поставьте точку A_1 . A_1 и A_2 в седините плавтом поставьте точку A_1 . A_2 и A_3 седините плавтом поставьте точку A_1 . A_2 и A_3 седините плавтом поставьте точку A_1 A_2 и A_3 седините плавтом поставьте точку A_1 A_2 и A_3 седините плавтом поставьте точку A_3 седините точку A_3 седините плавтом поставьте точку A_3 сединит

иой линией. От A вправо отложите 8 см и поставьте точку A_2 . Из A_2 восставьте перпендикуляр к линии AA_2 , отложите по нему 0,8 см и поставьте точку A_3 . A_3 и A_1 соедините. От Γ_3 вправо отложите 7—8 см и поставьте точку A_4 . От B_3 восставьте перпендикуляр к линии $B_3\Gamma_3$, равный величине отрезка A_1A_2 , и поставьте точку A_5 . Точки A_3 , A_5 , A_4 соедините.

Построение чертежа выкройки рукава (рис. 5). С левой стороны листа бумаги проведите вертикальную линию, на которой отложите длину рукава (59 см) и поставьте точки А и Н. Вправо от них проведите горизоитальные линии.

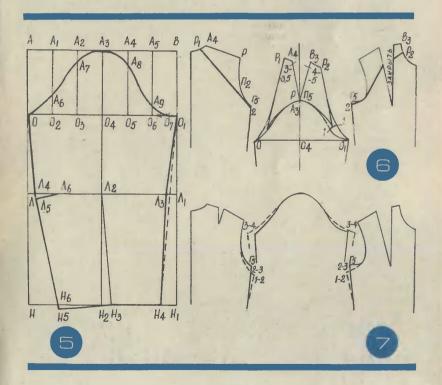
От А вправо отложите обхват руки плюс 7 см и поставьте точку В (АВ=27,3+7=34,3 см). От В опустите перпендикуляр, пересечение с нижней линией обозначьте Н.

От А вниз отложите $^{3}\!/_{4}$ глубины проймы спинки (отрезок ПГ с рисунка 1) плюс 1 см и поставьте точку О ($AO=18:4\times3+1=14,5$ см). Это окат рукава. От О вправо проведите горизонтальную линию, пересечение с линией ВН₁ обозначьте O_{1} .

От A вииз отложите длину рукава до локтя плюс 2 см и поставьте точку Π ($A\Pi$ =32+2=34 см). От Π вправо проведите горизонтальную линию, пересечение с линией BH_1 обозначьте Π_1 .

Линию ОО1 разделите на шесть равных частей, точки деления обозначьте О2, О3, О4, О5, О6. От каждой точки деления проведите вверх вертикальные линии, пересечения с линией AB обозначьте A1, A2, A3, A4, A5. От О2 вверх отложите $^{1}/_{3}$ высоты оката рукава минус 1 см и поставьте точку A6 (О2A6=14,5:3—1=3,8 см). От A2 и A4 вниз отложите по $^{1}/_{3}$ высоты оката рукава минус 2,2 см и поставьте точки A7 и A8 (A2A7==A4A8=14,5:3—2,2=2,6 см). От О6 вверх отложите $^{1}/_{6}$ высоты оката рукава и поставьте точку A9

(14,5:6=2,4 см). Линию O_6O_1 разделите на три равные части, правую точку деления обозначьте O_7 . Точки O, A_6 , A_7 , A_3 , A_8 , A_9 , O_7 , O_1 соедините, как показано на чертеже.


Линию A_3O_4 продлите вниз, пересечения с линиями локтя и низа обозначьте \mathcal{J}_2 и \mathcal{H}_2 . От \mathcal{H}_2 вправо отложите 2 см, поставьте точку \mathcal{H}_3 и соедините ее с \mathcal{J}_2 .

