«И» «ИЛИ»  
© Публичная Библиотека
 -  - 
Универсальная библиотека, портал создателей электронных книг. Только для некоммерческого использования!
Лагранж Жозеф Луи
Фотографии

Жозеф Луи Лагранж 141k

(Joseph Louis Lagrange)

(25.01.1736 - 10.04.1813)

◄ СМЕНИТЬ   РАЗВЕРНУТЬ ▼
▲ СВЕРНУТЬ    СМЕНИТЬ ►
Большая советская энциклопедия: Лагранж (Lagrange) Жозеф Луи (25.1.1736, Турин, - 10.4.1813, Париж), французский математик и механик, член Парижской АН (1772). Родился в семье обедневшего чиновника. Самостоятельно изучал математику. В 19 лет Л. уже стал профессором в артиллерийской школе Турина. В 1759 избран член Берлинской АН, а в 1766-87 был ее президентом. В 1787 Л. переехал в Париж; с 1795 профессор Нормальной школы, с 1797 - Политехнической школы.
Наиболее важные труды Л. относятся к вариационному исчислению, к аналитической и теоретической механике. Опираясь на результаты, полученные Л. Эйлером, он разработал основные понятия вариационного исчисления и предложил общий аналитический метод (метод вариаций) для решения вариационных задач. В классическом трактате «Аналитическая механика» (1788; русский перевод, т. 1-2, 2 изд., 1950) Л. в основу всей статики положил «общую формулу», являющуюся принципом возможных перемещений, а в основу всей динамики - «общую формулу», являющуюся сочетанием принципа возможных перемещений с принципом Д'Аламбера (см. Д'Аламбера - Лагранжа принцип). Из «общей формулы» динамики может быть получена, как частный случай, «общая формула» статики. Л. ввел обобщенные координаты и придал уравнениям движения форму, называемую его именем (см. Лагранжа уравнения).
Л. стремился установить «простые» и «всеобщие» принципы механики. При этом исходил из характерных для прогрессивных ученых 18 в. представлений, что только такие принципы могут быть истинными, соответствующими объективной реальности.
Л. принадлежат также выдающиеся исследования по различным вопросам математического анализа (формула остаточного члена ряда Тейлора, формула конечных приращений, теория условных экстремумов), теории чисел, алгебре (симметрической функции корней уравнения, теория и приложения непрерывных дробей), по дифференциальным уравнениям (теория особых решений, метод вариации постоянных), по интерполированию, математической картографии, астрономии и пр.
Обложки




.