Игорь Владимирович Проскуряков
|
Из предисловия к первому изданию: Числа и многочлены, на первый взгляд столь различные между собой, имеют, однако, много общего. Для тех и других определены действия сложения, вычитания, умножения и деления, обладающие одними и теми же свойствами. Как те, так и другие являются частными случаями общего понятия кольца, являющегося одним из основных понятий современной алгебры. Поэтому становится возможным изучение чисел и многочленов в рамках одной общей теории. Это позволяет яснее видеть взаимосвязь и значение различных их свойств и устраняет многократное и утомительное повторение одних и тех же рассуждений при построении различных числовых областей и многочленов. Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два - четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль. Книга рассчитана на преподавателей математики в старших классах средней школы, но не касается вопросов методики преподавания. Ее можно рекомендовать также студентам педагогических и учительских институтов, а также школьникам старших классов, интересующимся обоснованием понятий числа и многочлена... |