От H_3 вправо отложите $^{1}/_{2}$ обхвата запястья плюс 2-3 см и поставьте точку H_4 . Соедините ее с O_1 пунктирной линией. От пересечения пунктириой линии с линией локтя отложите влево 1 см и поставьте точку Π_3 . Точки O_1 , Π_3 , H_4 соедините.

Из H_3 влево восставьте перпендикуляр к линии J_2H_3 , на котором отложите $^1/_2$ обхвата запястья

плюс 2-3 см и поставьте точку H_5 . От \mathcal{I} вправо отложите 2 см и поставьте точку \mathcal{I}_4 . Соедините ее прямыми линиями с точками О и H_5 . Пересечение с линией HH_1 обозначьте H_6 . От \mathcal{I}_4 вниз отложите величину отрезка H_5H_6 и поставьте точку \mathcal{I}_5 . От \mathcal{I}_4 вправо отложите 6 см, поставьте точку \mathcal{I}_6 и соедините ее с \mathcal{I}_5 . Если рукав должен быть прямым, срезы рукава проходят по линиям ОН и O_1H_1 .

На рисунке в заголовке зеленый халат изображен с рукавом типа реглан. Моделирование такого рукава показано на рисунке 6. От Г₅ вниз по боковому срезу спинки и переда отложите по 2 см. От А₄ вправо по плечевому срезу отложите длину плеча без припуска на вытачку и посадку

(13 см) и поставьте точку P. Соедините ее с Π_2 . От A_4 влево по линии горловины отложите 3 см, поставьте точку P_1 и соедините ес точкой 2. От B_3 вниз по линии горловины отложите 4 см и поставьте точку P_2 . Верхнюю вытачку сколите, после этого точки P_2 и 2 соедините, как показано на рисунке. Выкройку спинки и переда по этим линиям разрежьте.

Выкройку рукава обведите на чистом листе бумаги, отступив на 20 см от верхнего среза. Линию O_4A_3 продлите вверх. Отрезанную часть спинки точкой Р приложите к A_3 , срез проймы совместите с окатом рукава и обведите эту часть. Точка A_4 отходит от вертикальной линии влево приблизительно на 3-3,5 см. Затем точку P_1 соедините плавной линией с O.

Отрезанную часть переда точкой Π_5 приложите к A_3 . Конец среза проймы приколите в 1 см от линии оката рукава, тогда точка B_3 отойдет от вертикальной линии приблизительно на 4-5 см. От конца среза проймы в другую сторону отложите 1 см. Точки P_2 , 1, O_1 соедините плавной линией.

Если вы хотите сделать рукав клеш, разрежьте его от низа до точки A_3 , а верхнюю вытачку, которая у вас получилась, закройте, то есть совместите точки A_4 и B_3 .

Халат с капюшоном лучше делать длинным. Удлиннть выкройку спинки и переда по вашему росту не составит труда.

У второго халата рукав и пройма расширены. На рисунке 7 эти линии показаны пунктирами и цифрами.

Галина ВОЛЕВИЧ, конструктор-модельер

Рисунки А. СВИРКИНА и автора

коллекция эрудита

Из истории техники

ИЗОБРЕТЕНИЕ ПЕТРА І

«Честь изобретения глубоководного лота для взятия проб грунта со дна моря принадлежит Петру I. По его указу проведены и первые эксперименты в этой области. Русский царь разработал специальное приспособление—цилиндрический зонд, который опускается за борт на длинной веревке, при ударе о дно открывается и забирает образцы грунта...»

Так писал в своей книге «Физическая география моря», издан-

ной в прошлом веке, океанограф

М. Морли.

Эксперименты, о которых говорится в книге, были проведены русской экспедицией во время гидрографических работ на Каслийском море в 1714—1720 годах. В обработке сведений, привезенных этой экспедицией в Санитнетербург, Петр I принимал личное участие. Под его руководством и была составлена первая карта Каспийского моря. За эту работу Петр I был удостоен звания члена Паримской академии наук.

