«И» «ИЛИ»  
© Публичная Библиотека
 -  - 
Универсальная библиотека, портал создателей электронных книг. Только для некоммерческого использования!
Марков Андрей Андреевич
Фотографии

Андрей Андреевич Марков 131k

-

(14.06.1856 - 20.07.1922)

◄ СМЕНИТЬ   РАЗВЕРНУТЬ ▼
▲ СВЕРНУТЬ    СМЕНИТЬ ►
Большая советская энциклопедия: Марков Андрей Андреевич [2(14).6.1856, Рязань, - 20.7.1922, Петроград], русский математик, специалист по теории чисел, теории вероятностей и математическому анализу. С 1886 адъюнкт Петербургской АН, с 1890 экстраординарный, а с 1896 ординарный академик. Родился в семье мелкого чиновника. В 18/8 окончил Петербургский университет со степенью кандидата и в том же году получил золотую медаль за работу «Об интегрировании дифференциальных уравнений при помощи непрерывных дробей». С 1880 приват-доцент, с 1886 профессор, с 1905 заслуженный профессор Петербургского университета. Научные исследования М. примыкают по тематике к работам старших представителей петербургской математической школы П.Л. Чебышева, Е.И. Золотарева и А.И. Коркина. Блестящие результаты в области теории чисел, которые М. получил в магистерской диссертации «О бинарных квадратичных формах положительного определителя» (1880), послужили основой дальнейших исследований в этой области. Работы М. по анализу относятся к теории непрерывных дробей, к изучению предельных значений интегралов при некоторых условиях наложенных на подинтегральную функцию, к вопросам улучшения сходимости рядов и к теории наилучших приближении. М. дал чрезвычайно простое решение вопроса об определении верхней границы производной от многочлена по данной верхней границе самого многочлена. В теории вероятностей М. восполнил пробел, остававшийся в доказательстве основной предельной теоремы, и тем самым впервые дал полное и строгое доказательство этой теоремы в практически достаточно общих условиях. Дальнейшие работы М. по распространению основной предельной теоремы на последовательности зависимых величин привели к замечательной общей схеме «испытаний, связанных в цепь». На этой элементарной схеме М. установил ряд основных закономерностей, положивших начало всей современной теории случайных марковских процессов. М. много занимался различными приложениями теории вероятностей и дал, в частности, общепринятое ныне вероятностное обоснование метода наименьших квадратов. Учебник М. «Исчисление вероятностей» (1900) оказал большое влияние на развитие этой науки, а по точности получаемых простыми средствами результатов представляет интерес до сих пор. Широкое распространение получил также его учебник «Исчисление конечных разностей» (1886, литографическое издание, 2 издание, 1910). М. был прогрессивным ученым, выступал с разоблачением реакционных направлений в науке, протестовал против действий царского правительства, отказавшегося утвердить избрание М. Горького почетным членом Академии наук.
Обложки
Обложка 1
  • Марков А.А. Избранные труды. [Djv- 8.9M] Редакция профессора Ю.В. Линника. Комментарии Ю.В. Линника, Н.А. Сапогова, О.В. Сарманова и В.Н. Тимофеева.
    (Издательство Академии Наук СССР, 1951. - Серия «Классики науки»)
    Скан, обработка, формат: ???, доработка: AAW, mor, 2010
    • СОДЕРЖАНИЕ:
      Теория чисел
      О бинарных квадратичных формах положительного определителя (9).
      О целых числах, зависящих от корня кубического из целого рационального числа (85).
      О простых делителях чисел вида 1 + 4х2 (135).
      О неопределенных тройничных квадратичных формах (143).
      Таблица неопределенных тройничных квадратичных форм, не представляющих нуль, для всех положительных определителей D‹=50 (165).
      Доказательство трансцендентности чисел e и П. (Невозможность квадратуры круга) (199).
      Теория вероятностей
      Закон больших чисел и способ наименьших квадратов (231).
      О корнях уравнения ex\2 dme-x2/dxm = 0 (253).
      Неравенства Чебышева и основная теорема (271).
      Теорема о пределе вероятности для случаев академика A.M. Ляпунова (319).
      Распространение закона больших чисел на величины, зависящие друг от друга (339).
      Распространение предельных теорем исчисления вероятностей на сумму величин, связанных в цепь (363).
      О связанных величинах, не образующих настоящей цепи (399).
      Об одном случае испытаний, связанных в сложную цепь (417).
      Об испытаниях, связанных в цепь ненаблюдаемыми событиями (437).
      Исследование общего случая испытаний, связанных в цепь (465).
      О задаче Якова Бернулли (509).
      О коэффициенте дисперсии (523).
      О коэффициенте дисперсии. (Вторая заметка) (537).
      Об одной задаче Лапласа (549).
      О некоторых предельных формулах исчисления вероятностей (573).
      Обобщение задачи о последовательном обмене шаров (587).
      Приложения
      Биография А.А. Маркова. Проф. А.А. Марков (599).
      Очерк работ А.А. Маркова по теории чисел и теории вероятностей. Проф. Ю.В. Линник, доц. Н.А. Сапогов, В.Н. Тимофеев (614).
      Комментарии и примечания (643).
      Библиография. Составила В. Алексеева (679).
      Именной указатель (715).
.
Обложка 2
Обложка 1
  • Марков А.А. Избранные труды по теории непрерывных дробей и теории функций наименее уклоняющихся от нуля. [Djv- 5.0M] Биографический очерк и примечания Н.И. Ахиезера.
    (Москва - Ленинград: Гостехиздат, 1948. - Классики естествознания: математика, механика, физика, астрономия)
    Скан: AAW, OCR, обработка, формат Djv: mor, 2011
    • СОДЕРЖАНИЕ:
      От издательства (5).
      Андрей Андреевич Марков (биографический очерк) (9).
      Избранные труды:
      1. Доказательство некоторых неравенств П.Л. Чебышева (15).
      2. Выдержка из одного письма Эрмиту (25).
      3. О корнях некоторых уравнений. I (34).
      4. О корнях некоторых уравнений. II (44).
      5. Об одном вопросе Д.И. Менделеева (51).
      6. О функциях, получаемых при обращении рядов в непрерывные дроби (76).
      7. Два доказательства сходимости некоторых непрерывных дробей (106).
      8. Новые приложения непрерывных дробей (120).
      9. О предельных величинах интегралов в связи с интерполированием (146).
      10. О корнях уравнения ех\2 dme-x\2/dxm = 0 (231).
      11. Лекции о функциях, наименее уклоняющихся от нуля (244).
      12. Лекции о непрерывных дробях (292).
      Примечания (377).
      Приложение: К.А. Поссе «К вопросу о предельных значениях интегралов или сумм» (391).
.
Обложка 2