«И» «ИЛИ»  
© Публичная Библиотека
 -  - 
Универсальная библиотека, портал создателей электронных книг. Только для некоммерческого использования!
Шмелев Александр Борисович
.

Александр Борисович Шмелев 29k

-

()

.
.
александр борисович шмелев на страницах библиотеки упоминается 1 раз:
* Шмелев Александр Борисович
  • Шмелев А.Б. Основы марковской теории нелинейной обработки случайных полей. [Djv- 2.3M] .
    (Москва: Издательство МФТИ, 1998)
    Скан, обработка, формат Djv: ???, предоставил: bolega, 2010
    • ОГЛАВЛЕНИЕ:
      Предисловие (4).
      Введение (5).
      Глава 1. Уравнения оптимального нелинейного оценивания случайных полей
      1.1. Априорное статистическое описание оцениваемых полей (11).
      1.2. Уравнение для апостериорного функционала плотности вероятности (16).
      1.3. Гауссовское приближение (21).
      1.4. Об особенностях квазиоптимальной фильтрации недиффузионных марковских процессов (26).
      1.5. Интерполяция и экстраполяция случайных полей (32).
      Глава 2. Нелинейная оценка пространственных фазовых флуктуации
      2.1. Выделение пространственных флуктуации фазы на сплошной апертуре (37).
      2.2. Оценка фазы на линейной эквидистантной антенной решетке (47).
      2.3. Оценка пространственных флуктуации фазы, вызванных турбулентной средой распространения (55).
      2.4. Оптимальная оценка фаз при двухпозиционном приеме (62).
      Глава 3. Стационарная оценка пространственно-временных флуктуации фазы и квазикогерентный прием сигналов
      3.1. Стационарная фильтрация фазы на сплошной апертуре (68).
      3.2. Фильтрация фазовых флуктуации на дискретной антенной решетке и при двухпозиционном приеме (76).
      3.3. Учет пространственной корреляции шума наблюдения (82).
      3.4. Нелинейная интерполяция пространственно-временных фазовых флуктуации (89).
      3.5. Пространственно-временной квазикогерентный прием AM и ФМ сигналов (92).
      Глава 4. Анализ чувствительности оптимальных алгоритмов к отклонению параметров от расчетных значений
      4.1. Общие уравнения для погрешности неоптимальных оценок (100).
      4.2. Качество неоптимальных оценок фазы в отсутствие пространственных флуктуации сигнала и шума (103).
      4.3. Анализ погрешности фазовых оценок в двухпозиционной системе (110).
      4.4. Качество неоптимальных оценок фазы на сплошной апертуре (115).
      4.5. Влияние неточности априорных сведений об интенсивности полезного сигнала и шума на качество пространственно-временных оценок фазы (124).
      Глава 5. Связь между отношением правдоподобия и апостериорными характеристиками случайных сигналов
      5.1. Расчет апостериорных характеристик полезного сигнала из отношения правдоподобия (131).
      5.2. Решение некоторых задач оптимального оценивания при помощи отношения правдоподобия (135).
      5.3. Общая структура оптимальных обнаружителей пространственно-временных сигналов (143).
      5.4. Связь между оптимальной фильтрацией и интерполяцией случайных процессов и полей (148).
      5.5. Учет временной корреляции шума в структуре оптимального обнаружителя (157).
      Глава 6. Вопросы временной обработки сигналов при наличии импульсных помех
      6.1. Простые марковские модели импульсных помех (163).
      6.2. Обнаружение детерминированного сигнала на фоне импульсных помех (168).
      6.3. Характеристики линейных обнаружителей при наличии импульсных помех (176).
      Заключение (183).
      Приложение. Функциональный подход к статистическому описанию случайных процессов
      1. функциональные (вариационные) производные (184).
      2. Функциональный ряд Тейлора (187).
      3. Характеристический функционал (188).
      4. Уравнения для плотности вероятности марковских процессов (194).
      Список литературы (198).
Аннотация издательства: На базе обобщения марковского подхода к проблеме нелинейного оценивания случайных процессов изложены основы теории нелинейной обработки случайных полей применительно к задачам оптимального приема сигналов и выделения полезной информации в крупноапертурных и многопозиционных информационно-измерительных системах. Основное внимание уделено вопросам синтеза и анализа алгоритмов пространственно-временного оценивания фазовых флуктуации сигналов, наблюдаемых в смеси с гауссовским шумом. Рассмотрены вопросы пространственно-временного квазикогерентного приема модулированных сигналов, испытывающих фазовые искажения. Проанализирована взаимосвязь между отношением правдоподобия и апостериорными характеристиками случайных сигналов. Рассмотрены некоторые вопросы временной обработки сигналов, наблюдаемых на фоне негауссовских импульсных помех.
Для научных работников и инженеров, работающих в области локации, связи, обработки информации и в смежных областях.
.