BOT TAK-TO ...

ЗАДОЛГО ДО ЭВМ

Перфокарта, перфолента... Вы, вероятно, думаете, что они появились лишь с развитием электроиной вычислительной техники? Нет. Первыми машинами с программным устройством были музыкальные автоматы, изготовленные дватри века назад.

Программы таких автоматов в виде выступов различной толщи-

ны, высоты размещались на валах, кольцах и дисках. Но... в одном из музеев Праги хранится музыкальный автомат, программа которого записама на бумажной ленте 90 лет тому назад. Это кукла, играющая на банджо веселую мелодию.

Как это было...

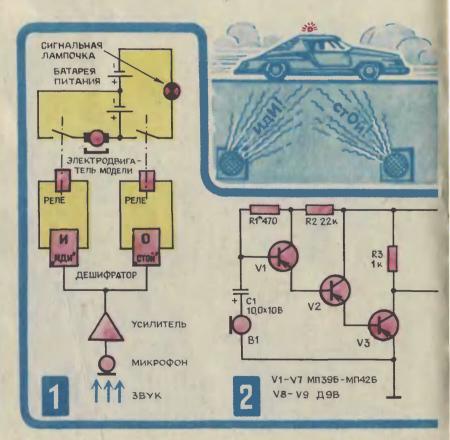
ШИФРЫ В НАУКЕ

«...Чтобы приготовить элинсир мудрецов, возьми, сын мой, меркурий философов, обжигай его, пока он не превратится в красного льва...» Это выписка из рецепта алхимика раннего средневых лишь недавно специалистам удалось разобраться, что «меркурий философов» — это свинец, а «красный лев» — свинцовый сурик...

Большим мастером шифров по-

казал себя Галилео Галилей. Обнаружим в телескоп кольца у Сатурна, он поначалу принял их за спутники. Но «спутники» эти вскоре исчезли. Теперь-то мы с вами знаем, в чем тут дело: время от времени кольца Сатурна поворачиваются к Земле нак бы в профиль, и тогда из-за малой толщины их практически не видно. Так что сомнений в правильности своего открытия у Галилея было достаточно. Галилей зашифровал сообщение о своем открытим и в таком виде обнародовал его, тем самым, с одной стороны, сохраияя за собой славу первоотирывателя, а с другой, спасая себя от насмешек ноллег, если бы наблюдения не подтвердились. Позднее когда другие наблюдатели тоже увидеям кольца Сатуриа, Галилей дал расшифровку сообщения.

многие средневеновые тенсты остаются нерасшифрованными и по сию пору. Однако ученые не теряют надежды в один пренрасчый день подобрать к ним илючик. Зачем это нужно? Ну хотя бы вот зачем. Среди бумаг знаменитого естествоиспытателя и философа XIII века Роджера Бэкона были обнаружены записи, столь искусно зашифрованные, что их смысл остается неясен и сегодня. А между тем, судя по рисункам, на одном изображена спиральная туманность, которую можно увидеть только в телескоп, а на другом — клетка с ядром, которое видно только под минроскопом Значит, Бэкону были знакомы оба прибора. Но ведь до сих пор считается, что их изобрели 200 лет спустя! Как увидел туманность и клеточное ядро Бэкон? Изобрел ли он сам приборы или воспользовался работами своих предшественников, о ноторых мы пока ничего ме знаем?

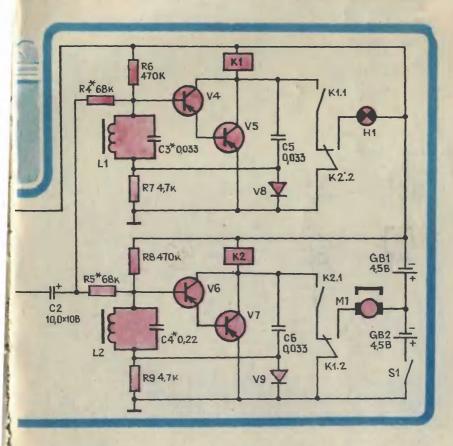


МАШИНА, СЛУШАЙ МОЮ КОМАНДУ!

Кто не слышал об «умных» машинах? Пожалуй, всем известно, что существуют на свете электронные вычислительные машины, которые решают сложнейшие

уравнения, переводят иностранные тексты, управляют производством, а порой, в порядке «культурного отдыха», играют в шахматы и пишут музыку. Все задания этим

ЭВМ человек вынужден сообщать на специальном машинном языке.


Для многих ЭВМ перфолента бумажная полоска, на которой нанесены отверстия в соответствии с содержанием задания, — это единственный мостик, связывающий их с внешним миром. Она заменяет им глаза и уши.

А нельзя ли упростить разговор человека с машиной, отказаться от промежуточного перевода заданий на перфоленту? Сделать так, чтобы, например, мы могли разговаривать с ЭВМ «почеловечески», отдавать приказы и команды в устной форме?

Чтобы заставить машину работать «на слух», надо создать специальные дешифраторы — частотные фильтры, способные подбирать каждому звуку, независимо т того, кто его произносит, соответствующее сочетание букв.

Уже созданы интересные устройства, автоматически печатающие на пишущей мащинке диктуемые тексты, набирающие по устному приказу номер телефона, переключающие диапазоны радиоприемника.

Простой акустический автомат, умеющий анализировать звуковые команды, можете собрать и вы. Он реагирует на звуковые колеба-

ния, примерно соответствующие произношению гласных букв «и» и «о». Если к исполнительным выводам этого автомата подключить, например, электрический двигатель игрушечного автомобиля, то произносимые громко слова «иди» и «стой» позволят испосредственно управлять моделью.

Сначала познакомимся со структурной схемой акустического автомата (рис. 1). Микрофон выполняет роль датчика. Он преобразует звуковой сигнал в электрические колебания, а усилитель иизкой частоты усиливает их. Затем колебания низкой частоты поступают на дешифратор C ДВУМЯ фильтрами, каждый из которых настроен на определенную полосу звуковых частот (звук «и» соотколебаний ветствует частоте 400-700 Гц, а звук «о» - частоте 150-300 Гц). Принятый дешифратором сигнал соответствующей частоты вызывает срабатывание одного из электронных реле, которое своими контактами включает двигатель или лампочку.

Принципиальную схему акустического электронного реле вы видите на рисунке 2. Каскады на транзисторах V1-V3 образуют простейший усилитель низкой частоты. Сигнал с микрофона В1 поступает на базу транзистора V1 и управляет величиной его коллекторного тока, который, в очередь, поступает далее на базу транзистора V2 и усиливается им. Точно так же коллекторный ток транзистора V2 усиливается тран-зистором V3. В цепь коллектора последнего включена нагрузка резистор R3. Режимы транзисторов усилителя по постоянному току определяются сопротивлением резистора R1, изменяя которое в пределах от 200 до 600 Ом можно регулировать чувствительность автомата.

Последовательное соединение транзисторов позволяет получить очень большое усиление тока сигнала, которое может достигать

величины, равиой произведению статических коэффициентов передачи тока примеияемых приборов.

С выхода усилителя командный сигнал через конденсатор С2 поступает на вход дешифратора, но срабатывает та из его двух ячеек, которая настроена на частоту этого сигиала. Почему это происходит?

Вы, вероятно, знаете, что сопротивление колебательного контура для колебаний, частота которых совпадает с его собственной частотой, во много раз больше, чем для колебаний всех других частот. Это свойство контура и лежит в основе принципа работы ячеек дешифратора.

Пока сигнала на входе дешифратора нет, составной транзистор V4V5 первой ячейки электронного реле иемного приоткрыт напряжением смещения, создаваемым делителем R6R7. В этом режиме ток в коллекторной составного транзистора и обмотке реле К1 минимален, он не вызывает срабатывания реле. Это реле не срабатывает и при поступлении сигнала с частотой, отличной резонансной частоты колебательного контура L1C3, так как в этом случае сопротивление контура мало и все входное напряжение падает на резисторе R4.

С поступлением на вход дешифратора сигнала с частотой, близкой резонансиой частоте контура (для которой сопротивление кон-Typa L1C3 велико, значительно сопротивления резистобольше ра R4), на составной транзистор V4V5 подается переменное напрякомандного сигнала. жение Это напряжение, усиленное траизистором, выделяется на обмотке реле К1 и с нее через конденсатор C5 попадает на диод V8. В результате выпрямления на резисторе R7 появляется постоянная составляющая, которая в отрицательной полярности подается через катушку L1 на базу транзистора V4. Коллекторный ток составного транзистора при этом резко возрастает, реле К1 срабатывает. Его контакты К1.1 блокируют цепь питания обмотки этого реле, а контакты К1.2 размыкают блокировочную цепь реле К2 и подключают электродвигатель М1 к батарее питания GB2.

Точно так работает и вторая ячейка дешифратора, только реагирует она на сигналы другой частоты. Если на выходе усилителя будет командный сигнал с частотой 150-300 Гц, то сработает реле К2, которое контактами разомкнет цепь питания обмотки реле К1 и включит индикаторную лампочку Н1, а контак-K2.1 заблокирует свою обмотку. Такое положение ABTOпринимает по команде «стой».

Детали акустического автомата лучше разместить на трех отдельных монтажных платах из гетинакса или текстолита толщиной 2—3 мм. Размеры и форма плат определяются объемом свободного пространства внутри модели автомобиля. Не следует выбирать миниатюрные сувенирные модели: даже при использовании малогабаритных деталей монтажные платы не смогут скрытно разместиться внутри.

В качестве микрофона В1 применен телефон типа ТА-56М или электродинамический капсюль ДЭМ-4М. Резисторы типа МЛТ 0,125, электролитические конденсаторы К50-6 (можно ЭМ), конденсаторы С3—С6 типа К74—5, К10—7 или КМ. Транзисторы V1—V7 маломощные низкочастотные типа МПЗ9-МП42, желательно малошумящие— с индексом Б.

Коэффициент передачи тока всех транзисторов может быть в пределах от 40 до 100. Полупроводниковые диоды V8 — V9 серии Д9 или Д2 с любым буквенным индексом.

Электромагнитные реле К1 —

К2, работающие в ячейках дешифратора, типа РЭС6, РЭС9 или самодельные с током срабатывания до 30—40 мА. В некоторых случаях следует ослабить возвратные пружины якоря, чтобы реле надежно срабатывало при напряжении 5—6 В.

индуктивно-Каркасами для стей L1 и L2 служат катушки от ниток, только отверстия нужно рассверлить до диаметра 8 мм. Катушки намотайте «внавал» проводом ПЭЛ или днаметром 0,12-0,18 мм. Первая катушка имеет 2000 вторая 3200 витков. Подстроечные сердечники диаметром 8 мм и длиной 50 мм из феррита марки 1000 НМ или 600 НН отколите от стержня магнитиой антенны радиоприемника. Сердечник должен с небольшим трением перемещаться внутри катушки.

Микроэлектродвигатель МІ, устанавливаемый в моделях автомобилей, обычно рассчитан на напряжение 4,5 В, поэтому он подключается контактами реле К1.2 к средней точке источника питания, состоящего из двух последовательно соединенных батарей GВ1 и GB2 типа 3336Л или «Рубин-1».

Индикаторная (сигнальная) лампочка Н1 иа напряжение 6,3 В.

Налаживание акустического электронного реле можио проводить без специальной измерительной аппаратуры, понадобится только звуковой генератор (можно самодельный) и простейший авометр.

После проверки монтажа приступайте к настройке усилителя низкой частоты. Между плюсовым проводником питания и положительным выводом конденсатора С2 включите высокоомные телефоны. Произнося перед микрофоном слова или подавая тональные сигналы, вы должны услышать неискаженный усиленный звук в

подключенных телефонах. Если звук очень сильный и хриплый, то в цепь эмиттера транзистора V3 следует включить резистор сопротивлением 51—100 Ом. Если звук в телефонах очень тихий, то следует более тщательно подобрать сопротивление резистора R1 (в пределах от 220 до 680 Ом).

Далее, отключив телефоны от усилителя, начинайте настройку резонансных контуров ячеек дешифратора. При наличии звукового генератора его выводы единяют с теми же точками схеме, что и контрольные телефоны при проверке усилителя. Установив генератор на частоту 550 Гц (середина частотного диапазона 400-700 Гц), подайте к ячейкам дешифратора сигнал напряжением 2-3 В. Плавно вводя сердечник в катушку L1, настройте контур на частоту резонанса. В момент резонанса коллекторный ток составного транзистора V4V5 должен резко возрасти, а реле К1 четко сработать. Чем точнее настройка, тем больше будет коллекторный ток транзистора. Изменяя сопротивление резистора R4. надо добиться, чтобы величина этого тока была не менее 35-50 мА. Настройку контура можно вести и подбором емкости конденсатора СЗ в пределах от 0,022 до 0.047 мкФ.

Таким же порядком настройте резонанс с частотой 225 Гц (середина частотного диапазона 150—300 Гц) второй контур L2С4. При настройке емкость конденсатора С4 можно изменять в пределах от 0,1 до 0,33 мкф, а сопротивление резистора R5 в пределах от 47 кОм до 100 кОм.

Повторите настройку резонансных контуров ячеек дешифратора еще два-три раза, но при более слабых сигналах звукового генератора. И наконец, отключив звуковой генератор, проверьте работоспособность всего устройства от голоса. Не исключено, что в этом случае также потребуется внести коррективы в настройку ячеек. Окончательную проверку работы и подстройку дешифратора производят после установки всех плат автомата в игрушку. Микрофон разместите так, чтобы его звуковое отверстие не было закрыто. Индикаторную лампочку установите на месте фары модели автомобиля или на его крышке.

Правильно собраниый и настроенный акустический автомат при подаче команды «иди» (обратите внимание на выделение звука «и» в этом слове) подключает к источнику питания электродвигатель, и модель трогается с места.

Остановить игрушку вы можете новой командой — «стой» (выделяя здесь звук «о»). Когда модель остановится, то должна загореться сигнальная лампочка.

Если вы захотите расширить возможности аппаратуры, например, добавить команду «назад» (произношению буквы «a» coorветствует полоса частот 700-1100 Гц), то следует собрать еще одну ячейку дешифратора аналогичной схеме и настроить резонансный контур на указанный диапазон частот. Подумайте, как проще подключить в схему автомата реле этой ячейки, электродвигатель игрушки команде «назад» менял свое вращение на противоположное.

И. ЕФИМОВ, инженер

Рисунки Ю. ЧЕСНОКОВА

"ЮНЫЙ ТЕХНИК"

1981 No

Приложение — самостоятельное издание (индекс 71123). Распространяется по подписке. Редакция распространением водпиской не занимается.

Этот номер приложения целиком посвящен зимним самоделкам, играм и развлечениям. Вы найдете на его страницах описание управляемых саней, снежного городка, оригинального и в то же время простого снаряда для слалома, костюма для фигурного катания и другие материалы, подобранные из прежних публикаций по вашим просьбам.

Впереди еще верных два месяца снега и льда, а значит, и здорового, бодрящего отдыха. Надеемся, что наш специапьный номер поможет сделать этот отдых более разнообразным и увлекательным.

